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Abstract

Machine learning methods are widely used for a variety of prediction problems. Prediction as a
service is a paradigm in which service providers with technological expertise and computational resources
may perform predictions for clients. However, data privacy severely restricts the applicability of such
services, unless measures to keep client data private (even from the service provider) are designed.
Equally important is to minimize the amount of computation and communication required between
client and server. Fully homomorphic encryption offers a possible way out, whereby clients may encrypt
their data, and on which the server may perform arithmetic computations. The main drawback of
using fully homomorphic encryption is the amount of time required to evaluate large machine learning
models on encrypted data. We combine ideas from the machine learning literature, particularly work
on binarization and sparsification of neural networks, together with algorithmic tools to speed-up and
parallelize computation using encrypted data.

1 Introduction

Applications using machine learning techniques have exploded during the recent years, with “deep learning”
techniques being applied on a wide variety of tasks that had hitherto proved challenging. Training highly
accurate machine learning models requires large quantities of (high quality) data, technical expertise and
computational resources. An important recent paradigm is prediction as a service, whereby a service provider
with expertise and resources can make predictions for clients. However, this approach requires trust between
service provider and client; there are several instances where clients may be unwilling or unable to provide data
to service providers due to privacy concerns. Examples include assisting in medical diagnoses (Kononenko,
2001; Blecker et al., 2017), detecting fraud from personal finance data (Ghosh and Reilly, 1994), and detecting
online communities from user data (Fortunato, 2010). The ability of a service provider to predict on encrypted
data can alleviate concerns of data leakage.

The framework of fully homomorphic encryption (FHE) is ideal for this paradigm. Fully homomorphic
encryption schemes support arbitrary computations to be performed directly on encrypted data without
prior decryption. The first fully homomorphic encryption system was developed just 10 years ago by Gentry
(2009), after being an open question for 30 years (Rivest et al., 1978). Since then several other schemes
have been proposed Gentry et al. (2012, 2013); Brakerski and Vaikuntanathan (2014); Ducas and Micciancio
(2015); Chillotti et al. (2016). However, without significant changes to machine learning models and improved
algorithmic tools, homomorphic encryption does not scale to real-world machine learning applications.
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Indeed, already there have been several recent works trying to accelerate predictions of machine learning
models on fully homomorphic encrypted data. In general, the approach has been to approximate all or parts
of a machine learning model to accommodate the restrictions of an FHE framework. Often, certain kind
of FHE schemes are preferred because they allow for “batched” parallel encrypted computations, called
SIMD operations Smart and Vercauteren (2014). This technique is exemplified by the CryptoNets model
(Gilad-Bachrach et al., 2016). While these models allow for high-throughput (via SIMD), they are not
particularly suited for the prediction as a service framework for individual users, as single predictions are
slow. Further, because they employ a leveled homomorphic encryption scheme, they are unable to perform
many nested multiplications, a requirement for state-of-the-art deep learning models He et al. (2016); Huang
et al. (2017).

Our solution demonstrates that existing work on Binary Neural Networks (BNNs) (Kim and Smaragdis,
2015; Courbariaux et al., 2016) can be adapted to produce efficient and highly accurate predictions on
encrypted data. We show that a recent FHE encryption scheme Chillotti et al. (2016) which only supports
operations on binary data can be leveraged to compute all of the operations of BNNs. To do so, we develop
specialized circuits for fully-connected, convolutional, and batch normalization layers Ioffe and Szegedy (2015).
Additionally we design tricks to sparsify encrypted computation that reduce computation time even further.

Most similar to our work is Bourse et al. (2017) who use neural networks with signed integer weights
and binary activations to perform encrypted prediction. However, this model is only evaluated on MNIST,
with modest accuracy results, and the encryption scheme parameters depend on the structure of the model,
potentially requiring clients to re-encrypt their data if the service provider updates their model. Our framework
allows the service provider to update their model at anytime, and allows one to use binary neural networks
of Courbariaux et al. (2016) which, in particular, achieve high accuracy on MNIST (99.04%). Another closely
related work is Meehan et al. (2018) who design encrypted adder and multiplier circuits so that they can
implement machine learning models on integers. This can be seen as complementary to our work on binary
networks: while they achieve improved accuracy because of greater precision, they are less efficient than our
methods (however on MNIST we achieve the same accuracy with a 29× speedup, via our sparsification and
parallelization tricks).

Private training. In this work, we do not address the question of training machine learning models with
encrypted data. There has been some recent work in this area (Hardy et al., 2017; Aono et al., 2017). However,
as of now it appears possible only to train very small models using fully homomorphic encryption. We leave
this for future work.

1.1 Our contributions

In this work, our focus is on achieving speed-ups when using complex models on fully homomorphic encrypted
data. In order to achieve these speed-ups, we propose several methods to modify the training and design of
neural networks, as well as algorithmic tricks to parallelize and accelerate computation on encrypted data:

• We propose two types of circuits for performing inner products between unencrypted and encrypted
data: reduce tree circuits and sorting networks. We give a runtime comparison of each method.

• We introduce an easy trick, which we call the +1 trick to sparsify encrypted computations.

• We demonstrate that our techniques are easily parallelizable and we report timing for a variety of
computation settings on real world datasets, alongside classification accuracies.

2 Encrypted Prediction as a Service

In this section we describe our Encrypted Prediction as a Service (EPAAS) paradigm. We then detail
our privacy and computational guarantees. Finally, we discuss how different related work is suited to this
paradigm and propose a solution.
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Figure 1: Encrypted prediction as a service.

In the EPAAS setting we have any number of clients, say C1, . . . , Cn that have data x1, . . . ,xn. The
clients would like to use a highly-accurate model f provided by a server S to predict some outcome. In cases
where data x is not sensitive there are already many solutions for this such as BigML, Wise.io, Google Cloud
AI, Amazon Machine Learning, among others. However, if the data is sensitive so that the clients would be
uncomfortable giving the raw data to the server, none of these systems can offer the client a prediction.

2.1 Privacy and computational guarantees

If data x is sensitive (e.g., x may be the health record of client C, and f(x) may be the likelihood of heart
disease), then we would like to have the following privacy guarantees:

P1. Neither the server S, or any other party, learn anything about client data x, other than its size (privacy
of the data).

P2. Neither the client C, or any other party, learn anything about model f , other than the prediction f(x)
given client data x (and whatever can be deduced from it) (privacy of the model).

Further, the main attraction of EPAAS is that the client is involved as little as possible. More concretely, we
wish to have the following computational guarantees:

C1. No external party is involved in the computation.

C2. The rounds of communication between client and server should be limited to 2 (send data & receive
prediction).

C3. Communication and computation at the client side should be independent of model f . In particular, (i)
the server should be able to update f without communicating with any client, and (ii) clients should
not need to be online during the computation of f(x).

Note that these requirements rule out protocols with preprocessing stages or that involve third parties.
Generally speaking, a satisfactory solution based on FHE would proceed as follows: (1) a client generates
encryption parameters, encrypts their data x using the private key, and sends the resulting encryption x̃, as
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well as the public key to the server. (2) The server evaluates f on x̃ leveraging the homomorphic properties
of the encryption, to obtain an encryption f̃(x) without learning anything whatsoever about x, and sends
f̃(x) to the client. (3) Finally, the client decrypts and recovers the prediction f(x) in the clear. A high level
depiction of these steps is shown in Figure 1.

Table 1: Privacy and computational guarantees of existing methods for sensitive data classification.
Privacy Computation

Prior Work P1 P2 C1 C2 C3(i) C3(ii)
CryptoNets Gilad-Bachrach et al. (2016) - -

Chabanne et al. (2017) - -
Bourse et al. (2017) -

MPC Mohassel and Zhang (2017); Liu et al. (2017); Rouhani et al. (2017)
Riazi et al. (2017); Chase et al. (2017); Juvekar et al. (2018)

- - - -

Meehan et al. (2018), Ours

2.2 Existing approaches

Table 1 describes whether prior work satisfy the above privacy and computational guarantees. First, note
that Cryptonets Gilad-Bachrach et al. (2016) violates C3(i) and P2. This is because the clients would have
to generate parameters for the encryption according to the structure of f , so we are able to make inferences
about the model (violating P2) and the client is not allowed to change the model f without telling the client
(violating C3(i)). The same holds for the work of Chabanne et al. (2017). The approach of Bourse et al.
(2017) requires the server to calibrate the parameters of the encryption scheme according to the magnitude of
intermediate values, thus C3(i) is not necessarily satisfied. Closely related to our work is that of Meehan
et al. (2018) which satisfies our privacy and computational requirements. We will show that our method is
significantly faster than this method, with very little sacrifice in accuracy.

Multi-Party Computation (MPC). It is important to distinguish between approaches purely based on
homomorphic encryption (described above), and those involving Multi-Party Computation (MPC) techniques,
such as Mohassel and Zhang (2017); Liu et al. (2017); Rouhani et al. (2017); Riazi et al. (2017); Chase
et al. (2017); Juvekar et al. (2018). While generally MPC approaches are faster, they crucially rely on all
parties being involved in the whole computation, which is in conflict with requirement C3(ii). Additionally,
in MPC the structure of the computation is public to both parties, which means that the server would have
to communicate basic information such as the number of layers of f . This is conflict with requirements P1,
C2, and C3(i).

In this work, we propose to use a very tailored homomorphic encryption technique to guarantee all
privacy and computational requirements. In the next section we give background on homomorphic encryption.
Further, we motivate the encryption protocol and the machine learning model class we use to satisfy all
guarantees.

3 Background

All cryptosystems define two functions: 1. an encryption function E(·) that maps data (often called plaintexts)
to encrypted data (ciphertexts); 2. a decryption function D(·) that maps ciphertexts back to plaintexts. In
public-key cryptosystems, to evaluate the encryption function E , one needs to hold a public key kpub, so the
encryption of data x is E(x, kpub). Similarly, to compute the decryption function D(·) one needs to hold a
secret key ksec which allows us to recover: D(E(x, kpub), ksec) = x.

A cryptosystem is homomorphic in some operation � if it is possible to perform another (possibly different)
operation � such that: E(x, kpub) � E(x, kpub) = E(x � y, kpub). Finally, in this work we assume all data to
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Figure 2: Binary circuits used for inner product: reduce tree (Left) and sorting network (Right). RC is short
for ripple-carry.

be binary ∈ {0, 1}. For more detailed background on FHE beyond what is described below, see the excellent
tutorial of Halevi (2017).

3.1 Fully Homomorphic Encryption

In 1978, cryptographers posed the question: Does an encryption scheme exist that allows one to perform
arbitrary computations on encrypted data? The implications of this, called a Fully homomorphic encryption
(FHE) scheme, would enable clients to send computations to the cloud while retaining control over the secrecy
of their data. This was still an open problem however 30 years later. Then, in 2009, a cryptosystem (Gentry,
2009) was devised that could, in principle, perform such computations on encrypted data. Similar to previous
approaches, in each computation, noise is introduced into the encrypted data. And after a certain number
of computations, the noise grows too large so that the encryptions can no longer be decrypted. The key
innovation was a technique called bootstrapping, which allows one to reduce the noise to its original level
without decrypting. That result constituted a massive breakthrough, as it established, for the first time, a
fully homomorphic encryption scheme (Gentry, 2009). Unfortunately, the original bootstrapping procedure
was highly impractical. Consequently, much of the research since the first FHE scheme has been devoted to
reducing the growth of noise so that the scheme never has to perform bootstrapping. Indeed, even in recent
FHE schemes bootstrapping is slow (roughly six minutes in a highly-optimized implementation of a recent
popular scheme (Halevi and Shoup, 2015)) and bootstrapping many times increases the memory requirements
of encrypted data.

3.1.1 Encrypted Prediction with leveled HE

Thus, one common technique to implement encrypted prediction was to take an existing ML algorithm and
approximate it with as few operations as possible, in order to never have to bootstrap. This involved careful
parameter tuning to ensure that the security of the encryption scheme was sufficient, that it didn’t require too
much memory, and that it ran in a reasonable amount of time. One prominent example of this is Cryptonets
(Gilad-Bachrach et al., 2016).

3.1.2 Encrypted Prediction with FHE

Recent developments in cryptography call for rethinking this approach. Ducas and Micciancio (2015) devised
a scheme that that could bootstrap a single Boolean gate in under one second with reduced memory. Recently,
Chillotti et al. (2016) introduced optimizations implemented in the TFHE library, which further reduced
bootstrapping of to under 0.1 seconds. In this paper, we demonstrate that this change has a huge impact on
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designing encrypted machine learning algorithms. Specifically, encrypted computation is now modular: the
cost of adding a few layers to an encrypted neural network is simply the added cost of each layer in isolation.
This is particularly important as recent developments in deep learning such as Residual Networks (He et al.,
2016) and Dense Networks (Huang et al., 2017) have shown that networks with many layers are crucial to
achieve state-of-the-art accuracy.

3.2 Binary Neural Networks

The cryptosystem that we will use in this paper, TFHE, is however restricted to computing binary operations.
We note that, concurrent to the work that led to TFHE, was the development of neural network models
that perform binary operations between binary weights and binary activations. These models, called Binary
Neural Networks (BNNs), were first devised by Kim and Smaragdis (2015); Courbariaux et al. (2016), and
were motivated by the prospect of training and testing deep models on limited memory and limited compute
devices, such as mobile phones.

Technical details. We now describe the technical details of binary networks that we will aim to replicate
on encrypted data. In a Binary Neural Network (BNN) every layer maps a binary input x ∈ {−1, 1}d to a
binary output z ∈ {−1, 1}p using a set of binary weights W ∈ {−1, 1}(p,d) and a binary activation function
sign(·) that is 1 if x ≥ 0 and −1 otherwise. Although binary nets don’t typically use a bias term, applying
batch-normalization (Ioffe and Szegedy, 2015) when evaluating the model it means that a bias term b ∈ Zp

may need to be added before applying the activation function (cf. Sec. 4.1.2). Thus, when evaluating the
model, a fully connected layer in a BNN implements the following transformation z := sign(Wx + b). From
now on we will call all data represented as {−1, 1} non-standard binary and data represented as {0, 1} as
binary. Kim and Smaragdis (2015); Courbariaux et al. (2016) were the first to note that the above inner
product nonlinearity in BNNs could be implemented using the following steps:

1. Transform data and weights from non-standard binary to binary: w,x→ w,x by replacing −1 with 0.
n

2. Element-wise multiply by applying the logical operator XNOR(w,x) for each element of w and x.

3. Sum result of previous step by using popcount operation (which counts the number of 1s), call this S.

4. If the bias term is b, check if 2S ≥ d− b, if so the activation is positive and return 1, otherwise return
−1.

Thus we have that,

zi = sign(2 · popcount(XNOR(wi,x))− d + b)

Related binary models. Since the initial work on BNNs there has been a wealth of work on binarizing,
ternarizing, and quantizing neural networks Chen et al. (2015); Courbariaux et al. (2015); Han et al. (2016);
Hubara et al. (2016); Zhu et al. (2016); Chabanne et al. (2017); Chen et al. (2017). Our approach is currently
tailored to methods that have binary activations and we leave the implementation of these methods on
encrypted data for future work.

4 Methods

In this work, we make the observation that BNNs can be run on encrypted data by designing circuits in
TFHE for computing their operations. In this section we consider Boolean circuits that operate on encrypted
data and unencrypted weights and biases. We show how these circuits allow us to efficiently implement
the three main layers of binary neural networks: fully connected, convolutional, and batch-normalization.
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We then show how a simple trick allows us to sparsify our computations. Our techniques can be easily
parallelized. During the evaluation of a circuit, gates at the same level in the tree representation of the circuit
can be evaluated in parallel. Hence, when implementing a function, “shallow” circuits are preferred in terms
of parallelization. While parallel computation was often used to justify employing second generation FHE
techniques—where parallelization comes from ciphertext packing—we show in the following section that our
techniques create dramatic speedups for a state-of-the-art FHE technique. We emphasize that a key challenge
is that we need to use data oblivious algorithms (circuits) when dealing with encrypted data as the algorithm
never discovers the actual value of any query made on the data.

4.1 Binary OPs

The three primary circuits we need are for the following tasks: 1. computing the inner product; 2. computing
the binary activation function (described in the previous section) and; 3. dealing with the bias.

Algorithm 1 Comparator

Inputs: Encrypted B[S̃], unencrypted B[(d− b)/2], size d of B[(d− b)/2],B[S̃]
Output: Result of 2S̃ ≥ d− b

1: o = 0
2: for i = 1, . . . , d do
3: if B[(d− b)/2]i = 0 then
4: o = MUX(B[S̃]i, 1̃, o)
5: else
6: o = MUX(B[S̃]i, o, 0̃)
7: end if
8: end for
9: Return: o

4.1.1 Encrypted inner product

As described in the previous section, BNNs can speed up an inner product by computing XNORs (for element-
wise multiplication) followed by a popcount (for summing). In our case, we compute an inner product of
size d by computing XNORs element-wise between d bits of encrypted data and d bits of unencrypted data,
which results in an encrypted d bit output. To sum this output, the popcount operation is useful when
weights and data are unencrypted because popcount is implemented in the instruction set of Intel and AMD
processors, but when dealing with encrypted data we simply resort to using shallow circuits. We consider two
circuits for summation, both with sublinear depth: a reduce tree adder and a sorting network.

Reduce tree adder. We implement the sum using a binary tree of half and ripple-carry (RC) adders
organized into a reduction tree, as shown in Figure 2 (Left). All these structures can be implemented to run
on encrypted data because TFHE allows us to compute XNOR, AND, and OR on encrypted data. The
final number returned by the reduction tree S̃ is the binary representation of the number of 1s resulting from
the XNOR, just like popcount. Thus, to compute the BNN activation function sign(·) we need to check
whether 2S̃ ≥ d− b, where d is the number of bits in S̃ and b is the bias. Note that if the bias is zero we
simply need to check if S̃ ≥ d/2. To do so we can simply return the second-to-last bit of S̃. If it is 1 then S̃
is at least d/2. If the bias b is non-zero (because of batch-normalization, described in Section 4.1.2), we can
implement a circuit to perform the check 2S̃ ≥ d− b. The bias b (which is available in the clear) may be an
integer as large as S̃. Let B[(d− b)/2], B[S̃] be the binary representations of b and S̃. Algorithm 1 describes
a comparator circuit that returns an encrypted value of 1 if the above condition holds and (encrypted) 0
otherwise (where MUX(s, a, b) returns a if s = 1 and b otherwise). As encrypted operations dominate the
running time of our computation, in practice this computation essentially corresponds to evaluating d MUX
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gates. This gate has a dedicated implementation in TFHE, which results in a very efficient comparator in our
setting.

Sorting network. We do not technically care about the sum of the result of the element-wise XNOR
between w̄ and x̄. In fact, all we care about is if the result of the comparison: 2S̃ ≥ d− b. Thus, another
idea is to take the output of the (bitwise) XNOR and sort it. Although this sorting needs to be performed
over encrypted data, the rest of the computation does not require any homomorphic operations; after sorting
we hold a sequence of encrypted 1s, followed by encrypted 0s. To output the correct value, we only need
to select one the (encrypted) bit in the correct position and return it. If b = 0 we can simply return the
encryption of the central bit in the sequence; indeed, if the central bit is 1, then there are more 1s than
0s and thus 2S̃ ≥ d and we return 1. If b 6= 0 we need to offset the returned index by b in the correct
direction depending on the sign of b. In order to sort the initial array we implement a sorting network,
shown in Figure 2 (Right). The sorting network is a sequence of swap gates between individuals bits, where
SWAP(a, b) = (OR(a, b),AND(a, b)). Note that if a ≥ b then SWAP(a, b) = (a, b), and otherwise is (b, a).
More specifically, we implement Batcher’s sorting network Batcher (1968), which consists of O(n log2(n))
swap gates, and has depth O(log2(n)).
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Figure 3: Timing of sorting network and reduce tree addition for different sized vectors, with and without
parallelization.

4.1.2 Batch normalization

Batch normalization is mainly used during training; however during evaluating a model this requires us scale
and translate and scale the input (which is the output of the previous layer). In practice, when our activation
function is the sign function, this only means that we need to update the bias term (the actual change to
the bias term is an elementary calculation). As our circuits are designed to work with a bias term, and the
scaling and translation factors are available as plaintext (as they are part of the model), this operation is
easily implemented during test time.

4.2 Sparsification via “+1”-trick

Since we have access to W ∈ {−1, 1}p×d and the bias term b ∈ Zp in the clear (only data x and subsequent
activations are encrypted), we can exploit the fact that W always has values ±1 to roughly halve the cost
computation. We consider w ∈ {−1, 1}d which is a single row of W and observe that:

w>x = (1 + w)>(1 + x)−
∑
i

wi − (1 + x)>1,
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where 1 denotes the vector in which every entry is 1. Further note that (1 + w) ∈ {0, 2}d which means
that the product (1 + w)>(1 + x) is simply the quantity 4

∑
i:wi=1 x̄i, where x̄ refers to the standard

binary representation of the non-standard binary x. Assuming at most half of the wis were originally +1, if
w ∈ {−1, 1}d, only d/2 encrypted values need be added. We also need to compute the encrypted sum

∑
i xi;

however, this latter sum need only be computed once, no matter how many output units the layer has. Thus,
this small bit of extra overhead roughly halves the amount of computation required. We note that if w has
more −1s than +1s, w>x can be computed using (1−w) and (1−x) instead. This guarantees that we never
need to sum more than half the inputs for any output unit. The sums of encrypted binary values can be
calculated as described in Sec. 4.1. The overheads are two additions required to compute (1 + x)>1 and
(1− x)>1, and then a subtraction of two log(d)-bit long encrypted numbers. (The multiplication by 2 or
4 as may be sometimes required is essentially free, as bit shifts correspond to dropping bits, and hence do
not require homomorphic operations). As our experimental results show this simple trick roughly halves the
computation time of one layer; the actual savings appear to be even more than half as in many instances the
number of elements we need to sum over is significantly smaller than half.

It is worth emphasizing the advantage for binarizing and then using the above approach to making
the sums sparse. By default, units in a neural network compute an affine function to which an activation
function is subsequently applied. The affine map involves an inner product which involves d multiplications.
Multiplication under fully homomorphic encryption schemes is however significantly more expensive than
addition. By binarizing and applying the above calculation, we’ve replaced the inner product operation by
selection (which is done in the clear as W is available in plaintext) and (encrypted) addition.

4.3 Ternarization (Weight Dropping)

Ternary neural networks use weights in {−1, 0, 1} rather than {−1, 1}; this can alternatively be viewed as
dropping connections from a BNN. Using ternary neural networks rather than binary reduces the computation
time as encrypted inputs for which the corresponding wi is 0 can be safely dropped from the computation,
before the method explained in section 4.2 is applied to the remaining elements. Our experimental results
show that a binary network can be ternarized to maintain the same level of test accuracy with roughly a
quarter of the weights being 0 (cf. Sec. 5.4).

5 Experimental Results

In this section we report encrypted binary neural network prediction experiments on a number of real-world
datasets. We begin by comparing the efficiency of the two circuits used for inner product, the reduce tree and
the sorting network. We then describe the datasets and the architecture of the BNNs used for classification.
We report the classification timings of these BNNs for each dataset, for different computational settings.
Finally, we give accuracies of the BNNs compared to floating point networks. Our code is freely available
at tap (2018).

5.1 Reduce tree vs. sorting network

We show timings of reduce tree and sorting network for different number of input bits, with and without
parallelization in Figure 3 (parallelization is over 16 CPUs). We notice that the reduce tree is strictly better
when comparing parallel or non-parallel timings of the circuits. As such, from now on we use the reduce tree
circuit for inner product.

It should be mentioned that at the outset this result was not obvious because while sorting networks
have more levels of computation, they have fewer gates. Specifically, the sorting network used for encrypted
sorting is the bitonic sorting network which for n bits has O(log2 n) levels of computation whereas the reduce
tree only has O(log n) levels. On the other hand, the reduce tree requires 2 gates for each half adder and
5k gates for each k-bit RC adder, whereas a sorting network only requires 2 gates per SWAP operation.
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Another factor that may slow down sorting networks is that is that our implementation of sorting networks is
recursive, whereas the reduce tree is iterative.

5.2 Datasets

We evaluate on four datasets, three of which have privacy implications due to health care information (datasets
Cancer and Diabetes) or applications in surveillance (dataset Faces). We also evaluate on the standard
benchmark MNIST dataset.

Cancer. The Cancer dataset1 contains 569 data points where each point has 30 real-valued features. The
task is to predict whether a tumor is malignant (cancerous) or benign. Similar to Meehan et al. (2018) we
divide the dataset into a training set and a test in a 70 : 30 ratio. For every real-valued feature, we divide the
range of each feature into three equal-spaced bins and one-hot encode each feature by its bin-membership.
This creates a 90-dimensional binary vector for each example. We use a single fully connected layer 90→ 1
followed by a batch normalization layer, as is common practice for BNNs Courbariaux et al. (2016).

Diabetes. This dataset2 contains data on 100000 patients with diabetes. The task is to predict one of
three possible labels regarding hospital readmission after release. We divide patients into a 80/20 train/test
split. As this dataset contains real and categorical features, we bin them as in the Cancer dataset. We obtain
a 1704 dimensional binary data point for each entry. Our network (selected by cross validation) consists of a
fully connected layer 1704→ 10, a batch normalization layer, a sign activation function, followed by another
fully connected layer 10→ 3, and a batch normalization layer.

Faces. The Labeled Faces in the Wild-a dataset contains 13233 gray-scale face images. We use the binary
classification task of gender identification from the images. We resize the images to size 50× 50. Our network
architecture (selected by cross-validation) contains 5 convolutional layers, each of which is followed by a
batch normalization layer and a sign activation function (except the last which has no activation). All
convolutional layers have unit stride and filter dimensions 10× 10. All layers except the last layer have 32
output channels (the last has a single output channel). The output is flattened and passed through a fully
connected layer 25→ 1 and a batch normalization layer.

MNIST. The images in MNIST are 28× 28 binary images. The training set and testing sets in this case
are already available in a standard split and that is what we use. The training split contains 50000 images
and the test split contains 10000 images. There are 10 classes, each corresponding to a different mathematical
digit. We use the model (torch7) described in Courbariaux et al. (2016).

5.3 Timing

We give timing results for classification of an instance in different computational settings. All of the strategies
use the parallel implementations of the reduce tree circuit computed across 16 CPUs (the solid line orange
line in Figure 3). The Out Seq strategy computes each operation of a BNN sequentially (using the parallel
reduce tree circuit). Notice that for any layer of a BNN mapping d inputs to p outputs, the computation over
each of the p outputs can be parallelized. The Out 16-P strategy estimates parallelizing the computation
of the p outputs across a cluster of 16 machines (each with 16 CPUs). The Out Full-P strategy estimates
complete parallelization, in which each layer output can be computed independently on a separate machine.
We note that for companies that already offer prediction as a service, both of these parallel strategies are not
unreasonable requirements. Indeed it is not uncommon for such companies to run hundreds of CPUs/GPUs
over multiple days to tune hyperparameters for deep learning models3. Additionally we report how timings

1https://tinyurl.com/gl3yhzb
2https://tinyurl.com/m6upj7y
3https://tinyurl.com/yc8d79oe
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change with the introduction of the +1-trick is described in Section 4.2. These timings are given in Table 2

Parallelism Cancer Diabetes Faces MNIST
Out Seq 3.5s 283s 763.5h 65.1h
+1-trick 3.5s 250s 564h 37.22 h
Out 16-P.
+1 trick

3.5s 31.5 s 33.1h 2.41 h

Out Full-P 3.5s 29s 1.3h 147s

Table 2: Neural Network timings on various datasets using different forms of parallelism.

(computed with Intel Xeon CPUs @ 2.40GHz, processor number E5-2673V3). We notice that without
parallelization over BNN outputs, the predictions on datasets which use fully connected layers: Cancer and
Diabetes, finish within seconds or minutes. While the for the datasets that use convolutional layers: Faces
and MNIST, predictions require multiple days. The +1-trick cuts the time of MNIST prediction by half
and reduces the time of Faces prediction by 200 hours. With only a bit of parallelism over outputs (Out
16-Parallel) prediction on the Faces dataset now requires less than 1.5 days and MNIST can be done in 2
hours. With complete parallelism (Out N-Parallel) all methods reduce to under 2 hours.

5.4 Accuracy

We wanted to ensure that BNNs can still achieve similar test set accuracies to floating point networks. To do
so, for each dataset we construct similar floating point networks. For the Cancer dataset we use the same
network except we use the original 30 real-valued features, so the fully connected layer is 30→ 1, as was used
in Meehan et al. (2018). For Diabetes and Faces, just like for our BNNs we cross validate to find the best
networks (for Faces: 4 convolutional layers, with filter sizes of 5× 5 and 64 output channels; for Diabetes the
best network is the same as used in the BNN). For MNIST we report the accuracy of the best performing
method Wan et al. (2013) as reported4. Additionally, we report the accuracy of the weight-dropping method
described in Section 4. The results are shown in Table 3. We notice that apart from the Faces dataset, the

Cancer Diabetes Faces MNIST
Floating 0.977 0.556 0.942 0.998
BNN 0.971 0.549 0.891 0.986
BNN
drop 10%

0.976 0.549 0.879 0.976

BNN
drop 20%

0.912 0.541 0.878 0.973

Table 3: The accuracy of floating point networks compared with BNNs, with and without weight dropping.
The Cancer dataset floating point accuracy is given by Meehan et al. (2018), the MNIST floating point
accuracy is given by Wan et al. (2013), and the MNIST BNN accuracy (without dropping) is given by
Courbariaux et al. (2016).

accuracies differ between the floating point networks and BNNs by at most 1.2% (on MNIST). The face
dataset uses a different network in floating point which seems to be able to exploit the increased precision to
increase accuracy by 5.1%. We also observe that weight dropping by 10% reduces the accuracy by at most
1.2% (on Faces). Dropping 20% of the weights seem to have small effect on all datasets except Cancer, which
has only a single layer and so likely relies more on every individual weight.

4https://tinyurl.com/knn2434
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6 Conclusion

In this work, we devised a set of techniques that allow for practical Encrypted Prediction as a Service. In
future work, we aim to develop techniques for encrypting non-binary quantized neural networks, and well as
design methods for encrypted model training.
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