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Abstract 
We have developed a mechanism which prevents abuse 

of trusted Java applets, such as digitally signed applets. A 
signed applet is usually permitted by a user to perform 
certain functions. However, an attacker may improperly 
recompose the signed applet to include malicious 
components and harm the user by abusing such functions 
of a signed applet. In this paper, we call this a malicious 
recomposition attack and propose an innovative 
mechanism to solve the problem of such attacks. Before 
deployment, a target signed applet is encapsulated into a 
special signed applet, called a cozilet, in an 
indecomposable format. On its execution, the cozilet 
isolates the classes and resources of the encapsulated 
applet by assigning a special class loader unique to the 
applet. It also enforces applet-document binding so that it 
is never executed from untrusted HTML documents. The 
mechanism is easily applicable to target signed applets 
because it is transparent not only to target applets, but also 
to current Java VM implementations. Therefore, the 
mechanism can easily protect both applets developed in the 
future and the applets currently in use. We have 
implemented this mechanism for Sun Java VM. In this 
paper, we describe its basic architecture and 
implementation details. 

 
 

1. Introduction 
 
Web applications use Java applets to control client-side 

behavior. For security reasons, applets are not permitted to 
perform any behavior which may harm users. These 
restrictions sometimes become obstacles in Web 
application development. For example, various 
e-government systems ask users to digitally sign their 
application forms or registration forms using smart cards. 
This cannot be done with normal applets, because they 
cannot access client-side local devices, such as smart cards. 

To empower applets, applets whose origins are guaranteed 
are allowed to bypass the restrictions. A popular way to 
guarantee their origins is to digitally sign them. Signed 
applets can dynamically ask users for permission to bypass 
the restrictions, and provide an important benefit in that 
they do not oblige users to change their security settings in 
advance. 

Unfortunately, attackers may reuse signed applets and 
harm users by abusing the functions of the applets. Signed 
applets consist of reusable components, such as signed JAR 
files [13]. Attackers can try to call methods or modify fields 
of classes in signed jar files by recomposing them as the 
attackers’ own components for malicious purposes. In this 
paper, we call this a malicious recomposition attack. This 
issue applies not only to applets, but also to other signed 
reusable components, such as signed ActiveX controls. In 
contrast to server-side vulnerabilities, which can be 
mitigated by stopping vulnerable servers, it is difficult to 
stop the spread of damage caused by vulnerable client-side 
signed components because attackers may have already 
obtained them and can redistribute them for their own 
purposes. There is a pressing need to address this problem 
of malicious recomposition attacks. 

We have analyzed the risks associated with signed 
applets and have considered various strategies that a 
malicious recomposition attack can follow. Although these 
attack strategies can be prevented through careful design 
and programming on the part of developers, most 
developers cannot easily understand and prevent all 
possible strategies. Developers need to ensure that some 
mechanism for signed applets lessens the possibility of a 
malicious recomposition attack. To easily apply such a 
mechanism to the signed applets now in use, however, the 
mechanism should not require changes to signed applets or 
the replacement of currently installed Java VM 
implementations. Therefore, we have developed the Cozilet 
mechanism which protects signed applets transparently by 
encapsulating them. 

The rest of this paper is organized as follows. Section 2 
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describes the basic mechanism and typical examples of 
malicious recomposition attacks on signed applets, to show 
that current Java VM implementations are susceptible to 
such attacks. Section 3 describes our mechanism to protect 
signed apples from a malicious recomposition attack. This 
mechanism is transparent to both signed applets and current 
Java VM implementations. Section 4 describes the details 
of implementation. Section 5 discusses the issue in a more 
general manner, and Section 6 discusses related work. We 
conclude in Section 7. 

 
2. Malicious recomposition attacks 

 
To perform a malicious recomposition attack, an 

attacker needs to force a trusted applet to harm a user by 
recomposing the trusted applet with malicious components. 

This section first describes an example of a signed 
applet. It then goes on to explain two typical attack 
strategies for malicious recomposition: exploiting an 
improperly implemented privileged code and class 
replacement. 

 
2.1. Example of a signed applet 

 
Suppose, for instance, there is a signed applet for 

e-commerce. It is digitally signed by a trustworthy 
company and allowed to perform potentially insecure 
behavior, such as accessing a smart card. The applet is 
composed of the signed JAR file purchase.jar and 
invoked by the applet tag below. 

<applet code="foo.PurchaseApplet" 
 archive="purchase.jar" ... 

 purchase.jar includes the applet main class 
foo.PurchaseApplet. Here, purchase.jar and an 
HTML document with the above applet tag would be 
deployed on a trusted Web site. If a user accesses the Web 
page (i.e., the HTML document) on the site, Java Runtime 
Environment (JRE) shows a security dialog to the user. The 
dialog displays the signer information of the applet and 
asks the user to grant the applet the permission required to 
perform the insecure behavior. In this example, since the 
signer is a trustworthy company, the user will grant it. The 
applet then runs and performs the insecure behavior. 

 
2.2. Exploiting an improperly implemented 

privileged code 
 
The first attack strategy is where an attacker uses 

classes of a signed applet as library classes. With this 
strategy, the attacking applet can access the classes of the 
target applet and execute their methods. This kind of access 
is usually prevented through stack inspection (see Section 
2.2.2), but this is bypassed if there is a privileged code in 

the class and it is not implemented properly. 
This subsection describes the strategy. First, the basic 

strategy is described. After that, the Java security model is 
described and it is shown that an attacker cannot usually 
use a target applet. Finally, the privileged code for 
bypassing stack inspection is described and it is shown 
that improperly implemented privileged code causes a 
security breach. 

 
2.2.1. Abuse of a signed applet as a library. Suppose that 
an attacker creates an attacking applet which maliciously 
uses the classes in purchase.jar from Section 2.1. The 
attacking applet is unsigned and composed of the unsigned 
JAR file evil.jar. The applet main class is EvilApplet 
and is included in evil.jar. The attacker deploys the 
HTML document including the applet tag shown below, 
with evil.jar and purchase.jar on the attacker’s own 
Web site. 

<applet code="EvilApplet" 
 archive="evil.jar,purchase.jar" ... 

If the attacker can lead a user to the above page, the 
attacking applet runs and may harm the user. Although the 
security dialog in Section 2.1 is shown, the user will grant 
permission because the dialog shows the information of the 
trusted signer who signed purchase.jar. 

However, the attacker normally cannot use the target 
applet, because Java uses stack inspection to prevent an 
attacker from performing any insecure behavior [14]. 

 
2.2.2. Protection through stack inspection. Java uses the 
Sandbox security model which prevents untrusted 
programs from accessing system resources. Java defines 
interfaces to system resources as system methods. In this 
paper, we call them insecure methods. Java also defines the 
corresponding permissions required for execution of 
insecure methods. The stack inspection checks whether 
each caller of a methods has the required permission [14]. 

When an insecure method is called, JRE checks the 
trustworthiness of classes in its method call chain by 
inspecting the stack of the current thread. If all the classes 
in the method call chain are trusted (e.g., classes of a signed 
applet) as shown in Figure 1(A), the insecure method is 
executed. Or if there is any single untrusted class (e.g., the 
classes of attackers) as shown in Figure 1(B), a security 
exception is thrown instead of execution of the insecure 
method. Therefore, an attacker’s class cannot execute any 
insecure method, either directly or indirectly, via any 
method of trusted classes in a signed applet. 

Unfortunately, an attacker is sometimes able to bypass 
the stack inspection by invoking privileged code in a 
signed applet. 

 
2.2.3. Privileged code. The privileged code mechanism 
[14] is provided to enable a trusted class to delegate its 
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execution of an insecure method to an untrusted class. In 
the case of signed applets, it is mainly used to accept 
accesses from script code running on a Web browser 
(which we will refer to as browser script code), because 
most Java VM implementations regard browser script code 
as untrusted code. 

Suppose that the foo.PurchaseApplet from Section 
2.1 declares the method loadConf() which is called by 
browser script code.  A sample implementation of the 
method for Sun Java VM is shown below. 

public String loadConf(final String name) { 
 Reader r = // Begin privileged block 
   (Reader)AccessController.doPrivileged( 
    new PrivilegedAction() { 
     public Object run() { 
      try { 
       // Open a text file 
       return new FileReader(name); 
      } catch (Exception e) { 
       e.printStackTrace(); 
       return null; 
 }}});       // End privileged block  
 // Read the file and return string ... 
  : 
} 

loadConf() executes the insecure method new 

FileReader() in the privileged block, which starts at 
doPrivileged(). JRE regards the privileged block and 
all the methods called within the block as privileged code, 
and simplifies the stack inspection as follows. When the 
browser script code calls loadConf(), JRE checks classes 
in the call chain of new FileReader(), but does not check 
any callers of loadConf() as shown in Figure 1(C). 
Therefore, untrusted browser script code can execute new 
FileReader(). 

 
2.2.4. Improperly implemented privileged code. 
Privileged code should be carefully implemented because 
an attacker can bypass the stack inspection by executing 
this code. The example in Section 2.2.3 is vulnerable, and 
an attacker may steal an arbitrary file on a user’s local disk 
by executing loadConf(). The problem here is that an 
attacker can specify an arbitrary file name as the argument 
name, and this is passed to new FileReader() without 
being properly validated. 

The exploitation of improperly implemented 
privileged code is a widely known problem, and some 
guidelines recommend that developers pay particular 
attention to it [2][3][4]. Developers of signed applets for 
Microsoft or Netscape Java VM especially should use 
care because these Java VM implementations require the 
invocation of any insecure method in a signed applet to 
be implemented as privileged code, regardless of 
whether or not there is a call from untrusted code. 

Fortunately, a developer can avoid use of privileged 
code through careful design. For example, privileged code 
is not needed for a signed applet which is only for Sun Java 
VM and is not called by browser script code. 

 
2.3. Class replacement 

 
The second attack strategy is for an attacker to force a 

signed applet to use classes of the attacker instead of 
classes of the signed applet. We call this class replacement. 
With this strategy, an attacker can trick a user into running a 
target signed applet whose classes have been partly 
replaced and force the target applet to harm the user by 
falsifying data on its dataflow. Unlike the first strategy, this 
one does not require privileged code, and it is the threat 
common to most signed applets. 

This subsection describes the strategy. First, class 
replacement is described using an example. After that, two 
weak points of the same-package-same-signer protection 
mechanism are described [15], and it is shown that the 
strategy is still effective under the protection mechanism. 

 
2.3.1. Cutting into a signed applet. According to the 
Applet specification, if the same name is shared by classes 
in different JAR files within an archive attribute included in 
an HTML document, JRE loads the one in the leftmost file 
of the attribute. By using this specification, an attacker’s 
class can replace a class of a signed applet. Suppose that 
foo.PurchaseApplet (from Section 2.1) is implemented 
as follows. 

package foo; 
  
public class PurchaseApplet extends Applet { 
  
  public void start() { 
    // Create the dialog 
    foo.util.MyFileDialog dialog = 
     new foo.util.MyFileDialog("Save"); 
    // Show the dialog to the user and 
    // prompt the user to select 
    // the save file 
    String path = dialog.showAndReturn(); 
    // Write some data to the selected file 
    FileWriter fw = new FileWriter(path); 
      : 
  } 
 : 

new FileReader()

doPrivileged()

loadConf()

JavaScript code

insecure()

untrusted()

insecure()

trusted1()

inspect

ok

inspect

no!

inspect

ok

don’t
care

(A) (B) (C)

trusted2()

trusted3()

trusted1()

trusted2()

Figure 1. Stack inspection 
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} 

This applet shows a file dialog to a user and writes some 
data to the save file selected by the user. The applet main 
class PurchaseApplet is a member of the package named 
foo, and the file dialog class, MyFileDialog, is in the 
other package named foo.util. The structure of 
purchase.jar is as follows. 

purchase.jar 
  +- foo/PurchaseApplet.class 
  +- foo/util/MyFileDialog.class 

As shown in the above code, the file name of the save 
file is determined by MyFileDialog. Therefore, an 
attacker can force the applet to write an arbitrary file by 
replacing MyFileDialog with that of the attacker as 
follows. 

First, the attacker creates the malicious MyFileDialog 
class and puts it into evil.jar. 

evil.jar 
  +- foo/util/MyFileDialog.class 

Next, the attacker creates the HTML document 
including the applet tag. 

<applet code="foo.PurchaseApplet" 
 archive="evil.jar,purchase.jar" ... 

In this case, the attacker’s MyFileDialog takes 
precedence over that of the target applet. Finally, by 
leading a user to the attacking page (as explained in 
Section 2.2.1), the attacker can overwrite an arbitrary file 
on the local disk of the user. 

 
2.3.2. Weaknesses of same-package-same-signer. The 
above example is basically for an unsigned applet. An 
attacker cannot usually replace classes of a signed applet, 
because of the same-package-same-signer protection 
mechanism in Sun Java VM 1.2.2 and later. This 
mechanism ensures that any class in the same package is 
signed by the same signer. Therefore, an attacker cannot 
replace any signed class in the same package with an 
unsigned class of the attacker. However, the mechanism has 
two weak points. 

First, it ensures there is one signer per package, not per 
signed JAR file. In other words, different packages in a 
signed JAR file can have different signers, or no signer at 
all. The case given in Section 2.3.1 is an example of this. It 
is permissible that foo.PurchaseApplet be signed but 
foo.util. MyFileDialog be unsigned. Note that Java’s 
package system has no inheritance mechanism between 
packages, and the package foo and the package foo.util 
are independent of each other. 

Second, the mechanism does not protect resources. 
Resources often contain important applet data, but 
attackers can easily replace them. 

Through this weakness, class replacement is still 
possible despite the same-package-same-signer 
mechanism. 

 These two attack strategies are serious threats to a 
signed applet. In particular, class replacement is an 
effective way to attack a signed applet that has no 
privileged code. The next section describes our approach 
for preventing these attacks. 

 
3. Our approach 

 
This section describes our approach for preventing 

malicious recomposition attacks. Our approach is 
encapsulation that prevents recomposition of the 
components of an applet by tightly coupling them as a 
single unit. In addition, encapsulation should be achieved 
transparently so that it can be applied without any changes 
to Java VM or target applets. 

Section 3.1 describes how encapsulation can be realized, 
and Section 3.2 deals with encapsulation transparency. 

 
3.1. Encapsulation 

 
Encapsulation of a target signed applet effectively 

prevents a malicious recomposition attack. This subsection 
describes two encapsulation mechanisms:  

 class-loader-based isolation 
 applet-document binding 

 
3.1.1. Class-loader-based isolation. Class-loader-based 

Figure 2. Generating cozilet 
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isolation is an effective encapsulation mechanism for 
classes and resources because a class loader is responsible 
for these. The basic idea is to isolate a target signed applet 
by assigning a class loader unique to the applet. This paper 
refers to such a class loader as a cozi-loader. We also 
propose a unique format that can contain the classes and 
resources of the target applet as a single unit. We refer to 
this format as a cozi-format. 

A cozi-format file is shown in Figure 2. It is generated 
by the cozilet generator (described in Section 3.2.2) from 
JAR files and other information regarding the target signed 
applet. The cozi-format file is externally a standard JAR 
format file, but it contains the target classes and resources 
in a non-standard way. It includes JAR files formerly 
specified in an archive attribute (which we refer to as 
remote jar files) as its resource file target.jar. Note that 
applets may use classes or resources which are not 
contained in any JAR file (e.g., those in classpath or 
codebase), but we do not target these. 

The cozi-format file can be signed by a standard 
signing tool jarsigner [16], and only the cozi-loader 
can recognize target classes and resources included in the 
cozi-format file as signed data. Attackers can extract and 
use these classes and resources as unsigned data, but 
cannot use them as signed because standard class loaders 
cannot recognize them as signed. Attackers can create 
their own class loaders similar to the cozi-loader, but these 
will be of no use because JRE prevents instantiation of 
any untrusted class loader through the stack inspection. 
The key here is that remote JAR files in the cozi-format 
file must not be signed. This prevents attackers from 
extracting and abusing them as signed data. 

 
3.1.2. Applet-document binding. An HTML document 
also plays an important role in association with an applet. It 
determines how an applet is executed by specifying 
attributes such as codebase and archive or by giving initial 
parameters to the applet. In addition, it may contain script 
code which will interact with the applet using an interface 
such as Java-to-JavaScript communication (or vice versa). 
Creating a malicious HTML document is therefore a 
common technique used in malicious recomposition 
attacks. If we can bind an applet only to trusted HTML 
documents, it will provide an effective defense against such 
attacks. 

To realize applet-document binding, we chose to use the 
URL as the origin of an HTML document when 
determining the trustworthiness of the document. 
java.applet.Applet has getDocumentBase() which 
returns the URL of an HTML document embedding a 
corresponding applet [15]. For applet-document binding, 
right after the applet execution starts we compare the URL 
returned by getDocumentBase() with the URL of the 
trusted Web site. A sample of the source code is shown 
below. 

public final class PurchaseApplet 
 extends Applet { 
  
  // Hard-coded trusted server URL 
  private static final String TRUSTED_URL 
    = "https://example.com/"; 
  
  public void init() { 
    // Obtain URL of the corresponding 
    // HTML document 
    URL docBaseURL = getDocumentBase(); 
    String docBase; 
    if (docBaseURL != null) { 
      docBase = docBaseURL.toString(); 
    } else { 
      docBase = null; 
    } 
    // Check applet-document binding 
    if ((docBase == null) || 
        !docBase.startsWith(TRUSTED_URL)) { 
      throw new SecurityException( 
         "applet-document binding error"); 
    } 
     : 
  } 
} 

In the above sample, the trusted URL is hard-coded. In 
our approach, the trusted URL is included in a resource file 
cozilet properties of the cozi-format file in Figure 2. 

Microsoft recommends that ActiveX control 
programmers use a similar mechanism SiteLock [1]. 
Provided that the Web server, data communication channel, 
and the domain name of the Web site are trustworthy, this 
check can bind applets to HTML documents. 

 
3.2. Transparency 

 
This subsection describes how encapsulation is 

transparently applied to target signed applets. Our 
approach should be transparent both to current Java VM 
implementations and to target signed applets. There are two 
mechanisms to meet such requirements: 

 applet switching 
 cozilet generator 

 
3.2.1. Applet switching. To transparently apply the 
protection mechanisms (described in Section 3.1) to current 
Java VM implementations, we propose realizing them in a 
unique signed applet. The unique applet provides 
class-loader-based isolation and applet-document binding 
to protect the encapsulated applet. In this paper, we refer to 
the unique applet as a cozilet. 

However, a problem arises regarding Java VM, where 
the cozilet rather than the encapsulated applet seems to run 
as an applet. To cope with this, we provide an applet 
switching mechanism in the cozilet. 
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An applet is a type of GUI component that is simply 
added to a parent panel (i.e., java.awt.Panel). The 
cozilet can switch to the encapsulated applet by removing 
itself from the parent panel and adding the encapsulated 
applet to the panel. After doing this, GUI-related method 
calls are directed to the encapsulated applet. 

For common non-GUI methods applied as applets (such 
as start() or stop()), JRE maintains an internal list of 
all running applets, and calls such methods of each applet 
by referring to the list. The cozilet is registered to the list, 
not the encapsulated applet, and the cozilet cannot update 
the list. Therefore, we have designed the cozilet so that it 
delegates common method calls from JRE to the 
encapsulated applet. 

 
3.2.2. Cozilet generator. To realize the mechanism 
described in the previous subsection, a target signed applet 
must be converted to a cozilet. For transparency, however, 
such conversion should not require changes to the target 
applet. We therefore propose a tool for such conversion 
which we refer to as the cozilet generator. 

The tool generates a single cozi-format file containing 
the following files (Figure 2): target remote JAR files, 
cozilet properties, and cozilet classes. Cozilet properties 
contain a trusted URL for applet-document binding and the 
applet main class name of the target applet. Cozilet classes 
are needed for cozilet execution, including Cozilet which 
is the applet main class of the cozilet and 
CoziletClassLoader which is the class of the 
cozi-loader. Because the cozilet is a standard signed applet, 
classes or resources in the cozi-format file may be 
replaced in a replacement attack 
as described in Section 2.3. To 
protect cozilet classes, all of these 
are in the same package, 
com...cozilet, so that the 
same-package-same-signer 
mechanism prevents replacement 
of them. Signing of the generated 
cozi-format JAR file is mandatory. 
Because the tool does not sign it, it 
should be signed by other tools, 
such as jarsigner. 

To protect resources in the 
cozi-format file, the tool also 
generates a special class 
CoziletData and adds it to the 
cozi-format file. CoziletData 
contains hash values of 
target.jar and the cozilet 
properties as constant fields 
(Figure 2). The cozi-loader checks 
the integrity of target.jar and 
the cozilet properties in the 
cozi-format file based on hash 

values in CoziletData. The cozilet has other protection 
mechanisms to prevent malicious recomposition attacks on 
the cozilet itself, and these are described in Section 4.4. 

 
4. Implementation 

 
We have implemented the Cozilet mechanism for Sun 

Java VM (versions 1.3, 1.4, and 1.5) and this section 
describes the details of this implementation. 

 
4.1. Architecture 

 
Figure 3 shows the cozilet architecture. 
A target signed applet is converted into a cozilet 

consisting of a cozi-format file by the cozilet generator. 
(Section 4.2 describes the cozilet generation.) 

Class-loader-based isolation prevents an attacker’s 
applets from accessing the encapsulated applet and 
applet-document binding prevents attackers from 
recomposing the cozilet and encapsulated applet with 
malicious HTML documents. In addition, applet switching 
enables transparent execution of the encapsulated applet. 
(Section 4.3 describes the cozilet execution.) 

The cozilet should be able to protect itself from 
attackers because it is a standard signed applet. (Section 4.4 
describes the cozilet protection.) 

 
4.2. Cozilet generation 

 
As described in Section 3.2.2, the cozilet generator 

converts a target signed applet into a cozilet. An example is 

Figure 3. Cozilet architecture 
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shown below. 

% java -jar cozilet-tool.jar –applet ¥ 
      foo.MyApplet cozilet.jar sample.jar 

This operation generates the cozi-format file 
cozilet.jar to encapsulate a target applet whose remote 
JAR file is sample.jar and whose applet main class is 
foo.MyApplet. The developer of the target applet has to 
sign cozilet.jar through other tools, such as 
jarsigner. 

The cozilet is always invoked by the following applet 
tag. 

<applet code="com...cozilet.Cozilet" 
 archive="cozilet.jar" ... 

 
4.3. Cozilet execution 

 
This subsection describes the behavior of cozilets, and 

shows that they can securely and transparently execute 
encapsulated applets. 

 
4.3.1. Cozilet startup. Cozilets are standard signed applets 
which are executed by JRE in the following way. 
(1) First, JRE loads and instantiates the cozilet main class 

Cozilet. Cozilet loads the cozilet properties that 
contain the information regarding the encapsulated 
applet at its static initializer. Its integrity can be 
verified by using the hash value included in 
CoziletData. 

(2) Next, JRE executes init() of the cozilet. The method 
checks the applet-document binding as described in 
Section 3.1.2. The trusted URL is obtained from the 
cozilet properties. If the check succeeds, it goes to the 
next step. 

(3) The method instantiates CoziletClassLoader, 
which works as a cozi-loader, and requests the 
cozi-loader to load the main class of the encapsulated 
applet whose name is included in the cozilet properties. 
The cozi-loader verifies the integrity of the class by 
using the hash value included in CoziletData. If it is 
verified, the cozi-loader loads the class and the cozilet 
instantiates it. After this, all the classes and resources 
of the encapsulated applet are loaded only by the 
cozi-loader. 

(4) Finally, the cozilet switches itself for the encapsulated 
applet and executes its init(). 

 
4.3.2. Switching to an encapsulated applet. As described 
in Section 3.2.1, applet switching can be achieved by 
replacing a reference of an applet’s parent panel. In 
addition, an applet needs an appropriate applet context and 
an applet stub. A stub can be set to an applet by calling its 

setStub() [15], and a context can be obtained from the 
stub. Therefore, it is sufficient that only an applet stub be 
passed to an applet. 

A cozilet must pass its own applet stub to the 
encapsulated applet. It is not easy to get the stub, though, 
because there is no method like getStub() and because 
setStub() cannot be overridden since it is declared as 
final. 

Fortunately, in Sun Java VM implementations, a parent 
panel of an applet also serves as an applet stub, and the 
applet can get its stub by simply converting the type of (or 
casting) its parent panel. In this way, cozilets can hand over 
their applet stubs to encapsulated applets. After this, 
cozilets finish the applet switching by calling init() of 
the encapsulated applets. 

Also, as described in Section 3.2.1, cozilets delegate 
control calls issued by JRE to encapsulated applets, by 
overriding corresponding methods, such as start() or 
stop(). This delegation enables encapsulated applets to 
be normally controlled by JRE after switching. 

 
4.4. Cozilet protection 

 
A cozilet may be attacked in various ways because it is 

a standard signed applet. It protects itself through several 
measures. The most effective measure is the 
applet-document binding explained in Section 3.1.2, which 
can block most attacks provided that the Web server, data 
communication channel, and the domain name of the Web 
site are trustworthy. And as described in Section 3.2.2, a 
cozilet prevents class and resource replacement by 
declaring its classes as a single package and verifying the 
hash values of its resource files. A cozilet has additional 
protection mechanisms, and this subsection describes two 
of these which are particularly important. 

First, the public methods of cozilet are protected 
through stack inspection. The cozilet inherits many public 
methods from Applet. An attacker may be able to harm a 
user by calling these methods. To prevent this, the cozilet 
overrides such public methods and calls 
AccessController.checkPermission() at the 
beginning of the methods. checkPermission() causes 
the stack inspection to check if all the callers in the current 
call chain have the permission specified by a caller of 
checkPermission() [15]. The cozilet specifies 
AllPermission to the method so that only system classes 
can execute its public methods. 

Second, serialization of the cozilet is disabled. If 
serialization is enabled, an attacker can take advantage of 
the serialization and deserialization interface to read a 
sensitive value of a private field and write an illegal value 
to the field [2][3][4]. Unfortunately, the cozilet is 
serializable because its superclass Applet is serializable. 
The cozilet forcibly disables its serialization by throwing 
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an exception unconditionally for every method related to 
serialization in the following way. This measure is 
introduced in Securing Java [2]. 

public final class Cozilet extends Applet { 
  
   : 
  
  private void 
     writeObject(ObjectOutputStream o) 
                         throws IOException { 
    throw new NotSerializableException(); 
  } 
  
  private void 
     readObject(ObjectInputStream o) 
             throws IOException, 
                    ClassNotFoundException { 
    throw new NotSerializableException(); 
  } 
  
  private Object writeReplace() 
             throws ObjectStreamException { 
    throw new NotSerializableException(); 
  } 
  
  private Object readResolve() 
             throws ObjectStreamException { 
    throw new NotSerializableException(); 
  } 
  
} 

 
4.5. Optional features 

 
Up to now, this paper has described the basic 

architecture of the Cozilet mechanism. This section 
describes some additional features. Although they are 
optional, they can make cozilets and encapsulated applets 
more secure or useful. 

 
4.5.1. Interaction with browser script code. Current Java 
VM implementations enable applets to interact with 
browser script code. For transparency, the cozilet has to 
allow the encapsulated applet to do the same. 

Fortunately, access from encapsulated applets to 
browser script code is possible without any particular 
mechanism. In the Sun Java VM implementations, an 
applet needs to get a mediate object to access the browser 
script code by calling getWindow() of JSObject or 
getService() of DOMService with a reference to the 
applet itself passed as the parameters of these methods [15]. 
These methods obtain the applet context and return the 
mediate object corresponding to the applet context. 
Because the encapsulated applet has the same applet 
context as the cozilet, the encapsulated applet can obtain 
the same mediate object as the cozilet. 

However, access from the browser script code to 

encapsulated applets is not possible without a trick, 
because JRE refers to its internal list (described in Section 
3.2.1) when the browser script code requires access to 
applets. Cozilet’s trick to enable such access is to delegate 
limited kinds of calls from the browser script code to 
encapsulated applets. If the developer of a target applet 
specifies that the browser script code should call the 
method signatures at conversion by the cozilet generator, 
the tool adds delegation methods having the same 
signatures to the cozilet. Delegation also has the advantage 
of limiting methods which can be called by the script code 
of attackers to the minimum required. This is because 
attackers can call all the public methods of the applet if the 
applet is not encapsulated. 

Through method delegation, however, cozilets cannot 
delegate their fields to encapsulated applets. We think that 
field delegation is unnecessary because most applets do not 
need it. 

 
4.5.2. Exclusive mode. Cozilets can run in exclusive mode 
to prevent any untrusted applets from starting during the 
execution of an encapsulated applet. Although this may not 
prevent the execution of untrusted applets running before 
cozilets start, it can usually make cozilets secure. 

The exclusive mode takes advantage of the class 
loading and defining restriction mechanisms in the Sun 
Java VM implementations [4]. The class loading restriction 
mechanism prevents untrusted classes from loading any 
class contained by the particular packages specified in the 
security property "package.access" (whose default 
value is "sun."). This mechanism makes use of the stack 
inspection at class loading. The class defining restriction 
mechanism prevents untrusted classes from defining any 
class contained by the particular packages specified in the 
security property "package.definition" (whose 
default value is ""). This mechanism also makes use of the 
stack inspection at class definition. 

Cozilets set the value "java.,javax.,sun.,com., 
org.,netscape.,sunw." to both of the above security 
properties right after they start. This is very simple, but 
effectively prevents attacking applets from starting because 
they cannot load applet fundamental classes, even 
java.applet.Applet. Of course, attacking applets 
cannot set the security properties because the stack 
inspection mechanism restricts that operation. 

The exclusive mode may not prevent the execution of 
attacking applets running before cozilets start, because the 
classes required by the attacking applets may have already 
been loaded. Also, the exclusive mode may prevent 
browser script code from accessing encapsulated applets, 
because JRE usually regards script code as untrusted code. 
With these exceptions, however, we recommend use of the 
exclusive mode. 

 
4.5.3. Encapsulation of local applet components. An 
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applet usually consists of remote JAR files which are 
deployed on a Web site and specified in an archive attribute, 
but some applets require users to install local components 
on users’ local disk in advance to reduce network traffic or 
for use as common system components. The cozilet 
supports encapsulation of such local components to some 
degree. 

Local components of applets are local JAR files and 
native libraries. They are usually unsigned, but installed in 
directories from which the common system class loader 
can load (which we will refer to as a system path) and 
regarded as system classes having all permissions or 
system native libraries. 

The cozi-format file can include their installed paths in 
the cozilet properties. The cozi-loader tries to find them by 
using the paths in the cozilet properties. Moreover, the 
cozi-format file can also include their hash values as 
constant fields of CoziletData (Section 3.2.2). The 
cozi-loader checks the integrity of local applet components 
by using these hash values. This encapsulation is done by 
the cozilet generator. 

Note that local JAR files should be unsigned. Signed 
JAR files may be obtained and abused by attackers. As 
mentioned, the integrity of local JAR files (also native 
libraries) can be verified in the unique way of the Cozilet 
mechanism. Also note that local JAR files and native 
libraries should be moved to any path other than the system 
paths. If they are installed on the system paths, they may be 
abused by attackers. Moving them may affect the 
transparency of encapsulation (e.g., if they are re-installed), 
but it is strongly recommended. 

 
5. Discussion 

 
In this section, we discuss the issue in a more general 

manner, rather than one based on the detailed mechanisms 
of the Java applet environment described in the previous 
sections. Let us rephrase the issue as follows: to prevent 
malicious recomposition attacks, all components of an 
applet (or any mobile code program) must be securely 
deployed (e.g., identified and composed) on the client-side, 
and then the components must be isolated from other 
components. 

For secure deployment of applets in current Java VM 
implementations, an APPLET tag in an HTML document 
plays a critical role, determining which JAR file is loaded 
and executed. The current VMs, however, do not consider 
the tag’s trustworthiness. Our approach rectifies this 
weakness through two mechanisms: applet-document 
binding ensures the origin of the HTML document 
containing the APPLET tag, and digitally signed cozilet 
properties securely identify additional JAR files to be 
deployed. 

Secure deployment is important not only for an applet, 
but also for other componentized mobile code 

technologies. Sun's Java Web Start [18] is a runtime 
environment for network-launchable Java applications. 
Although it is not a perfect substitute for applets because 
of its very limited interaction with Web browsers, it is 
more secure than applets by the same reason. In addition, 
malicious deployment can be prevented by digitally 
signing a JNLP file, which corresponds to an APPLET tag 
for an applet. Furthermore, a Web Start application is 
regarded as "signed" if and only if all the JAR files 
specified in its JNLP file are signed by a single signer. 
These features make malicious recomposition attacks hard. 
Microsoft recommends ActiveX control programmers use 
SiteLock [1], a mechanism similar to applet-document 
binding. Also, the Microsoft .NET Framework provides a 
mechanism called LinkDemand [17], which prevents 
trusted assemblies from being accessed by malicious 
assemblies. It is preferable that Java VM itself support 
such a secure deployment scheme for applets in the future. 
Until then, however, our approach provides an alternative 
way to protect signed applets without modifying VM. 

Isolation is also important. Our approach uses 
class-loader-based isolation, which can be easily 
implemented on existing Java VMs. It isolates the 
namespace of classes, with the exception of system classes 
shared among the JRE. Therefore, in some cases, an 
attacking applet can obtain a reference to an instance of a 
class unique to a victim applet as a type of its superclass 
which is a system class, such as java.applet.Applet or 
java.lang.Object, and it may cause a security breach. 
While the cozilet takes some simple measures to prevent 
leakage of the object references of classes unique to the 
encapsulated applet, it is difficult to completely prevent 
such leakage. 

Isolation is a general challenge not only to prevent the 
abuse of trusted applets, but also to ensure the reliability of 
general Java programs. For example, a Java-based 
application server needs to isolate each application running 
on it to prevent applications affecting each other or the 
server. Therefore, much work has aimed at realizing not 
only class-loader-based isolation but also the isolation of 
heap memory, native code memory, and other JRE 
resources [7][8][9]. In particular, JSR-121 Application 
Isolation API [7] is now being standardized through the 
Java Community Process. (Unfortunately, Sun seems to 
have put off adopting it in J2SE 1.5.) To prevent the abuse 
of trusted applets more reliably, these strong isolation 
mechanisms are preferable. 

 
6. Related work 

 
Our approach is transparent to both target signed applet 

and current Java VM implementations. We know of no 
other groups taking a similar approach at the moment. 

Isolation, as we explained in Section 5, is an effective 
way to protect trusted applets. However, current 



 10

approaches [7][8][9] are not transparent to users because 
they require users to replace installed Java VM 
implementations. Other approaches for non-Java 
applications have been reported. Alcatraz [6] is a logical 
application isolation approach that forces untrusted 
applications’ insecure execution in Linux to be committed 
by users. SoftwarePot [5] is an application encapsulation 
approach that prevents malicious behavior by encapsulated 
untrusted applications based on security policies specified 
by users in Solaris and Linux. However, these approaches 
do not aim at preventing the abuse of trusted programs. 

There are some guidelines available which describe 
problems and rule-of-thumb countermeasures. Securing 
Java [2] suggests programmers to care for twelve 
anti-patterns in developing secure applets. Sun has 
published the Security Code Guidelines [4] and Inside 
Java2 Platform Security [3] which describe various 
security guidelines for Java. Auditing tools based on these 
guidelines have been released or announced [10][11][12]. 
However, it is difficult for most developers to understand 
and prevent all attacks because these attacks are skillfully 
designed by attackers. 

 
7. Summary 

 
We have developed the Cozilet mechanism to prevent 

malicious recomposition attacks. Such attacks are a 
serious threat to trusted applets, such as signed applets. In 
our mechanism, before deployment, the cozilet generator 
encapsulates a target signed applet into a special signed 
applet, a cozilet, in the indecomposable cozi-format. The 
cozilet has two protection mechanisms: 
class-loader-based isolation and applet-document binding. 
Upon its execution, the cozilet isolates the classes and 
resources of the encapsulated applet by assigning a special 
class loader, the cozi-loader, unique to the applet. It also 
checks if the HTML document was downloaded from a 
trusted Web site, to ensure that no attackers have deployed 
it on their sites. 

The cozilet can be executed instead of the target applet. 
When it is invoked by JRE, it applies the above protection 
mechanisms to the encapsulated applet, and switches itself 
with the applet. After switching, the encapsulated applet 
can run normally. The mechanism can easily protect both 
applets developed in the future and applets currently in 
use, because it is transparent not only to the target applets, 
but also to current Java VM implementations. We will 
apply this mechanism to significant applets now being 
used in critical systems, such as e-commerce or 
e-government systems. 
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