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Abstract—Understanding the cost of accessing services in a
transit network, and how this varies spatially and temporally is
vital for transport agencies to make effective decisions. However,
to understand this at the city-scale typically demands the com-
putation of a very large number of shortest path queries, which
is computationally infeasible in a practical setting. In this work
we define the notion of an access query, an analytical query
which returns the aggregate access costs to a set of points of
interest within a given time interval. To solve the computational
bottleneck, we develop a solution that uses semi-supervised
machine learning to efficiently compute these aggregate access
costs using a gravity-model. The solution dynamically generates a
descriptive representation of the connectivity between origins and
destinations in a multi-modal network, and dynamically labels
a small subset of the overall trips which are used to form a
target vector for the learning algorithm. We also consider the
fair distribution of access across spatio-temporal dimensions.
The solution can reduce processing times by up to 97%, while
maintaining high levels of accuracy; the predicted journey times
to services are accurate to within 3.3 minutes, and a high level
of correlation (85%) to the ground truth is achieved.

Index Terms—Urban Analytics, Accessibility, Semi-Supervised
Learning, Spatiotemporal Data

I. INTRODUCTION

Understanding the accessibility provided by a city’s transit
system to key services, such as hospitals or schools, and
understanding how it varies spatially, temporally, and across
demographics is fundamental to ensuring that public bodies
provide an effective, fair, and equitable society [1]. A policy
maker may ask analytical queries (henceforth, access queries
- AQs) such as:

1) What is the average travel time to an important service
(e.g., hospital), and how does this vary spatially and
temporally?

2) Considering the monetary cost and the inconvenience
of transit (e.g., changing buses), what is the overall
accessibility to key services and how does this vary
spatially and temporally?
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3) Which geographic areas are most at risk? For example,
are there unemployed people unable to reach job centers?
Does the varying transit schedule in some places restrict
or prevent access at particular times of the day?

4) Are the accessibility benefits provided by the transit
system fairly distributed between, and within, key demo-
graphic groups?

Computing a temporal origin-destination access matrix (TO-
DAM) can provide the underlying aggregate data for all of
these types of access queries. The TODAM aims to capture
the expected access cost between each of a city’s geographic
locations (often given by its census tracts) and their respective
points of interest (POIs) that people want to travel to, over a
discrete time scale. It is inherently a large and unwieldy matrix
that is expensive to compute and maintain over time. Each
entry in the TODAM is a trip with an origin, destination, and
journey start time. To populate the TODAM, a measure of each
trip’s accessibility, its access cost, is calculated and recorded.
Naı̈vely, and in practice [2], [3], this can be performed by
running a shortest path query (SPQ) in a multi-modal transit
network for each trip. This can result in many millions of
SPQs at the city scale given the increasingly fine granularity
of space and time. While a single SPQ can be efficient
in isolation, performing millions of these queries becomes
extremely costly. We have experienced these performance
challenges while we supported Transport for West Midlands
(TfWM) in locating the initial COVID-19 vaccination sites in
December 2020. Our focus was on understanding accessibility
for the most clinically vulnerable, and ensuring it was adequate
and fairly distributed. Computing a TODAM for POIs in the
West Midlands (approximately three million people) for a
given time interval (e.g., weekday AM peak, PM peak) took
up to 36 hours in a parallel CPU infrastructure. Measuring
all-pairs accessibility at different times throughout the day in
another study resulted approximately four billion trips. Using
traditional GIS tools to compute the TODAM would take over
100 days [4]. This is clearly a major computational bottleneck
for answering AQs efficiently.

In GIS and transportation domains, accessibility analysis is
typically performed as statistical analysis on static datasets
[5]–[9]. However, practitioners, such as transport policy mak-



ers, need to operate in a dynamic environment and test new
policy scenarios, such as optimally locating a new school
to improve accessibility for families or introducing new bus
stops to avoid “access deserts”. In order to support dynamic
AQs, the TODAM needs to be recomputed with every spatio-
temporal change to the system. There is a need for a scalable
and dynamic solution that provides timely information and
fast responses to AQs. Improving the efficiency of a single
SPQ is not enough to enable truly dynamic querying. Dynamic
accessibility analysis also needs to reduce the number of SPQs
that need to be solved when calculating the TODAM. Only
then can the operation become sufficiently efficient to enable
dynamic AQs, and be able to scale to large cities or regions.

To address these challenges, we develop a semi-supervised
regression (SSR) based solution that significantly reduces the
SPQ workload needed to compute accessibility measurements
at the city-scale. A small subset of locations are selected for
labeling. Labeling involves drawing a set of representative
trips for each of these locations (e.g., origin points) from
the TODAM and calculating the access costs using SPQs.
These costs are aggregated to the origin-level providing an
‘access score’, which forms the target vector for the learning
algorithms. The access scores are then inferred by the model
for the remaining, unlabeled, locations. The solution embeds
the widely used gravity measurement of accessibility into the
construction of the TODAM to significantly reduce redundant
downstream computations, and then again into the aggregation
of the TODAM when forming the feature and target vectors.
These aggregations translate the data to the origin-level pro-
viding efficiency boosts during the learning phase, and with
negligible information loss.

One of the major challenges is efficient feature generation,
particularly given that the underlying spatio-temporal data that
describes accessibility is large and costly to query. To address
this, our solution dynamically forms a feature vector for each
OD pair in the TODAM, which is then aggregated to the
origin level. The underlying network, scheduling, and location
data are pre-processed to form efficient data structures that
can reveal highly descriptive information about two locations’
respective connectivity. These structures are called transit-
hop trees and, when retrieved for a particular location, they
instantly provide the set of other locations in the city that
are accessible using a short foot journey and/or single transit
journey, as well as data about the connectivity (e.g., route
frequency, travel time). When these structures are centered on
both the origin and destination points, they provide an effective
way to efficiently generate features describing connectivity.

We evaluate our solution on real-word data sets for two
cities in the UK, measuring access to schools, hospitals,
COVID-19 vaccination centers, and job centers. We test sev-
eral SSR algorithms, from classical methods (e.g., COREG)
to deep-learning methods (e.g., graph neural networks). Our
solution makes significant reductions in the processing time
(up to 97%) while still maintaining accurate accessibility
measurement inferences. For instance, at a 3% labeling budget,
travel times to schools are accurate to within 3.3 minutes.

Our methods are effective on the more complex generalized
access cost (which combines multiple relevant costs), where
we report correlations between ground truth and predicted
values of 85%.

The contributions of this work are summarized as follows:
• Formalization of dynamic AQs in a data management

context using gravity-based measurements.
• Proposal of a machine learning (ML) based approach as

an alternative to explicit management and querying of
spatio-temporal data for accessibility analysis.

• Demonstration of the efficacy of the SSR-based solution
for efficiently computing accessibility measurements at
the city scale.

• Definition of novel data types to efficiently compute
connectivity between two places, and a method to pre-
compute these data types from network, scheduling, and
location data.

• Introducing the notion of a fairness index to determine
how fairly access is distributed in a region, and show how
our method accurately predicts this measure.

II. RELATED WORK

Over several decades, researchers in GIS and transportation
domains have been measuring accessibility using a variety of
methods – see survey papers [10]–[12].

Temporal Accessibility Studies. Recently, the temporal dimen-
sion has become an essential part of accessibility studies [2],
[3], [13], which has further increased the computational im-
pact of accessibility analysis. A comprehensive summary is
provided by [14]. It has been shown that accessibility patterns
measured at a fine temporal scale can vary significantly, even
over a short time window [3]. This can reveal important
patterns in accessibility, such as ‘food deserts’ emerging as
people cannot access supermarkets at certain times [2]. While
the notion of a travel-time cube (similar to the TODAM)
enables a range of spatio-temporal analyses, computational
challenges remain [15]. Recent approaches incorporate more
varied sources of data on observed transit times to more
accurately capture spatio-temporal patterns [16], [17].

Computing Accessibility. Prior research limits the geographic
scope of their analysis to ensure it is computationally feasible
[18], whereas our solution can scale to large networks. To
improve efficiency, parallel processing has been used to speed
up accessibility calculations [13], [19]. While this may be a
viable strategy for some static data analysis, it is still not
efficient, e.g., an all-pairs matrix is reported to take four
hours to complete using 64 CPUs. Also, parallelization can
benefit an SSR approach too, as the majority of the runtime
is in labeling. An adapted all-pairs shortest path algorithms
has been developed to compute citywide all-pairs accessibility
[20], taking six days to run for a large transit network. We aim
to show how targeted queries can be processed much more
efficiently.

Machine Learning for OD Travel Time Estimation. A related
problem is real-time OD travel time estimation. Recently



several papers have applied deep learning to the task and
shown significant results [21]–[24]. The challenge has been
to discover meaningful feature representations that can be
computed efficiently to enable the machine learning models to
learn accurate mappings. It is shown that the pre-processing of
spatio-temporal road network data and novel representations of
historically observed traffic patterns are an effective approach
[21]. To our knowledge, no work has applied machine learning
to the computation and management of accessibility analysis.

III. DEFINING DYNAMIC ACCESS QUERIES

In this section, we define the data specifications and intro-
duce a gravity model for measuring accessibility which is used
to define the structure of the TODAM. We then describe how
to generate an access score from the fully populated TODAM,
which provide answers to dynamic AQs.

A. Preliminaries

The overall region is discretized into a set of zones, zi ∈ Z ,
which can be defined by public information such as census
tracts. Each zi ∈ Z is represented by the latitude/longitude
of its geographic centroid. To denote a POI we use pi, and
P is the full set of POIs. Each pi ∈ P is attributed with, as
a minimum, its latitude/longitude coordinates and a category
(e.g., school, hospital, job center).

The road network is modeled as a graph, G(N , E), where
N is the set of nodes and E is the set of edges. A transit
network (e.g., bus network) augments G(N , E) with timetable
information to provide the temporally varying transit times
in the network. This information is often publicly available
(e.g., General Transit Feed Specification, GTFS), and contains
information about stops, routes, and individual departure and
arrival times. We refer to this data as F .

We divide the time domain into a series of time intervals
V . Each v ∈ V is given as v = [ts, te, td], where ts and te are
the start and end times, and td is the day of the time interval.
These time intervals are labeled to denote the popular times
for which it is important to assess accessibility to key services.
For example, [7am, 9am, Tuesday] represents the typical rush-
hour peak of a weekday morning.

B. Measuring Accessibility

We employ a location-based measure of accessibility that
works at the aggregate level (e.g., zone level). This involves
analyzing aspects of land use and travel impedance (i.e., how
difficult it is to get from one place to another). Due to lower
data requirements and ease of interpretation, an aggregate
measure is often preferred to person-based approaches [10].
Specifically, we employ a gravity model, which are widely
adopted in literature [4], [5], [7], [25], [26]. Gravity models
neatly capture the interplay of both land-use patterns and
transit system coverage, and they are versatile in measuring
aspects of social exclusion [12] and appropriate for larger
networks [4]. The original equation [27] is still central to
gravity models, where accessibility to a particular POI, pj ,
from a zone zi is a function of its impedance in G weighted

by its attractiveness (to the residents at zi), known as the access
cost. An ‘accessibility score’ for each zi is normally calculated
by aggregating the access cost over all pj ∈ P .

C. Temporal Origin-Destination Access Matrix

In practical terms, a set of trips is generated from each
zone, zi, to each POI, pj at varying start times t. Each trip’s
access cost is measured, and to calculate accessibility these
costs are aggregated at the zone-level using some form of
the Hansen equation. The TODAM is a three-dimensional
matrix that captures all of these trips. We formalize a method
to integrate the gravity model into the construction of the
TODAM, which uses an attractiveness score between zi and
pj , as defined below, to restrict the number of trips sampled. In
effect, this moves the Hansen equation downstream. In doing
so, when the access costs are calculated and aggregated, the
gravity model has been computed, significantly reducing the
size of TODAM.

The full TODAM is defined as Mf . It is a matrix of
dimensions |Z| × |P | × |R|, where R is a set of randomly
generated start times drawn from v, determined by a per hour
sample rate. When TODAM is constructed using the gravity
model it is defined as Mg . A binary matrix, Mb, of the same
dimensions as Mf is defined, and Mg is formed by selecting
from Mf where the corresponding entry in Mb = 1.

To populate the Mb matrix, we must define attractiveness,
which denotes how likely someone in a zone zi is to visit a POI
pj . This score determines how many trips are sampled from
R for a (zi, pj) pair. The attractiveness score can be given
by domain knowledge, learned from real data, or calculated
on-the-fly (e.g., by using a distance decay function [12]). The
score is then normalized over all P for each zi ∈ Z . Thus,
each (zi, pj) has a score between 0 and 1, given as αij , which
denotes pj’s relative attractiveness to the residents in zi.
Mb is populated as follows: When αij = 0 then no trips

between zi and pj are generated, thus M i,j,:
b = 0. When αij >

0, then some trips between zi and pj are sampled from R,
denoted by ri,j , thus M i,j,ri,j

b = 1. ri,j is proportional to αij

and is governed by a probability function. We describe our
approach in Section V.

To naı̈vely populate either Mf or Mg , each trip has its
access cost calculated. This is typically performed by running
a SPQ in G. We calculate two access costs: journey time (JT)
and generalized access cost (GAC). JT is defined formally as:
c(o, d, t) = AT (d)−t, where AT is a function that returns the
arrival time at a given location. GAC is a popular approach [5],
[6], [8], [18], [28] that calculates access as a combination of
monetary, inconvenience, and time costs. We use the definition
given by the UK Department for Transport [29], formally1:

c(o, d, t) = λ1TAN + λ2WT + λ3IV T + λ4ET + TP +
FARE

V OT
(1)

where λi is a non-negative weighting factor.

1TAN: time to access G; WT: waiting time; IVT: in-vehicle time; ET: egress
time; TP: transfer penalties; FARE: fare; VOT: value of time conversion factor



D. Accessibility Measures

We formalize a set of measures which, when calculated
on Mg , implements the gravity model of accessibility. These
measures are calculated at the zone-level, and are typically
mapped to provide a visual analysis.

Mean Access Cost (MAC). The expected level of accessibility,
according to the gravity model, of a zone, zi:

MACi =

∑
j

∑
k(c(zi, pj , r

i,j,k))

|M i,:,:
g |

(2)

Access Cost Standard Deviation (ACSD). The standard devia-
tion of all observed access costs at the zone-level is given to
represent the variation in accessibility in the temporal domain.

Accessibility Classification (AC). In isolation, aggregate mea-
sures can be hard to interpret, particularly for GAC [8]. Hence,
we classify a zone’s accessibility, as in [2]. The classification
rules are: low MAC and low ACSD receives a class “best”;
high MAC and low ACSD receives a class “worst”; low MAC
and high ACSD receives a class “mostly good”; high MAC
and high ACSD receives a class “mostly bad”. Low means
below average, high means above average.

Fairness Index. We introduce the concept of the fairness index,
which seeks to determine how fairly MAC is distributed across
spatio-temporal dimensions and to understand if particular
zones have significantly worse provision of access than others.
The fairness index can be further weighted by zone-level
demographic data to understand if particular groups are being
unfairly served. In this paper we adopt the Jain’s index (de-
veloped for computer networks [30]) over MAC as a fairness
index.

IV. DYNAMIC ACCESS QUERIES USING SEMI-SUPERVISED
REGRESSION

Fully populating the TODAM requires an SPQ in G for
each entry, each costing O(|E| × log |N |). As the TODAM is
typically very large, this is a major computational bottleneck
in efficiently answering dynamic AQs. The average run time of
each SPQ on our real-world network data was 0.018±0.016s 2.
To illustrate the bottleneck, consider the following example.
In a city of 3000 census tracts, with 100 POIs, with each OD
pair generating five different trip start times, the total runtime
would be 7.5 hours on standard CPU architecture (without
parallelization). In practice, many AQs may be required to
measure accessibility at each time interval. We aim to compute
the access measures in Section III-D using only a fraction of
the number of SPQs.

Our solution, which uses SSR methods and includes dy-
namic feature generation and data labeling, has four con-
stituent parts, which are summarized in Fig. 1. In the following
sections, we describe each component in more detail and
discuss the technical challenges.

2These measurements were taken on the dataset described in Section V
averaged over all POI types.

A. Feature Extraction: Offline Processing

The main challenge in offline feature extraction is to trans-
form the large transit and spatial data into efficient structures
to describe a (zi, pj) relationship, in which pj is associated
to its zone zj . At its heart is a notion we call the “transit
hop”. An outbound transit hop is any viable (o, d, t) journey
through G composed of a short foot-journey from o and/or
a transit-journey of any length to d. An inbound transit hop
reverses the foot and transit journey components. Transit hops
are pre-computed at the zone level and saved to a data structure
called a transit hop-tree - we depict this structure in Fig.
2B. At its root is a zone, zi, and associated leaves are all
the zones reachable after one hop, with data held on each
leaf to describe the connectivity in G (route frequency and
average journey time). These structures are versatile, and
enable important information to be accessed efficiently. They
can also be chained easily to provide information after multiple
(h) hops. Fig. 2A maps a (zi, zj) query along an outbound
transit-hop tree centered on zi and inbound transit-hop tree
centered on zj . We can observe how much information about
the potential connectivity between these two points is instantly
available. As connectivity data on each of the mapped points is
available it enables a wide range of features to be calculated.

Transit-Hop Tree Generation. We now describe the procedure
to form transit-hop trees for a zone, zi for a time interval
vi. OBvi

zi denotes the transit-hop tree for outbound hops, and
IBvi

zi the tree for inbound hops.
An isochrone (see Fig. 2C) for each zi ∈ Z is pre-computed.

The isochrone is calculated in G, given an acceptable walkable
time in seconds (τ ) and a walking speed (ω). This outputs a
set of shapefiles representing the walkable area around each
zi. We denote the full set of walking isochrones as W , where
Wi is the isochrone for zi. Fstops is intersected with Wi to
retrieve the set of bus stops that are walkable from zi. For
each bus stop, all the services that pass through it during vi is
retrieved from Ftrips. Then, for each service, each subsequent
bus stop is ‘visited’ (use preceding stops for inbound). The
zone, zj , for each of these bus stops is added as a leaf to
OBvi

zi . If it already exists, the connectivity data is updated to
provide details of this newly discovered route. The journey
times for each discovered route are recorded in a list on the
leaf and a counter on the leaf is incremented by one. When
each bus stop has been processed the procedure ends, and the
tree is saved such that it can be retrieved efficiently.

B. Feature Extraction: Online Computations

We describe how a feature vector is efficiently computed.
Given a (zi, zj) pair, OBvi

zi and IBvi
zj are retrieved and inter-

changes are identified. Interchanges are practical to compute
online, and reveal how possible routes might be constructed
between (zi, zj) providing even more information on potential
connectivity.

1) Interchanges Identification: An interchange occurs when
any zk ∈ OBvi

zi is within walking distance of any zk ∈ IBvi
zj ,

allowing a passenger to connect to that service. These are



Fig. 1: Diagram of SSR learning procedure to generate accessibility metrics.

Fig. 2: Examples of transit-hops, transit-hop trees and walking
isochrones.

shown in Fig. 2A. To compute this, a k-NN (k = 1) search is
made for each zk ∈ OBvi

zi on IBvi
zj to retrieve the nearest-node

pairs. For each of these pairs, the walking isochrone for one
is retrieved to test if the other intersects. When they intersect,
it is recorded as an interchange.

2) Feature Vector Definition: To describe the (zi, zj) re-
lationship: We instantiate a binary field that determines if
d is reachable from o within h transit-hops. The closest
point to d in OBvi

zi , and closest point to O in IBvi
zj can be

calculated easily and represented as their Euclidean distance
and connectivity features (average travel time and number of
transit routes). From the list of interchanges, we calculate
which points are closest to o and d. These points can also
be represented by their Euclidean distance and connectivity
features. We can consider the leaves in OBvi

zi and IBvi
zj , and

identify those with the highest number of connections (e.g.,
high frequency routes). Then calculate how close we can get
to d (or o) by traveling on these high-frequency routes, and
count how many high frequency routes have interchanges. The
percentage of reachable nodes in G after h transit hops can be
calculated easily.

C. Data Sampling

The data in Mg are split into two sets for SSR training:
labeled (L) and unlabeled (U). The size of L is determined
by the sampling budget, β, a value between 0 and 1.

Data is aggregated to the zone level (e.g., origin level). This
is convenient as the access measures are also calculated at this

level. These measures are used directly as the target vector.
This approach has the benefit of being efficient as |L∪U| will
be small. The (zi, pj) level (e.g., OD level) may be considered
as this retains more granular information on the feature vector,
but the target vector must be aggregated to the zone-level post
training. This is difficult as performing a weighted aggregation
of standard deviations is computationally challenging and
accuracy is hard to ensure. Learning at the trip-level (e.g.,
(o, d, t) level) is not viable, as calculating a feature vector for
each trip would not be any more efficient than calculating the
access cost for each trip.

To form the sets L and U , we perform random sampling on
Z based on β, which we assume gives a reasonable level of
geographic coverage across the area of study. Active learning
strategies may be explored to ensure coverage and to capture
aspects of uncertainty. We note that the feature vector is
generated on the OD level. For training, it is aggregated to
the origin-level using a mean function weighted by αij , which
applies the same weighting factor as the gravity-based access
measures.

D. Semi-Supervised Regression and Inference

For labeling, each zone is selected in L and all of its
respective trips are retrieved from Mg . For each region, an
SPQ is run in G to calculate its access cost. Open Trip Planner3

is used to dynamically run these queries, which provides
realistic routes to (o, d, t) queries. It has been widely used
to calculate access costs [?], [3]. These access costs are then
aggregated back to the zone-level using the mean and standard
deviation, which forms the target vector.

An SSR model is trained on L and used to infer the labels
for U given their feature vectors. There are a wide range of
available methods for this, many of which are discussed in
Section V. The fully labeled L ∪ U allows us to efficiently
calculate all of the accessibility measures and thus efficiently
answer dynamic AQs.

E. Efficiency of the Solution

We analyze the efficiency of each step of the overall
framework that is performed online.

The feature set is calculated online for each instance
(zi, pj). Interchanges are calculated with a k-NN query that
fits to the leaves of OBvi

zi and is applied to the leafs of IBvi
zj .

3https://download.geofabrik.de/europe/great-britain/england/west-
midlands.html



In the worst case, either of these structures could have |Z|
leaves (although this is far fewer in reality). The cost reduces
to O(|Z|× log(|Z|)). Each leaf in OBvi

zi and IBvi
zj is accessed

to calculate features, such as the distances to o and d. The cost
for this operation reduces to O(h×|Z|). In practice h is very
low (e.g., 1 or 2). The total cost for to compute the feature
vector for each (zi, pj) is O((|Z| × log(|Z|)) + (h× |Z|)).

For labeling, a Dijkstra-like algorithm is typically used
to provide the access costs, giving an overall labeling time
complexity of O((β|Mf |) × |E| log |N |). This labeling cost
is typically the largest component in the overall solution, and
it is proportional to β. When β is low, the overall cost for
measuring accessibility is low, and thus scalability is achieved
for large networks.

V. EXPERIMENTS

We run experiments on two UK city data sets, Birmingham
(population: 1.14 million) and Coventry (population: 650,000).
The experiments are all run on a GPU server (4 GPU cores,
500GB) and implemented using Python 3.7. We use PyTorch
as our deep learning framework.

A. Setting

Data. The region of study is determined by shapefiles divided
into census tracts4, which forms the set of zones Z . Coventry
has 1014 zones, Birmingham has 3217. We use the GTFS
feed provided publicly by TfWM5.We use four different POI
sets: schools, hospitals, COVID-19 vaccination centers, and
job centers. The locations are scraped from the web. The
number of POIs is shown in Table I. The results are reported
for a single time interval - weekday AM peak. Scheduling data
is selected between 7am to 9am on Tuesday May 10th 2022.
A negative exponential distance decay function [10] is used to
determine ri,j . We use τ = 600 and ω = 4.5kph.
Models. We implement the following models: OLS regression
(OLS), mean teacher (MT) [31], COREG [32], multi-layer
perceptron (MLP), and graph neural network (GNN). We use
some of the code provided by [33] for MT and COREG. In all
implementations, a feature set is given for all L ∪ U , and the
target vector is given for L. The goal is to learn the labeling
for U . We test the following values of β: 30%, 20%, 10%,
7%, 5% and 3%. For GNN, the adjacency matrix is calculated
using the Euclidean distance between each zi ∈ Z , and then
normalized using the Gaussian thresholded approach.
Performance Measures. We calculate the mean absolute error
(MAE) and Pearson correlation coefficient (corr) of MAC and
ACSD between the ground truth and predicted labels. In the
case of AC, we calculate the accuracy, which is the percentage
of correctly predicted classes. The difference between the
ground truth and the predicted fairness index is the Fairness
Index Error (FIE).

B. Experimental Results

4https://geoportal.statistics.gov.uk/datasets/output-areas-december-2011-
boundaries-ew-bgc

5https://api-portal.tfwm.org.uk/docs

TABLE I: Table showing size of different matrix variants for
both cities and all POI types.

Birmingham Coventry
|P| Full Gravity % Red. |P| Full Gravity % Red.

School 874 169,014,120 3,576,653 97.9 230 13,993,200 795,375 94.3
Hospital 56 10,829,280 2,314,256 78.6 6 365,040 142,864 60.9

Vax Center 82 15,857,160 2,133,585 86.5 22 1,338,480 322,188 75.9
Job Center 20 3,867,600 972,693 74.9 2 121,680 121,664 0.0

Fig. 3: JT errors for SSR solution across all POI types

1) Matrix Composition: Table I compares the size of the
full matrix to the gravity-constructed matrix to observe the
reductions achievable. In the most extreme case (School,
Birmingham), the full matrix consists of nearly 170m trips.
Assuming a per trip runtime of 0.018s to calculate the access
cost, it would take 850 hours to process. Applying the gravity
model reduces the size to 3.57 million, a 97.9% reduction.

In Birmingham, the reduction achieved from using the
gravity model across the different POI sets is 84.5% with
an average POI set size of 258, compared with an average
reduction of 57.8% in Coventry (on an average of 65 POIs).
Embedding the gravity model into the construction of the TO-
DAM can make savings, and can be applied when performing
any accessibility analysis, not just using SSR model.

2) SSR Solution Performance: Fig. 3 presents the mean
error reported on journey times. MLP tends to be the best
performer. As expected, there is some deterioration of the error
term as the budget gets smaller. However, in most cases, this
is not a severe drop off. In general, Birmingham can tolerate
lower budgets than Coventry. With a 3% labeling budget in
Birmingham, the reported errors are relatively low, while in
Coventry a 7% labeling budget keeps errors relatively low.

OLS reports similar errors to MLP at a higher labeling
budgets. However, at smaller budgets, it is inconsistent, and
produces occasionally much worse results. This shows that
deep learning approaches can find meaningful patterns in
smaller datasets. The more bespoke SSR methods, such as
COREG and mean teacher are not particularly competitive
compared to MLP. GNN also fails to be competitive.

The GAC is generally more meaningful to policy makers
as it also accounts for monetary cost and inconvenience. Fig.
4 shows the performance metrics for GAC for vaccination
centers (the results are quite consistent across all POI types).
Firstly, we consider the MAC correlation. Once again, MLP
tends to outperform all other models. In Birmingham, the
correlation is generally high, even at lower labeling budgets.



Fig. 4: Reported performance of SSR solution across different
models on each location on vaccination center POIs.

In Coventry, the correlation drops off more noticeably after
7%, although it still remains strongly positive. These strong
correlations demonstrate the overall patterns of accessibility
are being captured accurately.

The ACSD correlation is less reliable, and we observe a
more significant drop off at lower budgets across all models.
In Birmingham, MLP tends to perform the best, while all of
the models report similar performance in Coventry, except for
OLS. While some drop-off exists at lower budgets for MLP
in Birmingham, it remains strongly positive for all reported
budgets. In Coventry, while all models report a positive
correlation, it tends to be a weaker correlation, even for the
best performing models.

The contrasting results between Coventry and Birmingham
at lower budgets can be explained by the impact of walking
only trips. When a zone is associated to a POI that is walkable,
it has an ACSD of 0 as the trip is not dependent on the
road network and schedule. At smaller labeling budgets, the
models find it harder to distinguish which zones are made
up of walkable POIS which increases the ACSD error term.
In Coventry, the issue is compounded as there is a greater
proportion of walking only trips in Mg (7.1% vs. 4.3%). Each
zone also associates with fewer vaccination centers (6.3 vs.
18.3) so the errors are less diluted by other, non-walking, trips.

Accuracy indicates how well the models can provide each
zone with a meaningful accessibility classification with a rule
set that considers MAC and ACSD (defined in Section III-D).
In Birmingham, an MLP model can provide an accuracy
of over 60% at a labeling budget of just 5%, which is a
strong result considering there are four possible classes. The
accuracies reported for Coventry at lower labeling budgets are
inconsistent, and in some cases (e.g., MT) very poor. These
poorer results can be explained by the challenges noted above
in calculating the ACSD in Coventry.

Finally, we discuss the results for the FIE. The reported
errors in this term are low in both Coventry and Birmingham,
and remain low even at the lowest labeling budgets. This
indicates that the model is able to report the fair distribution
of access accurately.

3) Solution Scalability: Table II presents the time costs
associated to the naı̈ve approach (e.g., labeling all of Mg)
compared to the full end-to-end cost of our solution (feature
extraction + labeling L + SSR learning). Very high costs
are associated with full labeling, particularly for Birmingham

A. Birmingham - Ground Truth
  0.80,  66.59
 66.59,  86.24
 86.24,  98.10
 98.10, 109.77
109.77, 172.36

B. Birmingham - MLP Predicted
  0.00,  67.48
 67.48,  84.22
 84.22,  95.37
 95.37, 106.19
106.19, 148.81

C. Coventry - Ground Truth

  2.62,  52.23
 52.23,  67.63
 67.63,  77.29
 77.29,  85.01
 85.01, 135.75

D. Coventry - MLP Predicted

  0.00,  53.84
 53.84,  65.86
 65.86,  73.70
 73.70,  81.48
 81.48, 135.75

Fig. 5: GAC MAC mapped for vaccination centers.

(e.g., it takes 932 minutes for schools set). With our solution
at a 3% labeling budget, the runtime reduces to 36.2 mins, a
96.1% reduction (for which we report a JT error of 3.3 mins, a
MAC Corr of 0.84 and accuracy of 0.48). Across all POI types,
the mean saving is 96.6% for Birmingham. A higher labeling
budget may be preferred in Coventry due to the inconsistent
results at lower budget; we consider the performance at 10%.
The most intensive query runs in 16.4 minutes, and the mean
runtime savings across all POIs times are 91.3%.

Fig. 5 maps the predicted MAC for vaccination centers at
for Birmingham (β = 3%) and Coventry (10%). The results
shows that using SSR accurately captures accessibility patterns
even with low labeling budgets.

VI. CONCLUSION

In this work, we have studied the problem of efficiently and
accurately processing dynamic AQs by efficiently computing
the underlying data to answer such queries. As the spatio-
temporal granularities used in accessibility analysis become
finer, the computational load to compute the access costs for
the full TODAM becomes more impractical. We have defined
the challenges and introduced a method to dynamically process
AQs for a given set of POIs and a specified time interval,
that integrates the gravity model into the construction of the
TODAM, and uses semi-supervised regression to significantly
reduce the SPQ workload. Our solution dynamically gener-
ates feature representations from pre-computed data types,
called transit-hop trees, which describe the connectivity in
G between an origin and destination. We have also analyzed
how fairly access costs are distributed using a system-level
measure. In the experiments, we show that the accuracy of
measuring accessibility can be maintained for both journey
time and the generalized access costs at low labeling budgets



TABLE II: Table showing run time of naive solution compared to SSR solution and percentage savings.

City Birmingham Coventry

POI Label Solution Cost (Mins) Percentage Saving Label Solution Cost (Mins) Percentage Saving
Type Cost 3 5 7 10 20 30 3 5 7 10 20 30 Cost 3 5 7 10 20 30 3 5 7 10 20 30

School 932.2 36.2 40.9 52.2 75.8 139.1 197.8 96.1 95.6 94.4 91.9 85.1 78.8 190.9 5.1 7.8 10.0 16.3 29.9 43.4 97.3 95.9 94.8 91.5 84.4 77.2
Hospital 876.3 24.7 40.2 51.2 71.0 131.8 191.3 97.2 95.4 94.2 91.9 85.0 78.2 33.1 1.3 1.8 2.2 3.0 5.2 7.5 96.2 94.5 93.2 91.0 84.2 77.3

Vax Center 901.9 25.7 36.5 59.2 72.4 133.5 191.7 97.2 96.0 93.4 92.0 85.2 78.7 72.4 2.3 3.2 4.3 5.7 11.2 15.9 96.8 95.5 94.1 92.1 84.5 78.0
Job Center 305.4 12.4 16.0 22.2 28.6 48.8 69.2 95.9 94.8 92.7 90.6 84.0 77.3 30.3 1.2 1.6 2.0 2.8 4.8 7.1 95.9 94.6 93.2 90.8 84.1 76.7

(3%), and that the fairness index is accurately predicted. This
reduces processing times by 97%, allowing dynamic AQs to
be answered in minutes rather than hours. Future studies can
focus on developing the model and feature representation to
better capture walking only trips which drives a low ACSD
correlation, as well as investigating the possible use of active
learning to further improve the SSR models.
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