RAMSEY THEORY

1 Ramsey Numbers

Party Problem: Find the minimum number R(k,[) of guests that must be
invited so that at least & will know each other or at least [ will not know
each other (we assume that if A knows B, then B knows A as well).

Let us rephrase this problem in graph theoretical terms:

DEFINITION 1.1: A complete graph G is a graph in which each pair of vertices
is connected by one edge (no loops). We denote the complete graph with n
vertices as K.

DEFINITION 1.2: The Ramsey Number R(k,l) is defined as the minimum
number N such that for any coloring ¢ of the set of edges of Ky, denoted as
E(Ky), Ky contains a red Ky or a blue K as a subgraph. A coloring c is a
function from {(7, )i # j and i,j € {1,..., N}} to {red, blue}.

Some obvious properties are: R(s,t) = R(t,s) and R(s,2) = s.

THEOREM 1.1 (Ramsey 1930): R(s,t) is finite for all s,¢ > 2 and for s, > 2
we have R(s,t) < R(s —1,t)+ R(s,t —1).

Proof: Select an arbitrary vertex v of the graph Ky, where N = R(s —
1,t) + R(s,t — 1). Let ¢ be an arbitrary coloring of Ky. Then, R(s —
1,t)+ R(s,t — 1) — 1 edges arrive in v. Either R(s — 1,t) of them are red or
R(s,t — 1) are blue. Without loss of generality, assume we have R(s — 1,t)
vertices incident to v by means of red edges. These vertices form a Kg(,_1,)
graph. Thus, for each coloring, including coloring ¢, we either have a blue
K, or ared K,_; in this Kps_1 graph. This completes the proof, as in the
latter case a red K is formed by adding v to the red K,_;. Q.E.D.

THEOREM 1.2: For all s,t > 2 we have R(s,t) < (Sif)
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Proof: Trivial for s or ¢ equal to 2. For s,¢ > 2 (with induction on s + t),

we use Ramsey’s theorem and the fact that (];) + (lfl) = (=L 4 1) (lfl) =

l
BELORY = (M) (with k= s+t —3and [ =s — 1). QED

I \i-1 l

EXERCISES 1.1: Prove the following identities:
1. R(3,3) =6.
2. R(3,4) > 8.

3. R(3,4) <=09; hence, R(3,4) = 9. [HINT: Consider the following three
scenarios (i) at least 4 red edges arrive in some vertex v, (ii) at least
6 blue edges arrive in some vertex v and (iii) exactly 3 red and 5 blue
edges arrive in all vertices v.]

4. R(s,t) < R(s—1,t)+ R(s,t —1) — 1 if both R(s,t —1) and R(s —1,t)

are evem.

5. R(s,s) < 2%73 [HINT: Let ¢ be an arbitrary coloring of Ky2s-s. Select
an arbitrary vertex v, then there exists a set V) with at least 2274
vertices such that c(v,v) = c(viw) for all v,w € Vi. Let v; be any
vertex in V;_y, let V; C Vi_; be a set with at least 227377 vertices

for which ¢(v;v) = c¢(v;w) for all v,w € V;. Repeat this argument for
i=2,...,25— 3]

6. R(3,5) = 14.

Ramsey numbers are very hard to compute, so far only the following are
known: R(2,t) = t, R(3,3) =6, R(3,4) =9, R(3,5) = 14, R(3,6) = 18,
R(3,7) =23, R(3,8) =28, R(3,9) = 36, R(4,4) = 18 and R(4,5) = 25. No
other Ramsey numbers are currently known (upper and lower bounds exist).

In order to make a link with other mathematical disciplines we need to in-
troduce the following numbers:

DEFINITION 1.3: The generalized Ramsey numbers R (a;,as, ..., a;) are
defined as the minimum number N such that no matter how each ¢-element
subset of an N-element set is colored with k colors, there exists an 7 €

{1,..., k} such that there is a subset of size a;, all of whose g-element subsets
have color i. [Remark: R(k,1) = R® (k,1)]
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THEOREM 1.3 (Ramsey 1930): All generalized Ramsey numbers are finite.

EXERCISES 1.2: On generalized Ramsey numbers:

1.

2.

Simplify R")(r, ay, ..., ax).

Express the Pigeon Hole Principle by means of a Ramsey number [Re-
call: Distributing (n — 1)t 4 1 balls in ¢ urns results in at least one urn
with n balls].

Prove the Erdos-Szekeres Theorem (1935) using the RV (., ...,.) num-
bers [Theorem: any row of ab+ 1 distinct real numbers contains either
an increasing subrow for size a+ 1 or a decreasing subrow of size b+ 1].

. Prove the Schur Theorem (1916) using the R®(.,...,.) numbers [The-

orem: for any natural number ¢, there exists an N sufficiently large
such that for any partitioning Ay, ..., A; of {1,..., N} there exists an
ie{l,...,t} and and z,y and z in A; such that z +y = z].

. Prove the Erdos-Szekeres Theorem (1935) using the R™®)(.,.) numbers

[Theorem: for any n there exists an N finite such that from any N
points in the plane (no 3 are collinear) some n are in a convex position.
A set of n points in the plane is convex if any triangle formed by 3 of
these n points does not contain another of the n — 3 points].

R®(3,3,3) < 17.

Prove the following identity: R™(ay,...,a;) < RU"V(RM(a; — 1, ay,
o), R (a1, a5—1, ... ag), ..., R (ay, ag,. .., ap—1))+1for ai, as,
e, Q> T

THEOREM 1.4 (Ramsey 1930): Let r and &k be natural numbers, let A be an
infinite set and let ¢ be a k-coloring of A", then A contains a monochromatic
infinite set!.

1 X (") denotes the set of all r-subsets in X.
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Proof (*): The theorem is trivial for » = 1. Hence, we prove the theorem
by induction on r. Let ¢ be an arbitrary k-coloring of A. We start by defining
an infinite subset {x1,zs,...} of A and a nested sequence By D By D ... of
infinite subsets of A. Let By = A, then B; and x; are constructed as follows.
Pick z; € B,_; arbitrary and set C;_; = B;_; — {x;}. Next, define ¢ as a
coloring on C’;:l) by putting é(o) = ¢(o U{x;}), where o is an r — 1-subset
of C;_1. By induction, C;_; contains an infinite monochromatic set, say with
color ¢;, which we define B;. Notice, for any r — 1-subset ¢ in B; we have
c(o Ux;) = ¢;. Finally, define ¢(z;) = ¢;.

Having constructed the infinite set X, it is clear that an infinite subset X;
of X exists, such that for some color ¢;, we have () = ¢; for all z € Xj.
Then, each r-subset {z;,, ..., x; } of X; has c({z;,,...,%;, }) = ¢;. Indeed, let
imin = Min, _; i,, then c({x;,, ..., z;.}) = (x;, . ) = ¢;. (because x;, € B
for 4, > imin)

tmin

Q.E.D.

EXERCISES 1.3: Prove the following statement:

1. An infinite row of real numbers contains either an infinite decreasing
subrow or an infinite increasing subrow.

2 Hales-Jewett Numbers

DEFINITION 2.1: A (combinatorial) hypercube (or grid) of dimension n and
width [ is defined as the set of all strings of length n using the letters of
an alphabet L = {a,b,...} with [ letters. We denote this set of strings as
W, (L).

A 1-parameter word M is defined as a string where 1 or more letters are
replaced by a parameter X, e.g., cabbXcXaaXb. Such a 1-parameter word
represents all the strings that can be obtained by replacing X by a letter
in L, e.g., {cabbacaaaab, cabbbcbaabb, cabbcccaach}. A 1-parameter word is
sometimes referred to as a combinatorial line (in a hypercube). Similarly, we
define a d-parameter word as a string where at least d letters are replaced by
the parameters Xq,..., Xy and each parameter has to appear in the string,
e.g., caXoccX1bbX 1 X a is a 2-parameter word. A d-parameter word is often
referred to as a d-dimensional subspace (of a hypercube) and reflects the (¢
strings that can be obtained by replacing each parameter by a letter in L.
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Fig. 1. Hypercube with dimension n = 4 and width [ = 2

DEFINITION 2.2: The Hales-Jewett number HJ(l, d, k) is defined as the small-
est natural number such that for every k-coloring of an H.J(l, d, k)-dimensional

hypercube with width [, there exists a monochromatic subspace of dimension
d.

Clearly, HJ(l,d,1) = d and HJ(1,d, k) = d. In order to prove the finiteness
of the Hales-Jewett numbers we start with the following two lemmas:

LEmMA 2.1: HJ(L,d+1,k) < HJ(I,1,k) + HJ(1,d, leJ(l,l,k)>

Proof (*): Define n; and ny as the first and second term of the right-hand
side of the equation, respectively. Let n = ny + ny, C' = {cy,..., ¢} and
let ¢ : W,,(L) — C be an arbitrary k-coloring of W, (L). Next, define the
functions ¢, for v € W,,,(L), and ¢ as

o @ Wy (L) — C:w— clw),
¢t We(L) = C") y — ¢,

where C"»1(2) yepresents all the functions from W, (L) to C. W, (L) con-
tains [™ strings; therefore, there are k"' such functions. Meaning, that ¢ can
be seen as a coloring of a ny-dimensional hypercube with &' colors. Thus,
there exists a monochromatic d-parameter word V' (of length ny), that is,
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all the strings represented by V' are mapped onto the same function, say c,.
This function ¢ is a coloring of a n;-dimensional hypercube with & colors;
therefore, there exist a monochromatic 1-parameter word W (of length ny).
As a result, WV is monochromatic d+ 1-parameter word (or subspace) under
the function c. Q.E.D.

LemMA 2.2: HI(I+1,1,k+1) < HJ(,1+ HJ(I+1,1,k),k+1)

Proof (*): Let n be equal to the right-hand side of the equation, let L
be an alphabet with [ letters and let ¢ : W, (LU {z}) — {c1,...,ck41} be
an arbitrary k + 1-coloring of an n-dimensional hypercube with width [ + 1.
Define

¢ Wo(L) — {1, o chpr} s w — c(w).

Then, by definition of n, there exists a monochromatic 1 + HJ(l + 1,1, k)-
parameter word V' (under ), that is, all the strings represented by V' (over
the alphabet L) are mapped onto the same color, say ¢;.

Define C = {cy, ..., cx41} —{ci}. We distinguish two cases: (i) ¢ assigns color
¢; to at least 1 string s represented by V' (over the alphabet L U {z}) and
this string s contains at least 1 letter z. Then, replace z by X in V to find a
monochromatic 1-parameter word (under ¢). (ii) ¢ never assigns color ¢; to a
string s that is represented by V' and that contains at least 1 letter z. Then,
replace 1 parameter of V' by z (arbitrary) to find the H.J(I+1, 1, k)-parameter
word V'. Now, ¢ maps all the strings represented by V' (over LU{z}) onto C
(where |C| = k). These strings form a HJ(l+ 1,1, k)-dimensional hypercube
of width [ 4 1; therefore, there exists a monochromatic 1-parameter word
W (under ¢ of length HJ(l + 1,1,k)). If we now substitute W into the
HJ(l+ 1,1, k) parameters of V/ we obtain the required combinatoria(lgliEr)leD

THEOREM 2.1: All Hales-Jewett numbers HJ(l,d, k) are finite.

Proof: Suppose that some set Sy of H.J-numbers are infinite. Then, let
S1 be the subset of S where [ is minimal, let Sy be the subset of S; where
d is minimal and let S3 be the subset of S, where k is minimal. Take an
arbitrary number HJ(l,d, k) from S3. Clearly, [ or k£ cannot be equal to 1,
hence, HJ(l,d, k) can be written as the left-hand side of lemma 2.1 or 2.2.
Thus, the right-hand side has to be infinite as well. But, by construction of
S, this is impossible.
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Q.E.D.

EXERCISES 2.1: Prove the following two statements:

e Playing Tic-Tac-Toe in an 18-dimensional (or higher) space can never
result in a draw.

e Prove the Bartel Van der Waerden Theorem which states that for any
[ > 0, there exists an N finite such that for any k-coloring ¢ of [1, N],
there exists a monochromatic arithmetic progression of length [, that
is, an a, b for which a,a +0b,...,a+ (I —1)b have the same color [Hint:
Choose N = (I —1)HJ(l,1,k), n = N/(l — 1) and define ¢ : W,,(L) —
{1, .k} wwe . wy, — (D, wi)].



