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Updating Quasi-Newton Matrices

With Limited Storage

By Jorge Nocedal

Abstract.   We study how to use the BFGS quasi-Newton matrices to precondition

minimization methods for problems where the storage is critical.   We give an update

formula which generates matrices using information from the last m iterations, where

m is any number supplied by the user.  The quasi-Newton matrix is updated at every

iteration by dropping the oldest information and replacing it by the newest informa-

tion.  It is shown that the matrices generated have some desirable properties.

The resulting algorithms are tested numerically and compared with several well-

known methods.

1.  Introduction.  For the problem of minimizing an unconstrained function /

of n variables, quasi-Newton methods are widely employed [4].  They construct a se-

quence of matrices which in some way approximate the hessian of /(or its inverse).

These matrices are symmetric; therefore, it is necessary to have n(n + l)/2 storage

locations for each one.  For large dimensional problems it will not be possible to re-

tain the matrices in the high speed storage of a computer, and one has to resort to other

kinds of algorithms.   For example, one could use the methods (Toint [15], Shanno

[12]) which preserve the sparsity structure of the hessian, or conjugate gradient

methods (CG) which only have to store 3 or 4 vectors.  Recently, some CG algorithms

have been developed which use a variable amount of storage and which do not require

knowledge about the sparsity structure of the problem [2], [7], [8].  A disadvantage

of these methods is that after a certain number of iterations the quasi-Newton matrix

is discarded, and the algorithm is restarted using an initial matrix (usually a diagonal

matrix).

We describe an algorithm which uses a limited amount of storage and where the

quasi-Newton matrix is updated continuously.  At every step the oldest information

contained in the matrix is discarded and replaced by new one.  In this way we hope

to have a more up to date model of our function.  We will concentrate on the BFGS

method since it is considered to be the most efficient. We believe that similar algo-

rithms cannot be developed for the other members of the Broyden 0-class [1].

Let / be the function to be nnnimized, g its gradient and h its hessian. We

define

sk=xk+i~xk    znd   yk=8k+i-8k-
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The BFGS update formula [4] is given by

(1) // = //+ —
Ty s

£äz+1
Ty s

-—[sy'H + Hys1],
y s

and we will write it as

(2) H = H+ U(s, y, H).

It is easy to verify that if H is positive definite and yTs > 0, then His positive definite.

From now on we will assume that yTsk > 0 for all k.   In gradient-related methods this

can always be done, provided the line search is sufficiently accurate.  In the usual

implementation of quasi-Newton methods H overwrites H.   This requires in general

«2/2 + n/2 storage locations.  In our implementation we will keep the corrections U

(defined in (2)) individually.  From (1) we see that every new correction of H requires

the storage of two vectors, namely s and y.

Given a positive definite and diagonal matrix HQ one constructs

//,=//„+ t/(So,;iVy/0)

H2=H0 + U(s0, y0, H0) + U(s,, y,, #,)

etc.,

where {sk} is generated by some minimization iteration. Let m be the maximum num-

ber of correction matrices U that can be stored. Since H0 is diagonal, this means that

the maximum number of «-vectors that we can use to define the quasi-Newton matrix

is 2m + 1.  Once Hm is generated we have reached the storage limit,

Hm=Ho + f(Wo>"o) + • • • + U(sm_l,ym_i,Hm_l).

We would like to drop the term U(s0, y0,H0) and replace it by one involving sm and

ym.  (We assume that Hm is used to produce sm and ym.)  Note that the corrections

U(si,yl,Hl), . . . , U(sm_1,ym_1,Hm_1) depend on U(s0,y0,H0). Therefore, if

we discard this term, we would have to change all the other ones; and that is not desirable.

We could avoid this problem by storing s,yTH and sTy at every iteration.  We could

then drop U(sQ, yQ, H0) and the other corrections would be unaffected.  However,

this approach leads us to other difficulties:  losing the positive definiteness of the

matrices and/or obtaining iterative methods without quadratic termination.

Now we will see that using a different description for the updating a strategy for

discarding updates can easily be found.

2. A Special BFGS Update Formula.  The BFGS formula (1) can also be written

in product form

(3) H=(I - psyT)H(I - pysT) + pssT = vTHv + pssT,

where p = \¡yTs.

We will consider dropping a correction to be equivalent to defining v = I and

pss   = 0.  To illustrate the algorithm suppose that the number of corrections stored,
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m, equals 2.  We write

Pi = Ifyfs,   and   vt = (I - p,ytsj),

H0 is a given positive definite matrix,

Hi = vlHovo + ¿>0Vo >

We now discard the old information, to leave

#2 - "l^Vi + Pisisi

and update this matrix

H3 = i£irffl0u,u2 + u^P^tifuj + P2V2 •

Similarly,

^4 = Ü3Ü2^0Ü2Ü3  + U3 /°2S2S2U3  + P3S3S

etc.

In general, we have for k + 1 < m the usual BFGS update

Hk + i -íí-i • ■ " »lHovo " • • Vk-lVk

+ «Í ' ' ■ "TPo'o'o bi " " y/t

(4)
+ ü*w*-iPft-3s*-aí*-3ü*-i,>*

+ l,kPfc-isk-isfc-iüit

+ P*V*-

For k + 1 > m we have the special update

#k + l = ükük-l  ' ' ' "fc-m + l^O^-m + l   " ' ■ ufc-luk

+ vk '     ' vk-m+2Pk~m + lSk-m + lsk~m + lvk-m+2

(5)

+ vkPk-isk-isk-ivk

+ PksksI-

The matrices defined by (4) and (5) will be called special BFGS matrices.

Properties,   (a) If H0 is positive definite, it is easy to verify that the matrices

defined by (4) and (5) are positive definite (provided yfs. > 0 for all i).

(b)  Let /be a strictly convex quadratic function f(x) = VixTAx + bTx, and

suppose that the vectors sk are conjugate, i.e.

sfAsj = 0,      i¥= j.
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Then the matrices satisfy the quasi-Newton equation in the past wî-directions

(6) Hky¡ = sf,     j = k - 1, . . . , k - m (for k > m).

To see this note that

(7) v¡y¡ = 0,      i = k, k - 1, . . . , k - m + 1,   and    vty, = y¡   for /' > /.

Note that if m = 1 the memoryless BFGS update is obtained (see Shanno [11]).

(c) The BFGS update formula can be written in two forms ((2) and (3))

(8) H = H + U(s, y, H) Sum-Form,

(9) H = vTHv + pssT Product-Form.

The algorithm just described used the Product-Form description. We shall now express

it using the Sum-Form.  Again, let m be the number of corrections stored.  The first

m updates will be the usual BFGS updates

H.+, = Ht + U(s., >>,,#,),      i = 0, 1.m - 1.

From (5) we have that Hm + 1 can be computed as follows:

Let Hl = H0.

For / = 1, 2, . . . , m,      Hj+ í=Hj + U(s}, yf, H¡).

"m + 1 = "m + 1 •

In general, for any k > m let s = k + 1 - m, then Hk+1 is given by

Hs = Ho-

(10) «j For / = s, s + 1,-k,      Hj+ i=Hf+ U(Sj, y¡, H0.

Hk+i =Hk+i-

Using the Sum-Form description it is necessary to recompute all the corrections at

each step.

3. Gradient Related Methods.  The special BFGS matrices given by (4) and (5)

could be used in quasi-Newton iterations

01) dk = ~Hkgk,      xk + 1=xk+akdk,

or in preconditioned conjugate gradient iterations (PCG)

do = ~HoS0,
(a)

dk=-HkSk +ßkdk-i>

02) -,      _
where ßk = yk-igk/yi-1dk_1,

(b)
xk+i =xk+akdk-
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The PCG method can be obtained by doing the transformation zk = Lk lxk, and then

applying the conjugate gradient method in the new variables. Here Lk is the Cholesky

factor of Hk: Hk = L^J.; see [8].  Algorithm (12) is usually restarted every n

iterations by setting ßk = 0.

We now show that using the special BFGS updates in the above two iterations

we obtain algorithms with quadratic termination.

Let / be a strictly convex quadratic function and suppose that exact line searches

are performed.  The PCG method will be implemented in the manner proposed by

Nazareth [7].  Given H0 we let

do = -//o£o>

*i = *o + "o^o-

H^Fis^y^HJ,

for i = 1, 2, . . . ,

dt = -Ht_igt + ßidi_1,

xi+1 =xi + aidi,

Hi+i =F{si,yi,Hi),

where ß. = yj_ ,#,_ xgjyf_ íd¡;

and F(s, y, H) denotes the special BFGS update given by (4)—(5).  We will call (13)

the SCG algorithm.  In practice it should be restarted every n iterations. Note that we

are not using the most recently defined matrix as preconditioner, but the one before

it.

During the first m iterations the SCG will generate the usual BFGS matrices.

It is not difficult to show (see [8]) that the first m + 2 directions are the same as

those obtained by applying the PCG with fixed preconditioner H0, i.e.,

(14) di(gi,Hi_1,di_l) = d{(gi,H0,di_1),      i = 0,l.m + l,

where d(g, H, d—) is defined in (13).

The conjugacy and orthogonality conditions hold (see [8])

(15) dfyf = Q,   f^/,t/-0,l.m + l,

gjHogj = 0,      gjdj = 0   for/*/,

(16) i = 0,l.m+2,

/ = 0,1.m + 1.

We will now see that (14) and, hence, (15) and (16) also hold for the rest of the

iterations.  From (5) we have

(a)

(13)

(b)
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Hm + 1 =vm ■■■^H0v1     •Vm

+ vm ■ ■ ■ 4Plslsllv2 " " • vn

+ vmPm-lSm-lSm-lvm

+ O    S    ST .
^m  m  m

We computedm+2:

dm+2 = ~^m + l^m + 2 + $m + 2dm + l>

where ßm + 2 = yTm + xHm + lgm+2/y^ + ldm +1.

From (15) and (16) we have

^m + l^m + 2 = H08m + 2> -^m + l^m + 1 #/n+ 1 = ^m-rl^O^m + f

Therefore,

dm + 2\t>m + 2> "m + l' "m + l) = "m + 2(^m + 2' "0> dm + l)'

and from this it now follows that

(i) d0,...,dm + 2 are conjugate,

(u)gm + 3Hogj = 0,/ = 0,...,m + 2,

(iii) ^ + 3^ = 0, i = 0, ...,m + 2.

We continue in the same fashion to prove that for i> m,

di+i(8i+i'Hi>di) = di+i(gi+i>Ho>di)-

Therefore, for quadratic functions and exact line searches the SCG is the same as the

PCG with fixed preconditioner H0 and has quadratic termination.

Let us now consider the use of the special update in the iteration (11). H0 is a

given matrix.

di = ~Hi&i'

(17) xi+1 =x( +a{df,

Hi+^Fis^y^Hj,

where F is given by (4)-(5).  This algorithm will be called the SQN.   Using a similar

argument as for the SCG, it is straightforward to show that for quadratic functions

and exact line searches this algorithm is also identical to the PCG with fixed precon-

ditioner.  Hence, it has quadratic termination.

We would expect that the efficiency of the algorithms would increase as the

number of corrections stored increases.  Equation (6) seems to indicate so.  The follow-

ing argument also backs this reasoning.   First we quote a result due to Fletcher [5].

Theorem . Let f be a strictly convex quadratic function, H0 symmetric and

positive definite.  Let {sk} be generated by the BFGS method. Let \k, i = 1,... ,n,

be the eigenvalues ofA^H/^A^, where A is the hessian off.   Then
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(18) min{Xf, 1} <Xfc+1 <max{\k, 1}.

(Note that this result does not require exact line searches.)

The theorem can be used to prove that for nonlinear functions (and under cer-

tain conditions on the line search) the BFGS quasi-Newton method generates matrices

Hk with uniformly bounded condition numbers and is locally convergent (Stoer [14]).

Equation (10) tells us that any Hk obtained by means of the special update can

also be obtained using the usual BFGS formula.  Therefore, (18) also holds.

Let k > m and define V¡, i = 1, . . . , n, to be the eigenvalues of AV2HjAYl.

Then for the special update

Xf+1 <max{Xfc, 1}<- -^maxiXf, 1},

(19)
Xf+1>min{Xf, 1} >--->min{X?, 1},

where s = k + 1 - m.

We conclude that the condition number of the special matrices is bounded for

quadratic functions.  The larger m is, the greater the number of inequalities in (19)

will be.  Note that X? is an eigenvalue of Av*HqAVi.  In a similar way as it was done

in [9] for the restarted PCG (there it is called the VSCG method) (19) can be used

to show that for nonlinear functions SCG and SQN using asymptotically exact line

searches generate matrices with uniformly bounded condition numbers and, therefore,

are locally convergent.

4. A Recursive Formula to Compute H • g.  When using the special matrices

(4)—(5) in quasi-Newton steps or in preconditioned conjugate gradient steps, the prod-

uct H ■ g has to be computed.  The following recursion performs this efficiently.  It

is essentially the same as the formula for the usual BFGS [6]. M is the number of

corrections stored.  ITER is the iteration number.

1) IF  ITER < M      SETINCR = 0;       ELSE     SET     INCR = ITER-A/

BOUND = ITER BOUND = M

2) ABOUND =#ITER

3) FOR    i = (BOUND-1).0

/ = /' + incr

"i^Pitfli+i (STORE«,.)    (a)

1i = (li+i-aiyj (b)

ro = ^o • <7o 00

FOR     i = 0, 1,... , (BOUND-1)

/ = /' + incr

Vj = PiyJri (d)

_     ri+i = ri + Sj(<*i-ßi) (e)
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This formula requires at most 4nM + 2M + n multiplications and AnM + M

additions.

5.  Numerical Results.  The limited storage BFGS formula was implemented with

the quasi-Newton iteration (17) and with the preconditioned conjugate gradient iter-

ation (13).  The'resulting methods are denoted by SQN and SCG, respectively. They

are compared with the usual BFGS method, with Shanno's method [11] and with a

standard CG method.  The numbers given in Table 1 indicate the number of function

evaluations.

Table I

CG SCG SQN BFGS SHANNO

MSTORE

2      4      8

MSTORE

3        4        8

Fletcher

n-3

75 59    53    51 47     55   44 32 *3

Biggs

n - 6

235 60 49    46 95     77    68 50 82

Powell

n-4 165 82 76    68 122     69   83 59 150.

Wood

n - <t
292 146 181   155 74      67    56 M 112

Ext.   Powell

n - 8

n -16

n - 20

168

170

211

115 93    79

113 99 92

106 105 98

116 103 83

94  92 76

97  84 92

70

66

47

150

121

129

TRIG

n - 10

n - 15

n - 20

364 271 204

310 271 209

425  413 307

The BFGS and Shanno's method were run using the code of Shanno and Phua

[13].  The SQN and SCG were tested for different values of MSTORE (the number of

corrections stored).  For SQN the initial matrix was scaled after the first iteration using
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the formula

#o = sly0/ylH<>yo-

The SCG was restarted every n iterations or whenever a nondescent direction was found.

This happened very rarely.

All methods employed the line search procedure given in [13].   It uses safe-

guarded cubic interpolation to find an a such that

f(x + ad)<f(x) + .0001 adTg(x)

and

\dTg(x + ad)/dTg(x)\ < .9.

For the SCG and SQN two values of the steplength were always tried before accepting

the step.

The test problems are Fletcher's helix, Bigg's exponential, Powell's singular,

Wood's, Extended Powell and the Trigonometric functions.  They are all documented

in [3], where the initial points are also given.  The convergence criterion was ||g|| < e,

where e = 10~8 in all problems except for Powell's singular, where e = 10~6. All runs

were made using a Burroughs B6700 computer in double length arithmetic.

For some values of MSTORE the limited storage methods are actually using more

storage than the BFGS.  In practice, one would of course never do this.  However, as

we are concerned with the effect of storing more vectors, these runs are of interest.

For the Trigonometric functions the different methods converged to different solu-

tions; we only report the results for SQN.

Shanno's method has the same storage requirements as SQN with MSTORE = 2.

It is based on Beak's method and uses Powell's restart criterion.  It is considerably

more efficient than the standard conjugate gradient, as Table I shows.  The SQN with

MSTORE = 2 does not perform well, as was noted earlier in [11] ; and we do not re-

port its results here.  SQN with MSTORE = 3 is somewhat faster than Shanno's method

and speeds up as MSTORE increases.  The SCG performs well for small values of

MSTORE and improves also as MSTORE increases.  We note that there are few in-

stances where the performance does not improve by increasing MSTORE.

6.  Conclusion.  A formula for updating quasi-Newton matrices based on the

BFGS and which uses a variable amount of storage is presented.  It is shown that it

produces positive definite matrices and when used in two classes of minimization algo-

rithms it preserves the quadratic termination property.  Furthermore, the quasi-Newton

equation is satisfied in the past m directions, where m is the number of updates stored.

Numerical experiments indicate that the resulting algorithms are very efficient and that

their performance improves consistently as the storage used increases.
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