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ABSTRACT
Consider a randomized load balancing problem consisting
of a large number n of server sites each equipped with K
servers. Under the greedy policy, clients randomly probe a
site to check whether there is still a server available. If not,
d− 1 other sites are probed and the task is assigned to the
site with the fewest number of busy servers. If all the servers
are also busy in each of these d− 1 sites, the task is lost.

This short paper analyzes a set of policies, i.e., (L, d) poli-
cies, that will occasionally probe additional sites even when
there is still a server available at the site that was probed
first. Using mean field methods, we show that these policies,
that preventively probe other sites, can achieve the same loss
probability while requiring a lower overall probe rate.

1. PROBLEM DESCRIPTION
Consider a network consisting of many clients that gener-

ate tasks and n server sites that each consist of K servers.
Denote λn as the mean overall task generation rate and as-
sume tasks are generated according to a Poisson process. We
will refer to such a system as a (λ,K) grid, where K ≥ 1 is
an integer and λ > 0.

Clients use a so-called (L, d) policy, where, for now, L and
d are assumed to be integers. Under an (L, d) policy a client
will probe a random site whenever it generates a task. If
there are less than L servers busy, the task is assigned to the
server site, meaning the task is assigned after transmitting
a single probe. Otherwise, the client will randomly probe
another d−1 sites and will assign its task to the site with the
fewest number of busy servers (ties are broken arbitrarily),
hence in this case d probes were used to assign the task.
Notice, if L < K the task may end up in the site that was
probed first. Finally, if all the servers are busy at each of
the d probed sites, the task is considered lost.

The main question addressed in this paper is which (L, d)
policy minimizes the average number of probes required per
task for a given (λ,K) grid, such that the loss probability is
below a predefined threshold ε. Setting L = K corresponds
to a greedy policy as we only send multiple probes whenever
a single probe does not suffice. However, we will show that
this policy is not always optimal as increasing L will imply
that a larger d value will be required to obtain the targeted
loss probability ε. For a fixed L, increasing d will reduce the
loss rate and as such we can determine the required d as a
function of L.

We will also consider non-integer values for L and d. For
general L, the task is assigned to the first site with probabil-
ity 1, if there are less than bLc busy servers and with proba-

bility L−bLc if there are bLc busy servers. Although many
numerical experiments indicate that non-integer L values
are never optimal, they still provide inside into the erratic
behavior of the curves when only integer L values are con-
sidered. Similarly, for general d values we state that bd− 1c
additional probes are send with probability dde − d, while
dd − 1e more probes are send with probability d + 1 − dde;
hence, on average d−1 additional probes are used whenever
the first probe did not result in a task assignment.

We will study the behavior of this stochastic system when
the number of server sites n becomes large. When n ap-
proaches infinity the theory of density dependent Markov
chains [3] shows that the system becomes deterministic and
its behavior over time can be described by means of a system
of ordinary differential equations (ODEs).

There have been many studies on load balancing and the
power of d > 1 choices (see [1, 4, 5] and the references
therein). These works typically consider server sites where
each site has a single server and an infinite waiting room
to store tasks and the main objective is to minimize the
response time. We consider K servers per site and no wait-
ing room and wish to minimize the required probe rate to
guarantee a predefined loss probability.

2. THE MEAN FIELD MODEL
In this section we consider the system with integer L and

d values, the generalization to arbitrary L and d values re-
quires some additional care but is not hard. The service
times of the tasks are assumed to be i.i.d. and exponen-
tially distributed with a mean µ = 1. Consider the system

with n sites and define X
(n)
i (t) as the proportion of the sites

having i or more busy servers at time t. Then, X(n)(t) =

(X
(n)
1 (t), . . . , X

(n)
K (t)) for t ≥ 0 is clearly a Markov chain

and this chain is stable for any arrival rate λ > 0. It is not
hard to show that this set of Markov chains forms a density
dependent Markov chain as defined by Kurtz in [3].

Next, consider the deterministic system described by the
following set of ODEs. To easy the notation, let w0(t) = 1
and wK+1(t) = 0 for all t. For i = 1, . . . , L, define

d

dt
wi(t) = λwL(t)(wd−1

i−1 (t)− wd−1
i (t)) + (1)

λ(wi−1(t)− wi(t))− i(wi(t)− wi+1(t)),

while for i = L+ 1, . . . ,K let

d

dt
wi(t) = λ(wd

i−1(t)− wd
i (t))− i(wi(t)− wi+1(t)). (2)

If we denote this system of ODEs as d
dt
w(t) = F (w(t)),



with w(t) = (w1(t), . . . , wK(t)) and F a function from RK

to RK , then it is not hard to see that F is Lipschitz on
E = {(x1, . . . , xK)|0 ≤ xi ≤ 1, i = 1, . . . ,K}. Therefore, the
following theorem is immediate by Kurtz [3]:

Theorem 1. Suppose that limn→∞X
(n)(0) = w(0) a.s.

and consider the path {w(u), u ≤ t}, then

lim
n→∞

sup
u≤t
|X(n)(u)− w(u)| = 0 a.s.

Kurtz’s theorem states that up to time t the limiting process
is indeed the deterministic process given by the above set of
ODEs. We are however interested in the limit of the station-
ary distributions π(n) of the Markov chains {X(n)(t), t ≥ 0}.
This limit will coincide with a fixed point of the system of
ODEs if all the trajectories can be shown to converge to
this fixed point (see [2, Corollary 5]). Using the L1-norm as
a Lyapunov function, the following theorem can be proven
similar to [4, Theorem 3]:

Theorem 2. The set of ODEs given by Equations (1-2)
has a unique fixed point π in E and all the trajectories start-
ing in E converge to π exponentially fast. More specifically,∑K

i=1 |wi(t)− πi| ≤ Ke−t.

This means the trajectories converge exponentially fast with
parameter δ = 1 and the fixed point can be determined
numerically in a fraction of a second by a short simulation
of the system of ODEs.

3. NUMERICAL RESULTS
Figure 1 shows the impact of d and L on the loss probabil-

ity of a task for K = 10 and λ = 6, similar observations were
made for other K and λ values. As expected, increasing d or
decreasing L reduces the loss probability. More importantly,
we see that the curves are not smooth whenever d or L be-
comes an integer. Thus, even if we send dd − 1e additional
probes with a probability close to one, the loss may be sub-
stantially larger than sending dd−1e additional probes with
probability one. Similarly, assigning a task when the num-
ber of busy servers equals bLc with a small probability may
also result in a strong increase in the loss rate, compared to
assigning the task with probability zero.

Figure 2(top) shows the required additional probe rate
as a function of L to attain a loss probability of ε = 10−9

for K = 10 and ρ = λ/K = 0.6 and 0.7. The curves are
not smooth whenever L is an integer, but also at some non-
integer L values. For these latter values the required d value,
which clearly increases with L, becomes an integer, as illus-
trated in Figure 2(bottom) depicting the required d value.
This figure also indicates that the greedy policy (i.e., set-
ting L = K) is not always optimal, as setting L = K − 1
is optimal for K = 10 and ρ = 0.6 or 0.7. The fact that
the optimal L value is an integer does not appear to be a
coincidence, other experiments also suggest that integer L
values are optimal.

Next, let us get some insights on the integer value of L
that results in the lowest probe rate. Before we generate
any numerical results, it should be clear that setting L be-
low λ is probably not very useful, as one should not try to
avoid the assignment of a task to a server with a lower than
average load. As such, for small K values, the greedy policy
L = K should be optimal. As K increases while the load
ρ = λ/K remains fixed, the L = K − 1 policy might also
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Figure 1: Impact of d and L on the loss probability
for K = 10 and λ = 6

become eligible, followed by the L = K − 2 policy and so
on. On the other hand, for very large K values, the greedy
policy should also be optimal, as the loss probability in an
Erlang loss system reduces to zero if the number of servers
K grows to infinity (while the load remains fixed). Hence,
no matter how small the targeted loss probability ε is, if K is
sufficiently large there is no need to send additional probes.
For instance, if ρ = 0.5 and the targeted loss probability is
ε = 10−9, setting d = 1 suffices for K ≥ 91 servers. In con-
clusion, we expect to see a finite region of K values where
the greedy policy L = K might be outperformed by a policy
with L < K.

Figure 3(top) depicts the additional probe rate for the
L = K,K − 1 and K − 2 policies when the load ρ = 0.8
and K ranges from 5 to 100 (further decreasing L did not
result in a smaller probe rate). The curves in this figure are
clearly not smooth and this behavior can once more be un-
derstood by looking at the corresponding required d value
in Figure 3(bottom), where the curves tend to change di-
rection whenever the required d value becomes an integer
value. This also makes the regions in which a particular L
value is optimal somewhat irregular.

For ρ = 0.8 and K ≤ 100, we see that L = K is optimal
for K ≤ 7, L = K − 1 is optimal for 8 ≤ K ≤ 33 and for
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Figure 2: Impact of L on the required additional
probe rate to achieve a loss probability of 10−9 and
the required corresponding d value for K = 10 and
λ = 6 and 7

K ≥ 87, while having L = K−2 is optimal for 34 ≤ K ≤ 86.
When we reduce the load, the size of the region where the
greedy L = K policy can be outperformed tends to decrease
as the optimal L value tends to increase (except for small
K). For instance, for ρ = 0.6, the L = K − 1 policy is best
for 6 ≤ K ≤ 61, while setting L = K is best for all other K
values. When the load ρ decreases to 0.5 the greedy strategy
is optimal for all K.

Additional experiments indicate that increasing the tar-
geted loss probability ε also decreases the set of K values
for which the greedy strategy can be outperformed. For in-
stance, for ρ = 0.6 and ε = 10−6 the L = K − 1 policy only
outperforms the greedy one for 7 ≤ K ≤ 33.

Simulation experiments, not reported here, indicate that
the accuracy of the mean field approximation is quite good
for finite values of n. More specifically, for λ = 6 and 7,
we simulated the system with n = 100 server sites, each
equipped withK = 10 servers and determined the additional
probe rate for L = K,K − 1 and K − 2, The value of d was
determined by the mean field model, such that the loss rate
(in the mean field) equaled 10−9. The relative error of the
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Figure 3: Optimal (integer) L value and its corre-
sponding d value as a function of K with ρ = 0.8

mean field model observed in these experiments was less
than 2 percent in all cases.
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