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Abstract 
 

 
In the last decades, the natural sciences have developed models and methods, such 
as agent-based models or complex networks, to describe and understand complex 
systems. These methods have begun to spread to actuarial literature and the 
insurance industry in the early years of the current century. The non-life insurance 
section (ASTIN) of the International Actuarial Association (IAA) installed the working 
party “Agent-Based Models, Networks and Cellular Automata in Risk Management” 
(ANCRM) to shed light on this phenomenon in the actuarial context. The application of 
these methods in the insurance industry has been discussed for some years very 
critically. The task of the ANCRM working party is to give a structured overview of 
scientific contributions to develop a deeper understanding of and new ideas for 
application in risk evaluation and risk aggregation on P&C and Health insurance. This 
article intends to create a starting point for future studies of the evolution of these 
models and is the final report of the ASTIN ANCRM working party. 
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Introduction 
 
Agent-based models (ABM), cellular automata (CA), a special case of ABMs, and 
complex networks (CN) have been developed as models and methods in the natural 
sciences to describe and understand complex systems. In the last decades, the 
models have been applied in the socio-economic context as well and documented in a 
vast amount of scientific literature. The potential use of these models in the insurance 
industry, in particular within the context of risk management and solvency assessment, 
has been discussed over the last few years. One of the main tasks of the ASTIN 
working party ANCRM is to provide a structured overview of scientific contributions in 
these fields with a clear focus on Property and Casualty (P&C) as well as Health 
insurance. 
The working party searched for relevant articles in 25 pre-selected peer-reviewed 
journals (see Appendix 1) on the three search terms:  

• agent-based models,  

• complex (or neuronal) networks and  

• cellular automata (CA) 
in the context of “risk”, “risk management” and “insurance”. 
Additional articles proposed by the members of the working party have been added to 
the list of literature. We focus on articles published between 2005 and 2017, a 
timespan we consider reasonable for when the application of ABMs and CNs in 
actuarial literature and the insurance industry may have started. We excluded 
macroeconomic models. We screened several hundred articles and selected those for 
subsequent evaluation which could be of relevance for an insurance company in the 
non-life or health business. We decided on a relatively extensive framework of articles 
because the usefulness and impact of an article depending on the experience, 
education, duties and responsibility of the reader – a very wide field, especially in the 
insurance industry. In the following text we put careful attention to those articles we 
consider as especially relevant for the insurance business.    
This search and screening finally resulted in approximately 100 articles that have been 
analysed and evaluated by members of the working group. The distribution of the 
articles by specific topics is as follows: 83% are P&C, and 17% are health publications. 
More than half of the P&C publications relate to CN (58%), some 18% with both, ABMs 
and CNs, and 24% only with ABMs. In the health insurance sector, we find a very 
different distribution by topic: ABMs are the most frequent (56%) topics while CNs are 
relevant for 43% of the cases. Our search also includes four review papers: Three for 
P&C and one for Health. Although a very limited number of original papers were 
published in actuarial journals, all three of the P&C review papers [1–3] appeared in 
actuarial journals, published in the years 2012 and 2013. This relatively late point in 
time compared to much earlier state of the art contributions in the subjects under 
investigations somehow reflects the sceptical or complacent attitude of the actuarial 
practitioners and academics towards these topics. The health review paper [4] was 
published even later in 2017 in a biological journal. A summary of these review papers 
is found in the sections which follow.  
The members of the working party used the following textbooks as an introduction and 
for general questions concerning the topics of the work [5–8]. They might be a good 
introduction for interested readers as well. Of course, there are many other appropriate 
textbooks in a rapidly growing literature on those topics. 
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Agent Based Models 
 
Agent-based models (ABMs) consist of a large number of agents. The agents are 
defined on a micro level and interact in a rule-based manner with each other. In this 
way they determine the behaviour and dynamics of the whole (global) system on the 
macro level. Every single agent is characterized by: 

• Internal degrees of freedom (internal parameters): The individual properties 
that characterise every single agent. The properties can change over time 
(dynamic model). 

• Autonomy: The agent’s actions depend on its internal parameters (properties) 
and the state of the environment. The environment is either given externally 
(external parameters) or is defined via statistical quantities of the other agents, 
e.g. the mean value of the nearest neighbours or the total ensemble of agents. 

• Mobility: Every agent is mobile and can act on the micro-level. Its actions can 
be reactive (reacting to other agents, the environment, or both) or proactive 
(influencing other agents, the environment, or both). The interactions between 
the agents are rule-based and can change over time. The principle of locality is 
valid: The influence of one single agent is small compared to the total system. 

The total system (macro-level) is analysed to derive the results of the ABM. Statistical 
methods are utilized to investigate the behaviour and properties of the macro system.  
CAs are special cases of ABMs: The agents live on a grid and can only interact with 
their nearest neighbours on the grid. Therefore the agent’s local coordinates are two 
dimensional, discrete, and static. CAs are by definition time discrete models with 
recursive quantities depending only on values of the present and the last time step. 
Therefore agents’ actions are time synchronously and possess the Markov property. 
 
A large proportion of articles relating to ABMs are found in the area of banking, finance, 
and financial markets. Common topics found in the papers analysed include: testing 
strategies in volatile environments or under endogenous shocks, collective market 
dynamics such as herding, bubbles, and crashes; stylised facts of markets including 
but not limited to asymmetric return distributions, volatility clustering, fat tails and the 
autocorrelation of time series. We find only two papers that cover classical ASTIN 
topics: one by Ingram, Tayler, Thompson [9] and the other by Haer, Botzen, Moel, Aerts 
[10], both implementing and discussing strategic games. Given the relevance for the 
insurance industry, we start by summarizing these two articles, and we later include 
other relevant articles.  
The first paper, the paper by Ingram et al. [9] describes and implements a strategic 
game between two types of agents: 30 insurance companies and one bank. Competing 
with each other, the 30 insurance companies build the insurance market. Every 
insurance agent decides on one of four strategies and follows that strategy if it 
becomes non-profitable. The strategies, entitled “Pragmatist”; “Conservator”; 
“Maximiser”; “Manager”, and the decisions of the insurance companies are based on 
the “theory of plural rationality”. The relations between strategies, decisions and the 
“theory of plural rationality” are described and discussed in detail in [9]. Depending on 
its financial situation and the situation of the insurance market (statistics of the other 
29 agents) the insurance agent can change its strategy. Every insurance agent aims to 
maximize its prosperity in terms of cash balance, the amount of investment and return. 
During the game, the development of the insurance market and the bank is observed 
and documented. The game is implemented as a Monte Carlo simulation. As a result 
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of the numerical calculation, a cyclic behaviour of the insurance market is observed. 
We think that in principle, the model of Ingram et al. is not only appropriate for 
insurance companies but at its heart, can be interpreted as a macroeconomic model.  
 
The second paper by Haer et al. [10] describes and implements a strategic game as 
well: adaptive human decision making under flood risk scenarios is analysed. The ABM 
consists of two types of agents, the households and the insurance companies. 
Households can act in the following way: purchase the insurance, cancel the coverage 
and implement loss reduction by the help of technical risk management devices. The 
insurance companies can: set premiums, give discounts, and collect and pay-out 
claims. Increased climate change and flood risk characterize the environment. The 
environment is modelled via an external formula and enters the game from the outside. 
The authors conclude that human adaptive behaviour has an enormous impact on the 
expectation of flood claims. They find that insurance premium discounts are an 
important incentive to correct for non-adaptive behavior and therefore reduce flood 
risk. The interaction between the households and insurance companies is, therefore, 
decisive for the insurability of flood risk. 
 
Most ABMs presented in other articles within our search criteria simulate a typical 
market situation with buyers and sellers following specific trading strategies to 
reproduce stylised facts of markets or collective market dynamics as herding, bubble 
formation and other psychological effects observed in real world-markets. Stylised 
facts of the market are for instance: asymmetric return distributions, fat tail 
distributions, volatility clustering and autocorrelations in time series. An early 
representative of this type of models is [11]. It implements a strategic market game in 
numerical simulations with buyers and sellers as agents that can change their opinion 
about the stock. In contrast to this, some very simplistic models can replicate stylised 
facts of the markets. Maymin [12] introduces a parameter-free trading strategy that 
generates market time series with fat tails and frequent crashes: Two consecutive 
market moves determine the choice of buy and sell strategy. The strategy is simplistic 
and comparable to a random walk but generates a much more realistic time series. 
Qiu et al. [13] use a CA model with two types of agents, fundamentalists and imitators 
as traders, living on a two-dimensional lattice with nearest neighbour interaction only. 
As a result, the authors find mean-reverting market prices, volatility clustering and fat 
tail distributions.  The paper contains a review of CA market models and summarizes 
2007 and earlier papers on stylized facts of the market. The main research problem is 
to identify the connection between the single aspects of the model and the produced 
stylized facts. In [14] , a three-type trader ABM is implemented. The three groups of 
traders are: 1) smart traders predicting prices from former time series and private 
information, 2) loss-averse traders knowing only the former price time series and 3) 
noisy traders investing randomly. In this case, the following market stylised facts are 
reproduced: asymmetry of return distributions, auto-correlation of return volatility and 
the cross-correlation between return volatility and trading volume. The paper by Zhang 
& Wang [15] starts with a thorough review of the previous literature in the field of 
modelling price returns in financial markets. The main criticism is that the methods for 
measuring autocorrelation and cross-correlation of nonlinear and non-stationary time 
series are not sufficiently developed. Therefore, the authors focus on autocorrelation 
within and cross-correlation between financial time series and suggest an improved 
method of measurement. Additionally, an ABM is developed to reproduce these effects 
as observed in real financial time series.  
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The following papers investigate psychological effects by the help of ABMs and shed 
light on the collective effects of market dynamics. Lamba & Seaman [16] construct an 
ABM with a herding effect. They look at heterogeneous agents with tolerance for 
belonging to a minority. They find typical stylised facts such as excess kurtosis and 
fat tails in price returns and volatility clustering. Similar results are presented and 
discussed in [17] where social groups form in a random cluster process as a model for 
the formation of social circles in real life. The implemented ABM shows an equilibrium 
distribution of the social groups. Stylised market effects are also found in Park [18] 
with a quite sophisticated ABM consisting of two types of trading agents that show 
psychological behaviour with regards to their risk aversion. The ABM also includes an 
adaptive belief system about the market price depending on the type of trader. Doblas 
Madrid [19] introduces an ABM of speculative bubble formation where rational agents 
buy overvalued assets. The treatment is entirely analytical without numerical 
simulation. The paper starts with an overview and evaluation of theories of asset price 
bubbles. These articles neglect the effects of speculation, the traders’ beliefs, and the 
bursting of bubbles. 
 
Besides the trading-focused papers, we find the second group of papers having 
systemic risk and market stability as topics, mostly within a banking environment and 
use trading models. They share a holistic view of the system and its behaviour. Szafarz 
[20] sheds light on the development of crises in efficient, financial markets. To this 
end, the author develops an ABM with two types of rational traders, short-term 
speculators and long-term fundamentalists. The key conclusion is that efficient 
markets are more volatile with a few speculators than with many speculators. In [21], 
the risk perception strategies of financial institutions with typical banking properties 
are investigated. An ABM is compared to a general equilibrium approach. The authors 
find that the perception of risk attitudes can increase the vulnerability of the system to 
external shocks. The impact of the Value at Risk (VaR) threshold risk management 
strategy on market stability is simulated by the use of a two-type trader 
(fundamentalists and technical traders) ABM in [22]. They conclude that the VaR 
system tends to destabilize the market: when a sufficient number of traders reach their 
VaR limit and are forced to sell their stocks, leading to market disruptions and high 
price volatilities. Poledna et al. [23] compare, with a sophisticated multi-agent ABM, 
three different regulation strategies of a credit market. One is the Basel II strategy, the 
second is the unregulated case, and finally, a strategy that seems to be superior under 
the given conditions. Lin [24] develops a more general and very technical approach to 
systemic risk with a risk aggregation algorithm. The paper also provides a brief 
introduction to Bayesian networks. 
 
Furthermore, we find some papers with a more theoretical or general approach to 
ABMs: the very early paper by Leombruni and Richiardi [25] discusses the applicability 
of ABMs in the economy in general. Two important points of the discussion are the 
interpretation of ABM simulations and the estimations for the model parameters. 
Hooten [26] presents a hierarchical Bayesian framework for formal statistical ABMs 
using only binary data. A series of two very technical papers are published by Satinover  
& Sornette [27, 28], which delivers a meta-analysis of ABM games, namely the “Minority 
Game”, the “Majority Game” and the “Dollar Game”. They develop a new metric for 
comparing different games to real-world financial time series. Additionally, a method 
for generating predictors for ABMs is designed and applied to real-time series. 
 



 6 

 
 

Complex Networks 
 
A complex network (or a graph) is a set of nodes connected by links. In graph theory, 
the expressions “vertices” are common for nodes and “edges” for links. Complex 
networks (CN) are a general and powerful concept to describe and analyse complex 
interactions. Some examples for nodes and their links to other nodes are people and 
friendships or other connections among them, airports and flights between them, 
banks and debts, and reinsurers and treaties. The number of links of a node is defined 
as the degree. The degree distribution of the nodes is a key characteristic of a network. 
Two especially important types of networks are the “small-world” and the “scale-free” 
networks. In a small-world network (almost) every node is connected to a very high 
number of other nodes. In a scale-free network, there are a few very strongly connected 
nodes and many weakly connected nodes. In this case, the degree distribution obeys 
a power law, which explains the name. Networks can be static or dynamic and directed 
(one-directional) or undirected (bi-directional). For a bipartite graph there exist two 
different sets of nodes.  
 
Similarly to ABMs, most of the CN papers apply to financial and banking environments. 
We identify three major subjects within the papers: systemic risk such as contagion 
spread or regulatory topics, the construction and examination of risk measures for 
complex networks and supply chain topics. Additionally, we report in this section on 
papers that use ABMs as well as CNs. 
 
The first P&C review papers dealing with both ABMs and CNs are a series of two 
papers by Parodi [1, 2]. The first paper [1] relates to “statistical learning”, seemingly 
synonym for “machine learning”. It aims to draw parallels between artificial intelligence 
learning in computational science and typical actuarial methods. In line with this 
context, an agent is very generally defined as an object that exhibits intelligent 
behaviour. One distinguishes supervised learning from unsupervised learning. 
Supervised learning is a two-stage process: the training phase is followed by the 
testing phase. The author concludes that familiar, actuarial, data-based problems such 
as pricing, reserving, and capital modelling are examples of supervised learning. He 
gives a large variety of examples such as regularised regression, GLMs or neural 
networks and its applications to actuarial data. Unsupervised learning means finding 
structures in data without a training set. On the actuarial side, the author connects this 
to examples like clustering techniques and association rules. The second paper [2] 
deals with “uncertain knowledge” in the form of data that are uncertain themselves 
and the need for integrating soft expert knowledge. Parodi concludes that “uncertain 
and soft knowledge can be dealt with most successfully in a Bayesian context”. He 
introduces multi-agent systems and strategic games as models for collective 
behaviour but without giving examples or citing relevant papers in this area. Parodi 
also points out that he is very sceptical about the usefulness of these models for 
applications in decision making and regulation due to research that is still lacking, and 
the complexity of the models. He is more optimistic about using ABMs as scenario 
generators.  
The second P&C review paper by Allan et al. [3] has its focus on enterprise risk 
management (ERM) and the tackling of companies with their risk appetite. Several 
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reviews of relevant literature from the practitioner’s point of view include the following 
topics: risk appetite, emerging risks and systemic risks. The paper incudes concise 
introductions to and evaluations of CAs, ABMs, and Bayesian networks. 
 
We find four papers considering traditional insurance topics: The paper by Kley, 
Klüppelberg and Reinert [29] studies the diversification of large, endogenous, Pareto-
tailed claims under different reinsurance network scenarios. A bipartite graph models 
the sharing of the losses among the reinsurers. The authors obtain asymptotic results 
for the VaR and conditional tail expectation risk measures. The authors also 
investigate the amount of uninsured losses to be covered by society in each scenario.  
Another paper with a focus on the reinsurance market is by Kanno [30]. The paper 
accesses the interconnectedness between reinsurers and insurers in the global non-
life insurance market and its contribution to systemic contagion default risk. Centrality 
measures are used for network analysis. The authors argue that in the case of an 
initially defaulted reinsurer with a large network centrality contagious defaults will 
proceed. Otherwise, small or medium-sized reinsurers do not affect the stability of the 
network. The default analysis of real-world data after the global financial crisis shows 
the occurrence of many stand-alone defaults and only one contagious default within 
the global reinsurance network. Stress test results based on a hypothetical severe 
stress scenario also show that the possibility of contagious defaults in the future is 
generally low.  
Bayesian networks as a framework for operational risk management are the topic of 
the paper by Cowell, Varrall and Yoon [31]. The paper includes an overview of 
operational risk models as well as a comprehensive introduction to Bayesian 
networks. A Bayesian network for modelling various risk factors and their combination 
into an overall loss distribution is proposed. An example of insurance fraud risk arising 
from a commercial fire insurance portfolio demonstrates that Bayesian networks can 
quantify operational risk with potential applications such as allocation of risk capital 
and scenario testing. One of the strengths of Bayesian networks highlighted in the 
paper is the ease of incorporating expert opinions, but, according to the authors, this 
can also be a disadvantage for supervisory capital approval that requires objective 
standards due to its high subjective content.  
The fourth insurance paper is written by Hsu, Lin and Yang [32]. The authors 
demonstrate a neural network approach in calculating individual medical expenditures 
by combining two different neural network methods: Self Organised Maps (SOM, an 
unsupervised learning method) and Back Propagation Network (BPN, a supervised 
learning method) to improve predictive power in risk-adjustment models. Risk 
adjustment is the most effective strategy for reduction of “cream-skimming”, the fact 
that health plants seek out only the most profitable patients. The authors apply their 
method to the Taiwan National Health Insurance scheme. Predictive performance 
metrics are compared to the neural network method and other, traditional risk 
adjustment models to quantify the better fit of the first one. 
 
Most of the CN papers are related to modelling holistic or systemic risk in the banking 
and economic environment. Several of them use CN as a medium to structure a stock 
market according to a network [33–35] for risk management, asset allocation, or 
optimal trading strategies, and herding and avalanche dynamics [36]. Davis et al. [37] 
use the asymptotic behaviour of stochastic networks for pricing of large credit risk 
portfolios. Acemoglu et al. [38] investigate how interconnections in microeconomic, 
idiosyncratic shocks can lead to aggregate fluctuations.  
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The majority of the papers use CN to model the systemic risk of a network of banks, 
such as contagion [39–41], default propagation across the banking system, or the 
impact of scenarios of stress, shock, or both [42–44]. Typically, the nodes of the CN 
are banks modelled by a simplified balance sheet and realistic interaction rules 
between them ( [45], [40], [46]). In Amini et al. [47] , the magnitude of contagion in large 
banking networks is quantified analytically by an asymptotic fraction of defaults, in 
terms of network characteristics. The authors show that institutions with high 
contribution to network instability tend to have both large connectivity and a large 
fraction of contagious links. Several papers concentrate on specific regional banking 
networks such as: US [48], Germany [49], Venezuela [44] and Austria [40]. Papers often 
use traditional degree- or centrality measures of CN theory to quantify systemic risk 
[50], [51], [52]. It is known from the theory of complex systems that threshold functions 
can be used to detect phase transitions in random networks in the limit of a large 
network size. In this sense, Caccioli et al. [53] define a model with a critical threshold 
for leverage leading to a stability – instability transition of financial networks and 
similarly, [45] identifies a threshold for the shock’s magnitude where sharp transition 
for contagion spreading happens to a large part of the network system. In addition to 
studies on stability transition threshold, other papers give regulatory advice for 
strategies in regards to network contagion defaults impact under different network 
structures [54], [55], [48] , [56], [57]. 
 
Due to the special features of complex networks, the traditional risk measures have to 
be adjusted. We find several papers with the main aim to construct appropriate risk 
measures, especially for the systemic risk of financial networks. Generally, centrality 
measures aim to measure the node’s importance for different dimensions in relation 
to the entire network. These dimensions can be degree distribution, which is used 
when the number of links is important, distance reduction between other nodes in the 
network, or dynamic processes on the network. Cont [58] introduces a risk measure, 
the Contagion Index, which identifies the systemically important nodes under the 
condition of stress scenarios. The paper applies the Contagion Index to the Brazil 
banking system. Another measure targeting to find systemically important nodes in a 
network is the DeptRank introduced in Batiston [59]. DeptRank is a centrality measure 
that relates to every node the fraction of the potential systemic loss caused by this 
node in case of its default. All nodes in the network are taken into account recursively. 
The DeptRank measure is applied to an US FED dataset. The authors suggest that the 
debate on institutions being “too-big-to-fail” should shift to the more important issue 
“too-central-to-fail”. Other papers such as [60] as well as [29, 61] examine and adjust 
the traditional risk measure VaR for assessing systemic risk on networks. Kley et al.  
[29, 61] derive analytical expressions for systemic risk measures in the asymptotic 
case of large markets. The influence of large, exogenous, Pareto-tailed losses on a 
network is modelled. The newly developed risk measures are based on VaR and 
Conditional Tail Expectation. They allow the quantification of the influence of 
individual institutions (nodes) on the risk of the whole system (network). Silva et al. 
[62] define the risk measure called “impact susceptibility index”. The index indicates 
whether an institution is vulnerable or not. The paper constructs a financial stability 
monitoring tool and applies it to the financial market of Brazil. A detailed comparison 
of different systemic risk measures is also included in this paper. We also find stability 
measures of systems that are inspired by systems dynamics as the determination of 
the eigenvalues of a stability matrix [53]. 
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A few papers highlight the systemic risk of supply chain networks. This topic is of 
special importance for industrial insurance of technological products and services. 
Blöchl et al. [63] describe the flows of goods and services between the sectors of the 
economy as weighted directed networks. They introduce the measures “random walk 
centrality” and “counting betweenness” to focus on the special properties of those 
networks and study the propagation and impact of supply shocks to real economic 
networks. The two papers by Tang and Stanley [64, 65] construct theoretical risk 
models of complex interdependent and assembly supply chain networks, respectively. 
They study cascading failures, for instance, based on production capability losses and 
redistribution strategies for failed loads propagation. They use numerical simulations 
of networks and simulate stochastic processes on the networks to derive their results. 
Xu [66] introduces a special weighted network analysis method to study international 
services trade and to analyse influence among services trade network of relations.  
The following papers address very special CN topics:  [67] quantitatively evaluate the 
influence and power of directors by analysing US corporate governance network. [68] 
deals with the extension of reduced form auctions in finance. Chatrabgoun [69] applies 
minimum information vine models for dependence structures in financial data. 
 
Finally, we find papers that incorporate both, ABMs and CNs in one single framework. 
Their common feature is that at least a part of the rules of interaction between the 
agents is replaced by a network structure describing the interplay of different agents. 
Most of the papers are found on the analysis of systemic risk. Aymanns and Georg 
[70] analyse the financial stability of banking systems under different investment 
strategies, Georg [71] deals with contagion and common shocks on banking networks, 
and [72] studies the impact of Basel III regulation on the stability the banking network. 
In [73], an ABM is operating on a financial network to reduce the systemic risk of a 
financial network. The proposed systemic risk tax leads to a self-organised 
restructuring of the financial network. A more general view of the economic system as 
a whole is taken in [74] and [75], where networks model the interdependence of the 
different types of economic agents as well as geographical relations. A theoretical, 
simulation-based approach of behavioural finance on the diffusion of cooperation 
between agents is demonstrated in [76]. The agents “live” on a network and repeatedly 
play the Prisoner’s Dilemma. The combination of ABMs and networks is typical for 
health models (see next section), for instance [77]. Here, the epidemic spread is 
modelled via an ABM and the agents are connected on networks defining both 
transmission pathways and social contacts. 
 
 
 

Health Models 
 
Infectious diseases have been one of the greatest threats to the human population and 
can lead to tremendous impacts on public health, local and global economy, and 
society in general. From an insurance perspective, there can be a domino effect on 
other classes of business related to pandemics and epidemics. For example, business 
interruption and financial losses may result from the absence of a significant 
proportion of the workforce due to illness in a given period of time. Mathematical 
modelling is a powerful and ethical method to better understand infectious disease 
dynamics, including transmission mechanisms and intervention strategies. Some of 
the most successful granular epidemiological models include ABMs [4, 78–81], 
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network models [82–88], and CA models [89–92]. In this systematic review of the 
related literature, we summarize and discuss the various applications and evaluations 
across the three aforementioned types of epidemiological models. 
 
ABMs are simulation models that produce population-level, realistic scenarios arising 
from the behaviour and activities of every individual in the modelled population. The 
attributes of each individual, some of which vary temporally including spatial location 
and activities, contribute to the social and spatial contact patterns which impact 
disease transmission and dynamics. For example, vulnerable populations, such as 
infants or individuals who are engaged in high risk professions, would typically 
experience higher severity in the course of the epidemic. Census data, travel behaviour 
surveys, contact surveys, and workplace surveys form the basis of the socio-
demographic structure of the synthetic population and individuals’ physical activities 
[79, 80]. 
The assumption of the transmission pathway also helps identify the agents’ contact 
or distance structure needed for the model. Diseases having close contacts or 
aerosols as the dominant pathway of transmission can utilize distance categories 
between individuals such as intimate, personal, social, and public distance to model 
the realistic minimum distance and contact duration required for disease transmission 
[80]. To add intricacy and complexity to the model, commuting and travelling patterns 
of the agents can be incorporated by using gravity models or transportation networks 
[78]. With the attributes and interaction of agents, infection occurrences are 
probabilistically simulated to occur in probable conditions given the transmission and 
frequency criteria of the modelled disease [78–81].  
ABMs integrate population-specific socio-demographic and behavioural differences to 
simulate realistic heterogeneity in disease timeline and outcome that are distinctive to 
the population characteristics. The main obstacle for the use of ABMs is the difficulty 
to obtain high-confidence, detailed data in many regions of the world, which limits its 
use to mostly localized small epidemic modelling [78]. However, the use of small 
epidemic modelling also highlights the advantage of using ABMs since outbreaks are 
often subject to chance [4].  
A type of ABM that specializes in modelling spatial dispersion and extinction 
processes is the CA model. A cell state is incorporated in each cell, with the cell state 
updating at every time step according to a set of probabilistic transition rules 
dependent on the current state of the cell and its neighbouring cells [89–92].  
The grid cell structure of CA provides a framework to model spatial processes such as 
population migration and urbanization that could drive changes in transmission 
dynamics in disease spread. To quantify the effect of migration, Sun uses a CA model 
with probabilistic transition rules that model the occurrence and dynamics of 
infections and migration (through infecting and colonizing a neighbouring cell) in a 
susceptible population [91]. Results indicate that the migration rate works in 
combination with the infection rate, where the change in migration rate at different 
infection rate level will cause either persistence or extinction of disease and changes 
the epidemic outcome.  
The strength of CA lies in its “heuristic, transparent, and flexible rules” [90]. Spatial 
diffusion processes such as wind dispersal [89] or urbanization [90] that can be 
formulated into scalable transition functions are well-described using CA models. 
Challenges come from modelling infection or dispersion processes that involve 
complex dispersion patterns that are not limited to the status of the neighbouring cells 
or proximity to the closest infected agent.  
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Network models, a class of models that can be implemented at individual or 
subpopulation level, feature model process outcomes that are dependent on the 
underlying contact network, such as modelling diseases that transmit through social 
contacts. Studies have shown (see for instance [85]) that humans interact in a 
structured way appropriately modelled by a scale-free network. The impact of this 
contact heterogeneity is significant on the spread of epidemics [85]. Ma illustrates and 
quantitatively compares four common network topologies: random, scale-free, small-
world, and meta-random networks under four different vaccination strategies using 
two scenarios [84]. Although the paper does not intend to simulate any historical 
epidemics, results highlight that network topology significantly impacts modelled 
disease dynamics, more so than vaccine interventions.  
Depending on the characteristics of the disease, disease transmission pathway, and 
the contact structure of the species, different network types and structure can be used 
to simulate realistic disease spread and intervention dynamics.  
In modelling human epidemics, most network structures used are undirected since 
humans tend to interact in the same network such as school or work, repeatedly 
throughout the epidemics. However, for processes such as trade flows of plant 
pathogens spreading in commercial plant transport from growers to wholesalers to 
retailers, a directed network structure is more appropriate [83]. This also highlights a 
benefit that the network connection can be simply relational without any distance 
defined between the two entities. Lawyer measured the potential of individual airports 
for pandemic spread over the world airline network and showed that the potential is 
highly correlated with the number of edges instead of the distance between nodes [87, 
93]. However, local density and mobility also play a role in influencing the dynamics of 
the disease spread. 
Dynamic networks, network structures with connections that update temporally, can 
model the time-varying nature of human behaviour as opposed to a static network. 
Dynamic networks are similar to static networks, where both have the structure of 
nodes and edges. However, dynamic networks have additional probabilistic 
transitional rules that define the evolution behaviour of the networks for each time step 
[86, 88]. Individual demographic and behavioural characteristics can also be 
incorporated in the nodes to reflect the difference in disease transmission rate among 
low and high-risk individuals [86]. The evolution of the forming and dissolution of the 
connections can be based on behaviour surveillance surveys, estimated activities rate 
and connection per activities [82, 86].  
Network models capture the impact on disease dynamics caused by the underlying 
social contact network, including the demographic and behavioural differences among 
individuals. This type of model is well-suited for diseases that require close contacts 
for transmission such as blood-borne diseases, sexually transmitted disease, and 
diseases that exhibit “super-spreading”, meaning that single individuals are 
responsible for infecting many more individuals than expected [94]. Social contact 
network data is often difficult to obtain due to the detailed level of an individual’s data 
and the evolving nature of social networks [86, 88]. Despite this limitation, a network 
framework is excellent in capturing the connected structure of transportation and 
mobility patterns that serve as a conduit for disease spread, such as the plant transport 
or airline transportation network [83, 87]. 
Epidemic modelling requires realistic simulation of the intricate interactions between 
the modelled pathogen, susceptible agents and the environment. The three types of 
models discussed in this paper provide strength in its specialized areas in modelling 
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epidemics. ABMs incorporate the most granular level of data for each agent in the 
model to simulate the heterogeneity in disease transmission within a population. CA 
models model the dynamic nature of spatial dispersal and migration process of the 
agents or pathogens that influence the spread of disease. Network models provide the 
network contact structure necessary within a population to model the transmission 
pathways of a pathogen. The choice of model strongly hinges on the characteristics 
of the pathogen and agent of interest. Hybrid approaches are commonly used to 
maximize the benefit of each model type and the available data granularity and 
sources. For example, ABMs can be incorporated into a meta-population model along 
with the airline transportation network both to benefit from the localized, realistic 
socio-demographic structure of the regional population and to produce reliable global 
estimates [78]. 
A major challenge across the models is the difficulty in data collection for model input 
and output validations. Detailed regional or longitudinal population studies are often 
unavailable in a standardized design for modelling and validating the heterogeneity in 
exposed risk and transmission among agents with different socio-demographic, 
environmental, or behavioural characteristics. However, population and global-level 
data from historical epidemics still serve as appropriate and suitable validation tools 
for different modelling purposes due to data limitations. Data limitations are also 
expected to be eased with the standardization of global surveillance data, electronic 
medical records, and other similar health and behavioural data collection agencies and 
aggregators. Combined with the advancement of computing and open source 
technology in the last decade and forward, producing large scale realistic global 
disease spread simulations is becoming more feasible and available to researchers. 
Furthermore, more quantitative modelling can be done to address current model 
limitations and provide more analysis of disease spread and intervention strategies to 
inform policy makers. 
We have discussed the application of the three model types in the interest of disease 
modelling to quantify the impact on human and other species. The realistic structure 
of the environment and susceptible population produces model outcomes that 
increase our understanding of the risk attributes with its associated frequency and 
severity potential, which supports the development of insurance products. One tool for 
transforming disease model output into relevant insurance risk estimation and policy 
design is the exceedance probability (EP) curves, which shows the probability of 
exceeding a given level of an event or annual severity [95]. The inverse of EP is known 
as the return period which provides the probable maximum losses for a given 
recurrence time. Risk pooling and sovereign-level catastrophe insurance are types of 
risk transfer mechanism that can be used in managing pandemic risks. The use of risk 
transfer mechanism could provide timely and effective financial resources for 
impacted parties to respond to and recover from epidemic outbreaks.  
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Proposals and Outlook 
 
Unlike the amount of literature on ABMs and complex networks available in the fields 
of banking and finance, only a limited amount of research is available in the field of 
non-life insurance. We find some evidence for a gap between academic research and 
industry applications of complex topics such as those presented in this review paper. 
The working party thoroughly believes that there are numerous possibilities for 
collaborative research between industry practitioners and academics in the 
implementation of realistic, complex models and validation of assumptions within the 
risk management and solvency framework. The following is a non-exhaustive list of 
potential topics that, in our opinion, are worth further investigating: 
 

• The risk quantification of real-world networks in insurance can be used in lines 
of business that are very dependent on network structures, for instance, supply 
chain risks, cyber risks, and industrial insurance in general. 

• Holistic risk management of insurance companies or lines of business: testing 
typical insurance strategies under an ABM environment. For instance, pricing 
strategies given a typical set of customer relations, including specific claim 
management and reserve strategies. 

• Understanding the risk attributes with associated severity potential of the 
different population which supports the creation and development of novel 
insurance products. 

• The connection between reinsurance networks and ABMs. 

• The testing of supervisory and regulatory strategies on an ABM simulated 
insurance market. 

• Shedding more light on phase transitions and regime switches on ABMs in 
dependence on the parameters of the models. 

• Generate a deeper understanding of risk aggregation schemes: for example, the 
connection between dependent risks, network structures and copulae. 
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