
 1

Cozilet: Transparent Encapsulation to Prevent Abuse of
Trusted Applets

Hisashi Kojima Ikuya Morikawa Yuko Nakayama Yuji Yamaoka

Secure Software Development Group
Fujitsu Laboratories Limited

{hisashi, ikuya, yamaoka}@labs.fujitsu.com, yuko.nakayama@jp.fujitsu.com

Abstract
We have developed a mechanism which prevents abuse

of trusted Java applets, such as digitally signed applets. A
signed applet is usually permitted by a user to perform
certain functions. However, an attacker may improperly
recompose the signed applet to include malicious
components and harm the user by abusing such functions
of a signed applet. In this paper, we call this a malicious
recomposition attack and propose an innovative
mechanism to solve the problem of such attacks. Before
deployment, a target signed applet is encapsulated into a
special signed applet, called a cozilet, in an
indecomposable format. On its execution, the cozilet
isolates the classes and resources of the encapsulated
applet by assigning a special class loader unique to the
applet. It also enforces applet-document binding so that it
is never executed from untrusted HTML documents. The
mechanism is easily applicable to target signed applets
because it is transparent not only to target applets, but also
to current Java VM implementations. Therefore, the
mechanism can easily protect both applets developed in the
future and the applets currently in use. We have
implemented this mechanism for Sun Java VM. In this
paper, we describe its basic architecture and
implementation details.

1. Introduction

Web applications use Java applets to control client-side

behavior. For security reasons, applets are not permitted to
perform any behavior which may harm users. These
restrictions sometimes become obstacles in Web
application development. For example, various
e-government systems ask users to digitally sign their
application forms or registration forms using smart cards.
This cannot be done with normal applets, because they
cannot access client-side local devices, such as smart cards.

To empower applets, applets whose origins are guaranteed
are allowed to bypass the restrictions. A popular way to
guarantee their origins is to digitally sign them. Signed
applets can dynamically ask users for permission to bypass
the restrictions, and provide an important benefit in that
they do not oblige users to change their security settings in
advance.

Unfortunately, attackers may reuse signed applets and
harm users by abusing the functions of the applets. Signed
applets consist of reusable components, such as signed JAR
files [13]. Attackers can try to call methods or modify fields
of classes in signed jar files by recomposing them as the
attackers’ own components for malicious purposes. In this
paper, we call this a malicious recomposition attack. This
issue applies not only to applets, but also to other signed
reusable components, such as signed ActiveX controls. In
contrast to server-side vulnerabilities, which can be
mitigated by stopping vulnerable servers, it is difficult to
stop the spread of damage caused by vulnerable client-side
signed components because attackers may have already
obtained them and can redistribute them for their own
purposes. There is a pressing need to address this problem
of malicious recomposition attacks.

We have analyzed the risks associated with signed
applets and have considered various strategies that a
malicious recomposition attack can follow. Although these
attack strategies can be prevented through careful design
and programming on the part of developers, most
developers cannot easily understand and prevent all
possible strategies. Developers need to ensure that some
mechanism for signed applets lessens the possibility of a
malicious recomposition attack. To easily apply such a
mechanism to the signed applets now in use, however, the
mechanism should not require changes to signed applets or
the replacement of currently installed Java VM
implementations. Therefore, we have developed the Cozilet
mechanism which protects signed applets transparently by
encapsulating them.

The rest of this paper is organized as follows. Section 2

 2

describes the basic mechanism and typical examples of
malicious recomposition attacks on signed applets, to show
that current Java VM implementations are susceptible to
such attacks. Section 3 describes our mechanism to protect
signed apples from a malicious recomposition attack. This
mechanism is transparent to both signed applets and current
Java VM implementations. Section 4 describes the details
of implementation. Section 5 discusses the issue in a more
general manner, and Section 6 discusses related work. We
conclude in Section 7.

2. Malicious recomposition attacks

To perform a malicious recomposition attack, an

attacker needs to force a trusted applet to harm a user by
recomposing the trusted applet with malicious components.

This section first describes an example of a signed
applet. It then goes on to explain two typical attack
strategies for malicious recomposition: exploiting an
improperly implemented privileged code and class
replacement.

2.1. Example of a signed applet

Suppose, for instance, there is a signed applet for

e-commerce. It is digitally signed by a trustworthy
company and allowed to perform potentially insecure
behavior, such as accessing a smart card. The applet is
composed of the signed JAR file purchase.jar and
invoked by the applet tag below.

<applet code="foo.PurchaseApplet"
 archive="purchase.jar" ...

 purchase.jar includes the applet main class
foo.PurchaseApplet. Here, purchase.jar and an
HTML document with the above applet tag would be
deployed on a trusted Web site. If a user accesses the Web
page (i.e., the HTML document) on the site, Java Runtime
Environment (JRE) shows a security dialog to the user. The
dialog displays the signer information of the applet and
asks the user to grant the applet the permission required to
perform the insecure behavior. In this example, since the
signer is a trustworthy company, the user will grant it. The
applet then runs and performs the insecure behavior.

2.2. Exploiting an improperly implemented

privileged code

The first attack strategy is where an attacker uses

classes of a signed applet as library classes. With this
strategy, the attacking applet can access the classes of the
target applet and execute their methods. This kind of access
is usually prevented through stack inspection (see Section
2.2.2), but this is bypassed if there is a privileged code in

the class and it is not implemented properly.
This subsection describes the strategy. First, the basic

strategy is described. After that, the Java security model is
described and it is shown that an attacker cannot usually
use a target applet. Finally, the privileged code for
bypassing stack inspection is described and it is shown
that improperly implemented privileged code causes a
security breach.

2.2.1. Abuse of a signed applet as a library. Suppose that
an attacker creates an attacking applet which maliciously
uses the classes in purchase.jar from Section 2.1. The
attacking applet is unsigned and composed of the unsigned
JAR file evil.jar. The applet main class is EvilApplet
and is included in evil.jar. The attacker deploys the
HTML document including the applet tag shown below,
with evil.jar and purchase.jar on the attacker’s own
Web site.

<applet code="EvilApplet"
 archive="evil.jar,purchase.jar" ...

If the attacker can lead a user to the above page, the
attacking applet runs and may harm the user. Although the
security dialog in Section 2.1 is shown, the user will grant
permission because the dialog shows the information of the
trusted signer who signed purchase.jar.

However, the attacker normally cannot use the target
applet, because Java uses stack inspection to prevent an
attacker from performing any insecure behavior [14].

2.2.2. Protection through stack inspection. Java uses the
Sandbox security model which prevents untrusted
programs from accessing system resources. Java defines
interfaces to system resources as system methods. In this
paper, we call them insecure methods. Java also defines the
corresponding permissions required for execution of
insecure methods. The stack inspection checks whether
each caller of a methods has the required permission [14].

When an insecure method is called, JRE checks the
trustworthiness of classes in its method call chain by
inspecting the stack of the current thread. If all the classes
in the method call chain are trusted (e.g., classes of a signed
applet) as shown in Figure 1(A), the insecure method is
executed. Or if there is any single untrusted class (e.g., the
classes of attackers) as shown in Figure 1(B), a security
exception is thrown instead of execution of the insecure
method. Therefore, an attacker’s class cannot execute any
insecure method, either directly or indirectly, via any
method of trusted classes in a signed applet.

Unfortunately, an attacker is sometimes able to bypass
the stack inspection by invoking privileged code in a
signed applet.

2.2.3. Privileged code. The privileged code mechanism
[14] is provided to enable a trusted class to delegate its

 3

execution of an insecure method to an untrusted class. In
the case of signed applets, it is mainly used to accept
accesses from script code running on a Web browser
(which we will refer to as browser script code), because
most Java VM implementations regard browser script code
as untrusted code.

Suppose that the foo.PurchaseApplet from Section
2.1 declares the method loadConf() which is called by
browser script code. A sample implementation of the
method for Sun Java VM is shown below.

public String loadConf(final String name) {
 Reader r = // Begin privileged block
 (Reader)AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 try {
 // Open a text file
 return new FileReader(name);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }}}); // End privileged block
 // Read the file and return string ...
 :
}

loadConf() executes the insecure method new

FileReader() in the privileged block, which starts at
doPrivileged(). JRE regards the privileged block and
all the methods called within the block as privileged code,
and simplifies the stack inspection as follows. When the
browser script code calls loadConf(), JRE checks classes
in the call chain of new FileReader(), but does not check
any callers of loadConf() as shown in Figure 1(C).
Therefore, untrusted browser script code can execute new
FileReader().

2.2.4. Improperly implemented privileged code.
Privileged code should be carefully implemented because
an attacker can bypass the stack inspection by executing
this code. The example in Section 2.2.3 is vulnerable, and
an attacker may steal an arbitrary file on a user’s local disk
by executing loadConf(). The problem here is that an
attacker can specify an arbitrary file name as the argument
name, and this is passed to new FileReader() without
being properly validated.

The exploitation of improperly implemented
privileged code is a widely known problem, and some
guidelines recommend that developers pay particular
attention to it [2][3][4]. Developers of signed applets for
Microsoft or Netscape Java VM especially should use
care because these Java VM implementations require the
invocation of any insecure method in a signed applet to
be implemented as privileged code, regardless of
whether or not there is a call from untrusted code.

Fortunately, a developer can avoid use of privileged
code through careful design. For example, privileged code
is not needed for a signed applet which is only for Sun Java
VM and is not called by browser script code.

2.3. Class replacement

The second attack strategy is for an attacker to force a

signed applet to use classes of the attacker instead of
classes of the signed applet. We call this class replacement.
With this strategy, an attacker can trick a user into running a
target signed applet whose classes have been partly
replaced and force the target applet to harm the user by
falsifying data on its dataflow. Unlike the first strategy, this
one does not require privileged code, and it is the threat
common to most signed applets.

This subsection describes the strategy. First, class
replacement is described using an example. After that, two
weak points of the same-package-same-signer protection
mechanism are described [15], and it is shown that the
strategy is still effective under the protection mechanism.

2.3.1. Cutting into a signed applet. According to the
Applet specification, if the same name is shared by classes
in different JAR files within an archive attribute included in
an HTML document, JRE loads the one in the leftmost file
of the attribute. By using this specification, an attacker’s
class can replace a class of a signed applet. Suppose that
foo.PurchaseApplet (from Section 2.1) is implemented
as follows.

package foo;

public class PurchaseApplet extends Applet {

 public void start() {
 // Create the dialog
 foo.util.MyFileDialog dialog =
 new foo.util.MyFileDialog("Save");
 // Show the dialog to the user and
 // prompt the user to select
 // the save file
 String path = dialog.showAndReturn();
 // Write some data to the selected file
 FileWriter fw = new FileWriter(path);
 :
 }
 :

new FileReader()

doPrivileged()

loadConf()

JavaScript code

insecure()

untrusted()

insecure()

trusted1()

inspect

ok

inspect

no!

inspect

ok

don’t
care

(A) (B) (C)

trusted2()

trusted3()

trusted1()

trusted2()

Figure 1. Stack inspection

 4

}

This applet shows a file dialog to a user and writes some
data to the save file selected by the user. The applet main
class PurchaseApplet is a member of the package named
foo, and the file dialog class, MyFileDialog, is in the
other package named foo.util. The structure of
purchase.jar is as follows.

purchase.jar
 +- foo/PurchaseApplet.class
 +- foo/util/MyFileDialog.class

As shown in the above code, the file name of the save
file is determined by MyFileDialog. Therefore, an
attacker can force the applet to write an arbitrary file by
replacing MyFileDialog with that of the attacker as
follows.

First, the attacker creates the malicious MyFileDialog
class and puts it into evil.jar.

evil.jar
 +- foo/util/MyFileDialog.class

Next, the attacker creates the HTML document
including the applet tag.

<applet code="foo.PurchaseApplet"
 archive="evil.jar,purchase.jar" ...

In this case, the attacker’s MyFileDialog takes
precedence over that of the target applet. Finally, by
leading a user to the attacking page (as explained in
Section 2.2.1), the attacker can overwrite an arbitrary file
on the local disk of the user.

2.3.2. Weaknesses of same-package-same-signer. The
above example is basically for an unsigned applet. An
attacker cannot usually replace classes of a signed applet,
because of the same-package-same-signer protection
mechanism in Sun Java VM 1.2.2 and later. This
mechanism ensures that any class in the same package is
signed by the same signer. Therefore, an attacker cannot
replace any signed class in the same package with an
unsigned class of the attacker. However, the mechanism has
two weak points.

First, it ensures there is one signer per package, not per
signed JAR file. In other words, different packages in a
signed JAR file can have different signers, or no signer at
all. The case given in Section 2.3.1 is an example of this. It
is permissible that foo.PurchaseApplet be signed but
foo.util. MyFileDialog be unsigned. Note that Java’s
package system has no inheritance mechanism between
packages, and the package foo and the package foo.util
are independent of each other.

Second, the mechanism does not protect resources.
Resources often contain important applet data, but
attackers can easily replace them.

Through this weakness, class replacement is still
possible despite the same-package-same-signer
mechanism.

 These two attack strategies are serious threats to a
signed applet. In particular, class replacement is an
effective way to attack a signed applet that has no
privileged code. The next section describes our approach
for preventing these attacks.

3. Our approach

This section describes our approach for preventing

malicious recomposition attacks. Our approach is
encapsulation that prevents recomposition of the
components of an applet by tightly coupling them as a
single unit. In addition, encapsulation should be achieved
transparently so that it can be applied without any changes
to Java VM or target applets.

Section 3.1 describes how encapsulation can be realized,
and Section 3.2 deals with encapsulation transparency.

3.1. Encapsulation

Encapsulation of a target signed applet effectively

prevents a malicious recomposition attack. This subsection
describes two encapsulation mechanisms:

 class-loader-based isolation
 applet-document binding

3.1.1. Class-loader-based isolation. Class-loader-based

Figure 2. Generating cozilet

comp1.jar

hash

Cozilet Properties
- applet main class name
- trusted URL

Cozilet Classes

package com…cozilet;

Resources

Cozilet.class

CoziletClassLoader.class

CoziletData.class target.jar
comp2.jar

Cozilet (Cozi-Format File)

comp1.jar comp2.jar

Original Jar Files

- applet main class name
- trusted URL

Target Applet Information Cozilet Generator

signed

unsigned

signed

 5

isolation is an effective encapsulation mechanism for
classes and resources because a class loader is responsible
for these. The basic idea is to isolate a target signed applet
by assigning a class loader unique to the applet. This paper
refers to such a class loader as a cozi-loader. We also
propose a unique format that can contain the classes and
resources of the target applet as a single unit. We refer to
this format as a cozi-format.

A cozi-format file is shown in Figure 2. It is generated
by the cozilet generator (described in Section 3.2.2) from
JAR files and other information regarding the target signed
applet. The cozi-format file is externally a standard JAR
format file, but it contains the target classes and resources
in a non-standard way. It includes JAR files formerly
specified in an archive attribute (which we refer to as
remote jar files) as its resource file target.jar. Note that
applets may use classes or resources which are not
contained in any JAR file (e.g., those in classpath or
codebase), but we do not target these.

The cozi-format file can be signed by a standard
signing tool jarsigner [16], and only the cozi-loader
can recognize target classes and resources included in the
cozi-format file as signed data. Attackers can extract and
use these classes and resources as unsigned data, but
cannot use them as signed because standard class loaders
cannot recognize them as signed. Attackers can create
their own class loaders similar to the cozi-loader, but these
will be of no use because JRE prevents instantiation of
any untrusted class loader through the stack inspection.
The key here is that remote JAR files in the cozi-format
file must not be signed. This prevents attackers from
extracting and abusing them as signed data.

3.1.2. Applet-document binding. An HTML document
also plays an important role in association with an applet. It
determines how an applet is executed by specifying
attributes such as codebase and archive or by giving initial
parameters to the applet. In addition, it may contain script
code which will interact with the applet using an interface
such as Java-to-JavaScript communication (or vice versa).
Creating a malicious HTML document is therefore a
common technique used in malicious recomposition
attacks. If we can bind an applet only to trusted HTML
documents, it will provide an effective defense against such
attacks.

To realize applet-document binding, we chose to use the
URL as the origin of an HTML document when
determining the trustworthiness of the document.
java.applet.Applet has getDocumentBase() which
returns the URL of an HTML document embedding a
corresponding applet [15]. For applet-document binding,
right after the applet execution starts we compare the URL
returned by getDocumentBase() with the URL of the
trusted Web site. A sample of the source code is shown
below.

public final class PurchaseApplet
 extends Applet {

 // Hard-coded trusted server URL
 private static final String TRUSTED_URL
 = "https://example.com/";

 public void init() {
 // Obtain URL of the corresponding
 // HTML document
 URL docBaseURL = getDocumentBase();
 String docBase;
 if (docBaseURL != null) {
 docBase = docBaseURL.toString();
 } else {
 docBase = null;
 }
 // Check applet-document binding
 if ((docBase == null) ||
 !docBase.startsWith(TRUSTED_URL)) {
 throw new SecurityException(
 "applet-document binding error");
 }
 :
 }
}

In the above sample, the trusted URL is hard-coded. In
our approach, the trusted URL is included in a resource file
cozilet properties of the cozi-format file in Figure 2.

Microsoft recommends that ActiveX control
programmers use a similar mechanism SiteLock [1].
Provided that the Web server, data communication channel,
and the domain name of the Web site are trustworthy, this
check can bind applets to HTML documents.

3.2. Transparency

This subsection describes how encapsulation is

transparently applied to target signed applets. Our
approach should be transparent both to current Java VM
implementations and to target signed applets. There are two
mechanisms to meet such requirements:

 applet switching
 cozilet generator

3.2.1. Applet switching. To transparently apply the
protection mechanisms (described in Section 3.1) to current
Java VM implementations, we propose realizing them in a
unique signed applet. The unique applet provides
class-loader-based isolation and applet-document binding
to protect the encapsulated applet. In this paper, we refer to
the unique applet as a cozilet.

However, a problem arises regarding Java VM, where
the cozilet rather than the encapsulated applet seems to run
as an applet. To cope with this, we provide an applet
switching mechanism in the cozilet.

 6

An applet is a type of GUI component that is simply
added to a parent panel (i.e., java.awt.Panel). The
cozilet can switch to the encapsulated applet by removing
itself from the parent panel and adding the encapsulated
applet to the panel. After doing this, GUI-related method
calls are directed to the encapsulated applet.

For common non-GUI methods applied as applets (such
as start() or stop()), JRE maintains an internal list of
all running applets, and calls such methods of each applet
by referring to the list. The cozilet is registered to the list,
not the encapsulated applet, and the cozilet cannot update
the list. Therefore, we have designed the cozilet so that it
delegates common method calls from JRE to the
encapsulated applet.

3.2.2. Cozilet generator. To realize the mechanism
described in the previous subsection, a target signed applet
must be converted to a cozilet. For transparency, however,
such conversion should not require changes to the target
applet. We therefore propose a tool for such conversion
which we refer to as the cozilet generator.

The tool generates a single cozi-format file containing
the following files (Figure 2): target remote JAR files,
cozilet properties, and cozilet classes. Cozilet properties
contain a trusted URL for applet-document binding and the
applet main class name of the target applet. Cozilet classes
are needed for cozilet execution, including Cozilet which
is the applet main class of the cozilet and
CoziletClassLoader which is the class of the
cozi-loader. Because the cozilet is a standard signed applet,
classes or resources in the cozi-format file may be
replaced in a replacement attack
as described in Section 2.3. To
protect cozilet classes, all of these
are in the same package,
com...cozilet, so that the
same-package-same-signer
mechanism prevents replacement
of them. Signing of the generated
cozi-format JAR file is mandatory.
Because the tool does not sign it, it
should be signed by other tools,
such as jarsigner.

To protect resources in the
cozi-format file, the tool also
generates a special class
CoziletData and adds it to the
cozi-format file. CoziletData
contains hash values of
target.jar and the cozilet
properties as constant fields
(Figure 2). The cozi-loader checks
the integrity of target.jar and
the cozilet properties in the
cozi-format file based on hash

values in CoziletData. The cozilet has other protection
mechanisms to prevent malicious recomposition attacks on
the cozilet itself, and these are described in Section 4.4.

4. Implementation

We have implemented the Cozilet mechanism for Sun

Java VM (versions 1.3, 1.4, and 1.5) and this section
describes the details of this implementation.

4.1. Architecture

Figure 3 shows the cozilet architecture.
A target signed applet is converted into a cozilet

consisting of a cozi-format file by the cozilet generator.
(Section 4.2 describes the cozilet generation.)

Class-loader-based isolation prevents an attacker’s
applets from accessing the encapsulated applet and
applet-document binding prevents attackers from
recomposing the cozilet and encapsulated applet with
malicious HTML documents. In addition, applet switching
enables transparent execution of the encapsulated applet.
(Section 4.3 describes the cozilet execution.)

The cozilet should be able to protect itself from
attackers because it is a standard signed applet. (Section 4.4
describes the cozilet protection.)

4.2. Cozilet generation

As described in Section 3.2.2, the cozilet generator

converts a target signed applet into a cozilet. An example is

Figure 3. Cozilet architecture

Encapsulated
Applet Cozilet

HTML
Document

Script Code

Applet Switching

Class Loader Based Isolation

target.jar

Cozi-Format File

Attacker’s
HTML

Document

Script Code

Cozi-Loader

Applet-Document Binding

Cozilet Properties

Protection of Cozilet

Attacker’s
Applet

 7

shown below.

% java -jar cozilet-tool.jar –applet ¥
 foo.MyApplet cozilet.jar sample.jar

This operation generates the cozi-format file
cozilet.jar to encapsulate a target applet whose remote
JAR file is sample.jar and whose applet main class is
foo.MyApplet. The developer of the target applet has to
sign cozilet.jar through other tools, such as
jarsigner.

The cozilet is always invoked by the following applet
tag.

<applet code="com...cozilet.Cozilet"
 archive="cozilet.jar" ...

4.3. Cozilet execution

This subsection describes the behavior of cozilets, and

shows that they can securely and transparently execute
encapsulated applets.

4.3.1. Cozilet startup. Cozilets are standard signed applets
which are executed by JRE in the following way.
(1) First, JRE loads and instantiates the cozilet main class

Cozilet. Cozilet loads the cozilet properties that
contain the information regarding the encapsulated
applet at its static initializer. Its integrity can be
verified by using the hash value included in
CoziletData.

(2) Next, JRE executes init() of the cozilet. The method
checks the applet-document binding as described in
Section 3.1.2. The trusted URL is obtained from the
cozilet properties. If the check succeeds, it goes to the
next step.

(3) The method instantiates CoziletClassLoader,
which works as a cozi-loader, and requests the
cozi-loader to load the main class of the encapsulated
applet whose name is included in the cozilet properties.
The cozi-loader verifies the integrity of the class by
using the hash value included in CoziletData. If it is
verified, the cozi-loader loads the class and the cozilet
instantiates it. After this, all the classes and resources
of the encapsulated applet are loaded only by the
cozi-loader.

(4) Finally, the cozilet switches itself for the encapsulated
applet and executes its init().

4.3.2. Switching to an encapsulated applet. As described
in Section 3.2.1, applet switching can be achieved by
replacing a reference of an applet’s parent panel. In
addition, an applet needs an appropriate applet context and
an applet stub. A stub can be set to an applet by calling its

setStub() [15], and a context can be obtained from the
stub. Therefore, it is sufficient that only an applet stub be
passed to an applet.

A cozilet must pass its own applet stub to the
encapsulated applet. It is not easy to get the stub, though,
because there is no method like getStub() and because
setStub() cannot be overridden since it is declared as
final.

Fortunately, in Sun Java VM implementations, a parent
panel of an applet also serves as an applet stub, and the
applet can get its stub by simply converting the type of (or
casting) its parent panel. In this way, cozilets can hand over
their applet stubs to encapsulated applets. After this,
cozilets finish the applet switching by calling init() of
the encapsulated applets.

Also, as described in Section 3.2.1, cozilets delegate
control calls issued by JRE to encapsulated applets, by
overriding corresponding methods, such as start() or
stop(). This delegation enables encapsulated applets to
be normally controlled by JRE after switching.

4.4. Cozilet protection

A cozilet may be attacked in various ways because it is

a standard signed applet. It protects itself through several
measures. The most effective measure is the
applet-document binding explained in Section 3.1.2, which
can block most attacks provided that the Web server, data
communication channel, and the domain name of the Web
site are trustworthy. And as described in Section 3.2.2, a
cozilet prevents class and resource replacement by
declaring its classes as a single package and verifying the
hash values of its resource files. A cozilet has additional
protection mechanisms, and this subsection describes two
of these which are particularly important.

First, the public methods of cozilet are protected
through stack inspection. The cozilet inherits many public
methods from Applet. An attacker may be able to harm a
user by calling these methods. To prevent this, the cozilet
overrides such public methods and calls
AccessController.checkPermission() at the
beginning of the methods. checkPermission() causes
the stack inspection to check if all the callers in the current
call chain have the permission specified by a caller of
checkPermission() [15]. The cozilet specifies
AllPermission to the method so that only system classes
can execute its public methods.

Second, serialization of the cozilet is disabled. If
serialization is enabled, an attacker can take advantage of
the serialization and deserialization interface to read a
sensitive value of a private field and write an illegal value
to the field [2][3][4]. Unfortunately, the cozilet is
serializable because its superclass Applet is serializable.
The cozilet forcibly disables its serialization by throwing

 8

an exception unconditionally for every method related to
serialization in the following way. This measure is
introduced in Securing Java [2].

public final class Cozilet extends Applet {

 :

 private void
 writeObject(ObjectOutputStream o)
 throws IOException {
 throw new NotSerializableException();
 }

 private void
 readObject(ObjectInputStream o)
 throws IOException,
 ClassNotFoundException {
 throw new NotSerializableException();
 }

 private Object writeReplace()
 throws ObjectStreamException {
 throw new NotSerializableException();
 }

 private Object readResolve()
 throws ObjectStreamException {
 throw new NotSerializableException();
 }

}

4.5. Optional features

Up to now, this paper has described the basic

architecture of the Cozilet mechanism. This section
describes some additional features. Although they are
optional, they can make cozilets and encapsulated applets
more secure or useful.

4.5.1. Interaction with browser script code. Current Java
VM implementations enable applets to interact with
browser script code. For transparency, the cozilet has to
allow the encapsulated applet to do the same.

Fortunately, access from encapsulated applets to
browser script code is possible without any particular
mechanism. In the Sun Java VM implementations, an
applet needs to get a mediate object to access the browser
script code by calling getWindow() of JSObject or
getService() of DOMService with a reference to the
applet itself passed as the parameters of these methods [15].
These methods obtain the applet context and return the
mediate object corresponding to the applet context.
Because the encapsulated applet has the same applet
context as the cozilet, the encapsulated applet can obtain
the same mediate object as the cozilet.

However, access from the browser script code to

encapsulated applets is not possible without a trick,
because JRE refers to its internal list (described in Section
3.2.1) when the browser script code requires access to
applets. Cozilet’s trick to enable such access is to delegate
limited kinds of calls from the browser script code to
encapsulated applets. If the developer of a target applet
specifies that the browser script code should call the
method signatures at conversion by the cozilet generator,
the tool adds delegation methods having the same
signatures to the cozilet. Delegation also has the advantage
of limiting methods which can be called by the script code
of attackers to the minimum required. This is because
attackers can call all the public methods of the applet if the
applet is not encapsulated.

Through method delegation, however, cozilets cannot
delegate their fields to encapsulated applets. We think that
field delegation is unnecessary because most applets do not
need it.

4.5.2. Exclusive mode. Cozilets can run in exclusive mode
to prevent any untrusted applets from starting during the
execution of an encapsulated applet. Although this may not
prevent the execution of untrusted applets running before
cozilets start, it can usually make cozilets secure.

The exclusive mode takes advantage of the class
loading and defining restriction mechanisms in the Sun
Java VM implementations [4]. The class loading restriction
mechanism prevents untrusted classes from loading any
class contained by the particular packages specified in the
security property "package.access" (whose default
value is "sun."). This mechanism makes use of the stack
inspection at class loading. The class defining restriction
mechanism prevents untrusted classes from defining any
class contained by the particular packages specified in the
security property "package.definition" (whose
default value is ""). This mechanism also makes use of the
stack inspection at class definition.

Cozilets set the value "java.,javax.,sun.,com.,
org.,netscape.,sunw." to both of the above security
properties right after they start. This is very simple, but
effectively prevents attacking applets from starting because
they cannot load applet fundamental classes, even
java.applet.Applet. Of course, attacking applets
cannot set the security properties because the stack
inspection mechanism restricts that operation.

The exclusive mode may not prevent the execution of
attacking applets running before cozilets start, because the
classes required by the attacking applets may have already
been loaded. Also, the exclusive mode may prevent
browser script code from accessing encapsulated applets,
because JRE usually regards script code as untrusted code.
With these exceptions, however, we recommend use of the
exclusive mode.

4.5.3. Encapsulation of local applet components. An

 9

applet usually consists of remote JAR files which are
deployed on a Web site and specified in an archive attribute,
but some applets require users to install local components
on users’ local disk in advance to reduce network traffic or
for use as common system components. The cozilet
supports encapsulation of such local components to some
degree.

Local components of applets are local JAR files and
native libraries. They are usually unsigned, but installed in
directories from which the common system class loader
can load (which we will refer to as a system path) and
regarded as system classes having all permissions or
system native libraries.

The cozi-format file can include their installed paths in
the cozilet properties. The cozi-loader tries to find them by
using the paths in the cozilet properties. Moreover, the
cozi-format file can also include their hash values as
constant fields of CoziletData (Section 3.2.2). The
cozi-loader checks the integrity of local applet components
by using these hash values. This encapsulation is done by
the cozilet generator.

Note that local JAR files should be unsigned. Signed
JAR files may be obtained and abused by attackers. As
mentioned, the integrity of local JAR files (also native
libraries) can be verified in the unique way of the Cozilet
mechanism. Also note that local JAR files and native
libraries should be moved to any path other than the system
paths. If they are installed on the system paths, they may be
abused by attackers. Moving them may affect the
transparency of encapsulation (e.g., if they are re-installed),
but it is strongly recommended.

5. Discussion

In this section, we discuss the issue in a more general

manner, rather than one based on the detailed mechanisms
of the Java applet environment described in the previous
sections. Let us rephrase the issue as follows: to prevent
malicious recomposition attacks, all components of an
applet (or any mobile code program) must be securely
deployed (e.g., identified and composed) on the client-side,
and then the components must be isolated from other
components.

For secure deployment of applets in current Java VM
implementations, an APPLET tag in an HTML document
plays a critical role, determining which JAR file is loaded
and executed. The current VMs, however, do not consider
the tag’s trustworthiness. Our approach rectifies this
weakness through two mechanisms: applet-document
binding ensures the origin of the HTML document
containing the APPLET tag, and digitally signed cozilet
properties securely identify additional JAR files to be
deployed.

Secure deployment is important not only for an applet,
but also for other componentized mobile code

technologies. Sun's Java Web Start [18] is a runtime
environment for network-launchable Java applications.
Although it is not a perfect substitute for applets because
of its very limited interaction with Web browsers, it is
more secure than applets by the same reason. In addition,
malicious deployment can be prevented by digitally
signing a JNLP file, which corresponds to an APPLET tag
for an applet. Furthermore, a Web Start application is
regarded as "signed" if and only if all the JAR files
specified in its JNLP file are signed by a single signer.
These features make malicious recomposition attacks hard.
Microsoft recommends ActiveX control programmers use
SiteLock [1], a mechanism similar to applet-document
binding. Also, the Microsoft .NET Framework provides a
mechanism called LinkDemand [17], which prevents
trusted assemblies from being accessed by malicious
assemblies. It is preferable that Java VM itself support
such a secure deployment scheme for applets in the future.
Until then, however, our approach provides an alternative
way to protect signed applets without modifying VM.

Isolation is also important. Our approach uses
class-loader-based isolation, which can be easily
implemented on existing Java VMs. It isolates the
namespace of classes, with the exception of system classes
shared among the JRE. Therefore, in some cases, an
attacking applet can obtain a reference to an instance of a
class unique to a victim applet as a type of its superclass
which is a system class, such as java.applet.Applet or
java.lang.Object, and it may cause a security breach.
While the cozilet takes some simple measures to prevent
leakage of the object references of classes unique to the
encapsulated applet, it is difficult to completely prevent
such leakage.

Isolation is a general challenge not only to prevent the
abuse of trusted applets, but also to ensure the reliability of
general Java programs. For example, a Java-based
application server needs to isolate each application running
on it to prevent applications affecting each other or the
server. Therefore, much work has aimed at realizing not
only class-loader-based isolation but also the isolation of
heap memory, native code memory, and other JRE
resources [7][8][9]. In particular, JSR-121 Application
Isolation API [7] is now being standardized through the
Java Community Process. (Unfortunately, Sun seems to
have put off adopting it in J2SE 1.5.) To prevent the abuse
of trusted applets more reliably, these strong isolation
mechanisms are preferable.

6. Related work

Our approach is transparent to both target signed applet

and current Java VM implementations. We know of no
other groups taking a similar approach at the moment.

Isolation, as we explained in Section 5, is an effective
way to protect trusted applets. However, current

 10

approaches [7][8][9] are not transparent to users because
they require users to replace installed Java VM
implementations. Other approaches for non-Java
applications have been reported. Alcatraz [6] is a logical
application isolation approach that forces untrusted
applications’ insecure execution in Linux to be committed
by users. SoftwarePot [5] is an application encapsulation
approach that prevents malicious behavior by encapsulated
untrusted applications based on security policies specified
by users in Solaris and Linux. However, these approaches
do not aim at preventing the abuse of trusted programs.

There are some guidelines available which describe
problems and rule-of-thumb countermeasures. Securing
Java [2] suggests programmers to care for twelve
anti-patterns in developing secure applets. Sun has
published the Security Code Guidelines [4] and Inside
Java2 Platform Security [3] which describe various
security guidelines for Java. Auditing tools based on these
guidelines have been released or announced [10][11][12].
However, it is difficult for most developers to understand
and prevent all attacks because these attacks are skillfully
designed by attackers.

7. Summary

We have developed the Cozilet mechanism to prevent

malicious recomposition attacks. Such attacks are a
serious threat to trusted applets, such as signed applets. In
our mechanism, before deployment, the cozilet generator
encapsulates a target signed applet into a special signed
applet, a cozilet, in the indecomposable cozi-format. The
cozilet has two protection mechanisms:
class-loader-based isolation and applet-document binding.
Upon its execution, the cozilet isolates the classes and
resources of the encapsulated applet by assigning a special
class loader, the cozi-loader, unique to the applet. It also
checks if the HTML document was downloaded from a
trusted Web site, to ensure that no attackers have deployed
it on their sites.

The cozilet can be executed instead of the target applet.
When it is invoked by JRE, it applies the above protection
mechanisms to the encapsulated applet, and switches itself
with the applet. After switching, the encapsulated applet
can run normally. The mechanism can easily protect both
applets developed in the future and applets currently in
use, because it is transparent not only to the target applets,
but also to current Java VM implementations. We will
apply this mechanism to significant applets now being
used in critical systems, such as e-commerce or
e-government systems.

8. References

[1] “SiteLock Template 1.04 for ActiveX Controls”,

http://msdn.microsoft.com/archive/en-us/samples/internet/

components/sitelock/default.asp, Microsoft Developer
Network.

[2] G. McGraw and E. W. Felten, “Securing Java: Getting
Down to Business with Mobile Code”, Wiley, 1999.

[3] L. Gong, G. Ellison, and M. Dageforde, “Inside Java 2
Platform Security: Architecture, API Design, and
Implementation, 2/E”, Addison-Wesley, 2003.

[4] “Security Code Guidelines”,
http://java.sun.com/security/seccodeguide.html, Sun
Microsystems, Inc., 2000.

[5] K. Kato and Y. Oyama, “SoftwarePot: An Encapsulated
Transferable File System for Secure Software Circulation”,
Software Security - Theories and Systems, Volume 2609 of
Lecture Notes in Computer Science, Springer-Verlag,
February 2003.

[6] Z. Liang, V.N. Venkatakrishnan and R. Sekar, “Isolated
Program Execution: An Application Transparent Approach
for Executing Untrusted Programs”, ACSAC'03, Las Vegas,
December 2003.

[7] “JSR 121: Application Isolation API Specification”,
http://jcp.org/en/jsr/detail?id=121, Java Community
Process.

[8] “The Barcelona Project”,
http://research.sun.com/projects/barcelona/, Sun
Microsystems, Inc.

[9] “The Janos Project”, http://www.cs.utah.edu/flux/janos/,
The Flux Research Group.

[10] J. Viega, et al, “Statically Scanning Java Code: Finding
Security Vulnerabilities,” IEEE Software 17(5), 2000.

[11] M. Curphey, “codespy”,
http://www.securityfocus.com/archive/107/349071/2004-0
1-02/2004-01-08/0, January 7th 2004.

[12] “SIMPLIA/JF Kiyacker”,
http://www.securityfocus.com/archive/98/341866/2003-10
-17/2003-10-23/0, Fujitsu Limited, October 20th 2003.

[13] “Java Archive (JAR) Features”,
http://java.sun.com/j2se/1.4.2/docs/guide/jar/, Sun
Microsystems, Inc.

[14] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.,
“Going beyond the sandbox: An overview of the new
security architecture in the java development kit 1.2”, In
Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 1997.

[15] “J2SE 1.4.2 API Documentation”,
http://java.sun.com/j2se/1.4.2/docs/api/, Sun Microsystems,
Inc.

[16] “jarsigner - JAR Signing and Verification Tool”,
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/jarsi
gner.html, Sun Microsystems, Inc.

[17] “.NET Framework Developer’s Guide - Link Demands”,
http://msdn.microsoft.com/library/en-us/cpguide/html/cpc
onlinkdemands.asp, Microsoft Developer Network.

[18] “Java Network Launching Protocol & API Specification
(JSR-56) Version 1.0.1”,
http://java.sun.com/products/javawebstart/, Sun
Microsystems, Inc.

