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A DUAL-DUAL MIXED FORMULATION
FOR NONLINEAR EXTERIOR TRANSMISSION PROBLEMS

GABRIEL N. GATICA AND SALIM MEDDAHI

Dedicated to Professor Dr. George C. Hsiao on the occasion of his 65th birthday

Abstract. We combine a dual-mixed finite element method with a Dirichlet-
to-Neumann mapping (derived by the boundary integral equation method) to
study the solvability and Galerkin approximations of a class of exterior non-
linear transmission problems in the plane. As a model problem, we consider a
nonlinear elliptic equation in divergence form coupled with the Laplace equa-
tion in an unbounded region of the plane. Our combined approach leads to
what we call a dual-dual mixed variational formulation since the main operator
involved has itself a dual-type structure. We establish existence and unique-
ness of solution for the continuous and discrete formulations, and provide the
corresponding error analysis by using Raviart-Thomas elements. The main
tool of our analysis is given by a generalization of the usual Babuska-Brezzi
theory to a class of nonlinear variational problems with constraints.

1. Introduction

The numerical solution of interior and exterior nonlinear-linear transmission
problems usually combines the finite element method (FEM) in the nonlinear region
with the boundary integral equation method (BIM) in the linear and homogeneous
domain. This method, which is known as the coupling of FEM and BIM, has been
applied successfully during the last decades using traditional finite elements and,
more recently, using mixed finite elements as well (see, e.g., [3], [6], [16], [17], [18],
[20], [21], [31], [34], and the references therein).

An alternative procedure for dealing with exterior problems consists of employing
Dirichlet-to-Neumann mappings. This means that one first introduces a sufficiently
large circle Γ (in R2) or a sphere (in R3), so that the linear domain is divided into
a bounded annular region and an unbounded one. Next, one derives an explicit
formula for the Neumann data on Γ in terms of the Dirichlet data on the same curve,
which is known as the Dirichlet-to-Neumann mapping. This has been done for
several elliptic operators, including the Lamé system for elasticity, by using Fourier-
type series developments (see, e.g., [9], [23], [24], [25]). Then, in [11] we utilized
the mapping obtained in [24] together with our mixed finite element approach from
[21] to study the weak solvability of an exterior hyperelastic interface problem.
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Nevertheless, up to now, all the works on the combined use of mixed-FEM with
either BIM or Dirichlet-to-Neumann mappings for nonlinear transmission problems
have provided satisfactory results only at the continuous level. The associated
Galerkin schemes still require some open questions to be solved. Indeed, in order
to prove the unique solvability of the resulting variational formulations, one needs to
introduce certain quotient spaces for which it is not clear how to define explicit finite
element subspaces satisfying the corresponding discrete compatibility conditions.
This drawback has motivated either the use of alternative mixed formulations (see,
e.g., [1]) or the search of new tools from analysis to deal with the usual mixed
formulations.

The purpose of the present paper is, precisely, to show some advances in the
direction of the latter approach. In fact, we combine the dual-mixed finite element
method from [20, 21] with a Dirichlet-to-Neumann mapping (derived by the BIM)
to study the solvability and Galerkin approximation of a class of nonlinear exterior
transmission problems in the plane. The resulting variational formulation can be
written as what we call a dual-dual type operator equation, which, thanks to an
extension of the usual Babuska-Brezzi theory, allows us to obtain satisfactory results
for both the continuous and discrete schemes.

The rest of the paper is presented as follows. In Section 2, we describe the
exterior transmission problem and transform it, using the Dirichlet-to-Neumann
mapping, into a nonlocal boundary value problem on a bounded domain. The
corresponding dual-dual mixed formulation is derived in Section 3. In Section 4,
we recall the main results from a recent work concerning a generalization of the
classical Babuska-Brezzi theory to a family of nonlinear variational problems with
constraints. Finally, in Section 5 we apply the theorems from Section 4 and provide
the existence and uniqueness of solution for the continuous and Galerkin dual-dual
formulations by using Raviart-Thomas elements of lowest order. In addition, we
prove the Cea estimate and provide, under usual regularity assumptions, an error
bound of O(h).

2. The exterior nonlinear transmission problem

Let Ω0 be a bounded and simply connected domain in R2 with Lipschitz-
continuous boundary Γ0. Also, let Ω1 be the annular domain bounded by Γ0 and
another Lipschitz-continuous closed curve Γ1 whose interior region contains Ω0. In
addition, let ai : Ω1 ×R2 → R, i = 1, 2, be nonlinear mappings satisfying certain
conditions to be specified later on. Then, given f1 ∈ L2(Ω1), we consider the exte-
rior nonlinear transmission problem: Find u1 ∈ H1(Ω1) and u2 ∈ H1

loc(R2−Ω0∪Ω1)
such that

u1 = 0 on Γ0 ,

−
2∑
i=1

∂

∂xi
ai(·,∇u1(·)) = f1 in Ω1 ,

u1 = u2 and
2∑
i=1

ai(·,∇u1(·))ni −
∂u2

∂n
= 0 on Γ1 ,

−∆u2 = 0 in R2 − Ω0 ∪ Ω1 ,
u2(x) = O(1) as ||x|| → +∞ ,

(2.1)

where n := (n1, n2) denotes the unit outward normal to ∂Ω1. This kind of problem
appears in the computation of magnetic fields of electromagnetic devices (see, e.g.,
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[26, 27]), in some subsonic flow and fluid mechanics problems (see, e.g., [7, 8]),
and also in steady heat conduction. For instance, in the latter case, one has
ai(x,∇u(x)) = k(x,∇u(x)) ∂u∂xi , where u is the temperature and k is the heat con-
ductivity. In all these problems, and in many others from physics and engineering
sciences, the fluxes become variables of much interest and are required, therefore,
to be approximated directly. This fact motivates the use of mixed finite element
formulations.

According to the above comment, in what follows we apply a dual-mixed fi-
nite element method in Ω1 and a Dirichlet-to-Neumann mapping (arising from the
boundary integral equation method) in the exterior region R2 − Ω0 ∪ Ω1. To this
end, we first introduce a sufficiently large circle Γ with center at the origin and ra-
dius r such that its interior region contains Ω0 ∪Ω1. We denote by Ω2 the annular
region bounded by Γ1 and Γ and put Ω := Ω1 ∪ Γ1 ∪ Ω2. Next, we define

u :=

{
u1 in Ω1,

u2 in Ω2,

the flux variable

σ :=

{
(a1(·,∇u), a2(·,∇u))T in Ω1,

∇u in Ω2,

the global data

f :=

{
f1 in Ω1,

0 in Ω2,

and introduce the auxiliary unknowns

θ := ∇u in Ω and ξ := u|Γ .(2.2)

On the other hand, by applying the boundary integral equation method in the
region exterior to the circle Γ, and according to the analysis from [28] (see also
[19]), we obtain the Dirichlet-to-Neumann mapping

∂u

∂ν
= −2 W(u|Γ) on Γ , or equivalently, σ · ν = −2 Wξ on Γ ,(2.3)

where ν is the unit outward normal to Γ and W is the hypersingular boundary
integral operator associated with the Laplacian. Denoting by ν(z) the unit outward
normal to z ∈ Γ, we have

(Wλ)(x) := − ∂

∂ν(x)

∫
Γ

{
∂

∂ν(y)
E(x, y)

}
λ(y) dsy ∀x ∈ Γ, ∀λ ∈ H1/2(Γ) ,

where E(x, y) := − 1
2π log ||x − y|| is the two-dimensional fundamental solution of

the Laplace operator. It is well known (see, e.g., [5]) that W : H1/2(Γ)→ H−1/2(Γ)
is linear and bounded and that there exists C0 > 0 such that

〈λ,Wλ〉 ≥ C0 ||λ||2H1/2(Γ) ∀λ ∈ H1/2
0 (Γ) ,(2.4)

where, hereafter, 〈·, ·〉 denotes the duality pairing of H1/2(Γ) and H−1/2(Γ) with
respect to the L2(Γ)-inner product, and

H
1/2
0 (Γ) := {λ ∈ H1/2(Γ) : 〈λ, 1〉 = 0 } .
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Also, since W 1 ≡ 0 on Γ, we note that it suffices to look for the unknown ξ in the
space H1/2

0 (Γ).

Now, the asymptotic behaviour of u at ∞ implies that
∫

Γ

∂u

∂ν
ds = 0, which

means that σ ∈ H0(div; Ω), where

H0(div; Ω) := { τ ∈ H(div; Ω) : 〈1, τ · ν〉 = 0 } .

We recall here that H(div; Ω) is the space of functions τ ∈ [L2(Ω)]2 such that
div τ ∈ L2(Ω). Provided with the inner product 〈τ ,σ〉H(div;Ω) := 〈τ ,σ〉[L2(Ω)]2 +
〈div τ , divσ〉L2(Ω), H(div; Ω) is a Hilbert space. Moreover, for all τ ∈ H(div; Ω),
τ · ν ∈ H−1/2(Γ) and ||τ · ν||H−1/2(Γ) ≤ ||τ ||H(div;Ω) (see [22] for the proof of these
results).

By virtue of the above analysis, the exterior transmission problem (2.1) can
be reformulated as the following nonlocal boundary value problem in Ω: Find
(θ, ξ,σ, u) ∈ [L2(Ω)]2 ×H1/2

0 (Γ)×H0(div; Ω)× L2(Ω) such that

u = 0 on Γ0, θ = ∇u in Ω ,

σ =


a(·,θ) in Ω1

θ in Ω2

and divσ = −f in Ω ,(2.5)

σ · ν = −2Wξ and u = ξ on Γ ,

where we have adopted the notation a(·,θ) := (a1(·,θ), a2(·,θ))T , and the second
and fourth equations of (2.5) must be taken in the distributional sense.

The previous procedure induces a dual-mixed finite element approach in Ω,
which, up to now, is very close to the one employed in [20, 21] and [11]. However,
the main difference will arise later on when we derive the corresponding variational
formulation. Indeed, instead of using the complicated quotient spaces introduced
in [20], we will rewrite the formulation in such a way that only the spaces indicated
in (2.5) will be required in our subsequent analysis.

3. The dual-dual mixed formulation

From now on, we assume that the nonlinear mappings ai satisfy the following
conditions:
(A.1) Carathéodory condition. The function ai(·, θ̂), i = 1, 2, is measurable in
Ω1 for all θ̂ ∈ R2, and ai(x, ·) is continuous in R2 for almost all x ∈ Ω1.
(A.2) Growth condition. There exist functions φi ∈ L2(Ω1), i = 1, 2, such that

|ai(x, θ̂)| ≤ C {1 + |θ̂|}+ |φi(x)| ,

for all θ̂ ∈ R2 and for almost all x ∈ Ω1.
(A.3) The functions ai(x, · ), i = 1, 2, have continuous first order partial derivatives
in R2 for almost all x ∈ Ω1. In addition, there exists C > 0 such that

2∑
i,j=1

∂

∂θ̂j
ai(x, θ̂) ζ̂i ζ̂j ≥ C

2∑
i=1

ζ̂2
i ,

for all θ̂ := (θ̂1, θ̂2), ζ̂ := (ζ̂1, ζ̂2) ∈ R2 and for almost all x ∈ Ω1.
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(A.4) The functions ai(x, ·) have continuous first order partial derivatives in R2 for
almost all x ∈ Ω1. In addition, there exists C > 0 such that for each i, j ∈ {1, 2},
∂
∂θ̂j

ai(x, θ̂) satisfies the Carathéodory condition (A.1), and
∣∣∣ ∂
∂θ̂j

ai(x, θ̂)
∣∣∣ ≤ C, for

all θ̂ ∈ R2 and for almost all x ∈ Ω1.
For specific examples of coefficients ai satisfying the above conditions, we refer

to [4], [34] and [35].
As a consequence of (A.1) and (A.2), one can prove (see, e.g., Theorem 2.8 in [10])

that the Nemytsky operator Ai : [L2(Ω1)]2 → L2(Ω1), defined by (Ai θ)(x) :=
ai(x,θ(x)) for all θ ∈ [L2(Ω1)]2 and for almost all x ∈ Ω1, is continuous and
bounded.

Now, for the weak formulation, we first multiply the second equation in (2.5) by
a function τ ∈ H0(div; Ω), integrate by parts in Ω, and use that u = 0 on Γ0 and
that u = ξ on Γ, to obtain

−
∫

Ω

θ · τ dx+ 〈ξ, τ · ν〉 −
∫

Ω

u div τ dx = 0 .(3.1)

Next, the third equation in (2.5) is tested against ζ ∈ [L2(Ω)]2, which gives∫
Ω1

a(·,θ) · ζ dx+
∫

Ω2

θ · ζ dx−
∫

Ω

σ · ζ dx = 0 .(3.2)

Finally, the fourth and fifth equations in (2.5) are tested against v ∈ L2(Ω) and
λ ∈ H1/2

0 (Γ), respectively, which yields

−
∫

Ω

v divσ dx =
∫

Ω

fv dx(3.3)

and

2 〈λ,Wξ〉+ 〈λ,σ · ν〉 = 0 .(3.4)

Thus, collecting appropriately (3.1), (3.2), (3.3) and (3.4), we arrive at the fol-
lowing variational formulation of (2.5): Find ((θ, ξ),σ, u) ∈ ([L2(Ω)]2×H1/2

0 (Γ))×
H0(div; Ω)× L2(Ω) such that∫

Ω1

a(·,θ) · ζ dx+
∫

Ω2

θ · ζ dx+ 2 〈λ,Wξ〉

−
∫

Ω

σ · ζ dx+ 〈λ,σ · ν〉 = 0 ,

−
∫

Ω

θ · τ dx+ 〈ξ, τ · ν〉 −
∫

Ω

u div τ dx = 0 ,

−
∫

Ω

v divσ dx =
∫

Ω

fv dx ,

(3.5)

for all ((ζ, λ), τ , v) ∈ ([L2(Ω)]2 ×H1/2
0 (Γ))×H0(div; Ω)× L2(Ω).

We show next that (3.5) can be rewritten in the form of a nonlinear variational
problem with linear constraints. For this purpose, we put X1 := [L2(Ω)]2×H1/2

0 (Γ),
M1 := H0(div; Ω), X := X1×M1, M := L2(Ω), denote t := (θ, ξ), s := (ζ, λ) ∈ X1,
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and define the operators A1 : X1 → X ′1, B1 : X1 →M ′1, A : X → X ′, B : X →M ′,
and the functional G ∈M ′, as follows:

[A1(t), s] :=
∫

Ω1

a(·,θ) · ζ dx+
∫

Ω2

θ · ζ dx+ 2 〈λ,Wξ〉 ,(3.6)

[B1(t), τ ] := −
∫

Ω

θ · τ dx+ 〈ξ, τ · ν〉 ,(3.7)

[A(t,σ), (s, τ )] := [A1(t), s] + [B1(s),σ] + [B1(t), τ ] ,(3.8)

[B(t,σ), v] := −
∫

Ω

v divσ dx(3.9)

and

[G, v] :=
∫

Ω

fv dx(3.10)

for all (t,σ), (s, τ ) ∈ X and for all v ∈M , where [ ·, · ] stands for the duality pairing
induced by the operators appearing in each case.

Further, let B∗1 : M1 → X ′1 and B∗ : M → X ′ be the transposes of B1 and B,
respectively, and let O denote both the null functional and the null operator.

It is worth remarking that B1 and B are linear and bounded operators, and that
A1, and hence A, are nonlinear. Moreover, A can be defined, equivalently, as:

A(t,σ) :=

 A1 B∗1

B1 O

  t

σ

 ∈ X ′ := X ′1 ×M ′1 .(3.11)

Therefore, the system (3.5) can be reformulated as the following operator equa-
tion: Find ((t,σ), u) ∈ X ×M such that A B∗

B O

  (t,σ)

u

 =

 O

G

 .(3.12)

The equation (3.12), which can be viewed as a nonlinear variational problem
with linear constraints, constitutes our so-called dual-dual mixed formulation of
(2.5) since the operator A itself has the dual-type structure given by (3.11).

In order to establish the unique solvability of (3.12), study its Galerkin approx-
imations, and derive the corresponding error analysis, we need an extension of the
usual Babuska-Brezzi theory to the above class of nonlinear problems. This is,
precisely, the subject of the next section. We will go back to our problem (3.12) in
Section 5.

4. An extension of the Babuska-Brezzi theory

In the recent paper [12] we have generalized the classical Babuska-Brezzi theory
to the class of nonlinear variational problems with constraints given by (3.12). The
purpose of this section is to recall the main results from that work.

In order to set the abstract problem of interest, we let X1, M1, M be Hilbert
spaces and define X := X1 ×M1. Then, we consider a nonlinear operator A1 :
X1 → X ′1, and linear bounded operators B1 : X1 → M ′1 and B : X → M ′, with
transposes B∗1 : M1 → X ′1 and B∗ : M → X ′, respectively. With A1, B1 and B∗1
we define a nonlinear operator A : X → X ′ as in (3.11).
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Then, we are interested in the following nonlinear variational problem: Given
(F,G) ∈ X ′ ×M ′, find ((t,σ), u) ∈ X ×M such that A B∗

B O

  (t,σ)

u

 =

 F

G

 .(4.1)

Sufficient conditions for the unique solvability of (4.1) are provided in the fol-
lowing theorem.

Theorem 4.1. Let V := Ker (B) such that V = X̃1 × M̃1, with X̃1 ⊆ X1 and
M̃1 ⊆ M1. Also, define V1 := {s ∈ X̃1 : [B1(s), τ ] = 0 ∀ τ ∈ M̃1} and let Π1 :
X ′1 → V ′1 be the canonical imbedding defined by Π1(F1) = F1|V1 for all F1 ∈ X ′1.
Assume that

i) there exists β > 0 such that for all v ∈M

sup
(s,τ )∈X
(s,τ ) 6=0

[B(s, τ ), v]
||(s, τ )||X

≥ β ||v||M ;

ii) there exists β1 > 0 such that for all τ ∈ M̃1

sup
s∈X̃1
s 6=0

[B1(s), τ ]
||s||X1

≥ β1 ||τ ||M1 ;

iii) the nonlinear operator A1 : X1 → X ′1 is Lipschitz continuous with a Lipschitz
constant γ > 0, and for any t̃ ∈ X1, the nonlinear operator Π1A1(· + t̃) :
V1 → V ′1 is strongly monotone.

Then, for each (F,G) ∈ X ′ × M ′ there exists a unique ((t,σ), u) ∈ X × M
solution of (4.1).

Proof. We adapt the analysis from [22] (Chapter I, Section 4) to the present situ-
ation. Thus, given G ∈M ′ we set

V (G) := { (s, τ ) ∈ X : B(s, τ ) = G }
and observe that V := Ker (B) = V (O).

Then, with (4.1) we associate the following problem: Find (t,σ) ∈ V (G) such
that

[A(t,σ), (s, τ )] = [F, (s, τ )] ∀ (s, τ ) ∈ V .(4.2)

Clearly, if (t,σ) ∈ V (G) is a solution of (4.2), then, due to the inf-sup condition
Theorem 4.1 i) and Lemma 4.1 in Chapter I of [22], there exists a unique u ∈ M
such that ((t,σ), u) ∈ X ×M is a solution of (4.1).

Conversely, if ((t,σ), u) ∈ X ×M is a solution of (4.1), then (t,σ) ∈ V (G) and
(t,σ) is a solution of (4.2) since for all (s, τ ) ∈ V , [B∗(u), (s, τ )] = [B(s, τ ), u] = 0.

Because of this equivalence, we now concentrate on problem (4.2). Again, by
Lemma 4.1 in Chapter I of [22], there exists (t0,σ0) ∈ X such that B(t0,σ0) = G.
Thus, problem (4.2) can be replaced by: Find (t̃, σ̃) ∈ V such that

[A1(t̃ + t0), s] + [B∗1(σ̃), s] = [F̃1, s]

[B1(t̃), τ ] = [G̃1, τ ]

(4.3)
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for all (s, τ ) ∈ V , where F̃1 := F1 −B∗1(σ0) ∈ X ′1 and G̃1 := G1 −B1(t0) ∈ M ′1,
with F := (F1,G1) ∈ X ′1 ×M ′1 =: X ′.

Next, we set

V1(G̃1) := { s ∈ X̃1 : [B1(s), τ ] = [G̃1, τ ] ∀ τ ∈ M̃1 }

and observe that V1 = V1(O).
Then we associate with (4.3) the following problem: Find t̃ ∈ V1(G̃1) such that

[A1(t̃ + t0), s] = [F̃1, s] ∀ s ∈ V1 .(4.4)

Using Theorem 4.1 ii) and Lemma 4.1 in Chapter I of [22], we deduce that there
exists t̃0 ∈ X̃1 such that [B1(t̃0), τ ] = [G̃1, τ ] for all τ ∈ M̃1. Therefore, problem
(4.4) can be replaced by: Find t̂ ∈ V1 such that

[A1(t̂ + t̃0 + t0), s] = [F̃1, s] ∀ s ∈ V1 .(4.5)

Thus, due to the hypotheses on A1 (see Theorem 4.1 iii)) and thanks to a well
known result from nonlinear functional analysis (see, e.g., Theorem 3.3.23 in [32])
we conclude that (4.5) has a unique solution t̂ ∈ V1, and hence t̃ := t̂+ t̃0 ∈ V1(G̃1)
is the unique solution of (4.4). It follows, in virtue of Theorem 4.1 ii) and Lemma
4.1 in Chapter I of [22], that there exists σ̃ ∈M1 such that (t̃, σ̃) ∈ V is the unique
solution of (4.3). In this way, we deduce that (t,σ) := (t̃ + t0, σ̃ + σ0) ∈ V (G)
is the unique solution of (4.2). Finally, the equivalence between (4.1) and (4.2)
completes the proof.

Now, for the Galerkin approximation of (4.1), we let X1,h, M1,h and Mh be finite
dimensional subspaces of X1, M1 and M , respectively, and let Xh := X1,h ×M1,h

be the corresponding subspace of X . Here, we assume that the index h is taken in
a numerable family I := {hj}j∈N such that hj ≥ hj+1 for all j ∈ N.

Thus, the Galerkin scheme associated with (4.1) reads as follows: Given (F,G) ∈
X ′ ×M ′, find ((th,σh), uh) ∈ Xh ×Mh such that

[A(th,σh), (sh, τ h)] + [B∗(uh), (sh, τh)] = [F, (sh, τh)] ,

[B(th,σh), vh] = [G, vh] ,
(4.6)

for all ((sh, τ h), vh) ∈ Xh ×Mh.
The discrete analogue of Theorem 4.1 is stated next.

Theorem 4.2. Let Vh := {(sh, τ h) ∈ Xh : [B(sh, τh), vh] = 0 ∀ vh ∈ Mh} such
that Vh := X̃1,h × M̃1,h, with X̃1,h ⊆ X1,h and M̃1,h ⊆ M1,h. Also, define V1,h :=
{sh ∈ X̃1,h : [B1(sh), τh] = 0 ∀ τ h ∈ M̃1,h} and let Π1,h : X ′1,h → V ′1,h be the
canonical imbedding. Further, let A1,h := p′hA1 : X1 → X ′1,h where ph : X1,h → X1

is the canonical injection with adjoint p′h : X ′1 → X ′1,h. Assume that

i) there exists β∗ > 0, independent of the subspaces involved, such that for all
vh ∈Mh

sup
(sh,τ h)∈Xh
(sh,τ h) 6=0

[B(sh, τ h), vh]
||(sh, τh)||X

≥ β∗ ||vh||M ;
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ii) there exists β∗1 > 0, independent of the subspaces involved, such that for all
τ h ∈ M̃1,h

sup
sh∈X̃1,h
sh 6=0

[B1(sh), τ h]
||sh||X1

≥ β∗1 ||τ h||M1 ;

iii) the nonlinear operator A1,h : X1 → X ′1,h is Lipschitz-continuous, and for any
t̃ ∈ X1,h, the nonlinear operator Π1,hA1,h(· + t̃) : V1,h → V ′1,h is strongly
monotone with a monotonicity constant αh > 0 independent of t̃.

Then, for each (F,G) ∈ X ′×M ′ there exists a unique ((th,σh), uh) ∈ Xh×Mh

solution of (4.6).

Proof. It is similar to the proof of Theorem 4.1 and hence we omit further details.
We refer the interested reader to Section 3 and Theorem 3.2 in [12].

Clearly, the Lipschitz-continuity of A1 yields the same property for A1,h, with
the same Lipschitz constant γ, independent of h, given in Theorem 4.1.

Finally, concerning the error analysis, we recall the following result from [12].

Theorem 4.3. Assume that all the hypotheses of both Theorem 4.1 and Theorem
4.2 are satisfied, and let ((t,σ), u) ∈ X ×M and ((th,σh), uh) ∈ Xh ×Mh be the
unique solutions of (4.1) and (4.6), respectively. Let F := (F1,G1) ∈ X ′, with
F1 ∈ X ′1 and G1 ∈M ′1. In addition, suppose that the family of nonlinear operators
{Π1,hA1,h(· + t̃) : t̃ ∈ X1,h, h ∈ I } is uniformly strongly monotone, i.e., there
exists α > 0 such that αh ≥ α for all h ∈ I. Then, there exists C > 0, depending
only on α, γ, ||B1||, β∗1 , ||B|| and β∗, such that the following Strang-type error
estimate holds for all h ∈ I:

||((t,σ), u)− ((th,σh), uh)||

≤ C
{

inf
((sh,τ h),vh)∈Xh×Mh

||((t,σ), u)− ((sh, τh), vh)||

+ sup
s̃h∈X̃1,h
s̃h 6=0

{
[F1 −A1(t)−B∗1(σ), s̃h]

||s̃h||

}

+ sup
τ̃ h∈M̃1,h

τ̃ h 6=0

{
[G1 −B1(t), τ̃ h]

||τ̃ h||

} }
.

(4.7)

Proof. We do not give full details here, but just sketch the main ideas. For the
whole proof, we refer to Section 4 in [12].

First, the discrete inf-sup condition satisfied by B (cf. Theorem 4.2 i)) guarantees
the existence of (t0,h,σ0,h) ∈ X1,h×M1,h such that [B(t0,h,σ0,h), vh] = [G, vh] for
all vh ∈Mh.
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Then, by using the properties of the operators A1 and B1, one proves that for
all h ∈ I

||t− th|| ≤
1
α

sup
s̃h∈X̃1,h
s̃h 6=0

{
[F1 −A1(t)−B∗1(σ), s̃h]

||s̃h||

}

+
(

1 +
γ

α

)
inf

sh∈V1,h(G1)
||t− sh||

+
||B1||
α

inf
τ̃ h∈M̃1,h

||σ − (τ̃h + σ0,h)|| ,

(4.8)

where

V1,h(G1) := {sh ∈ X1,h : [B1(sh), τ h] = [G1, τh] ∀ τ h ∈ M̃1,h} .

Now, the discrete inf-sup condition for B1 (cf. Theorem 4.2 ii)) allows us to
improve the bound provided by the second term on the right hand side of inequality
(4.8). Indeed, we show that the following estimate holds for all h ∈ I:

inf
sh∈V1,h(G1)

||t− sh|| ≤
(

1 +
||B1||
β∗1

)
inf

s̃h∈X̃1,h

||t− (s̃h + t0,h)||

+
1
β∗1

sup
τ̃ h∈M̃1,h

τ̃ h 6=0

{
[G1 −B1(t), τ̃ h]

||τ̃ h||

}
.

(4.9)

Next, by applying again the properties of the operators A1 and B1, and also the
discrete inf-sup condition for B1, we obtain the following upper bound for the error
||σ − σh||:

||σ − σh|| ≤
1
β∗1

sup
s̃h∈X̃1,h
s̃h 6=0

{
[F1 −A1(t)−B∗1(σ), s̃h]

||s̃h||

}
+

γ

β∗1
||t− th||

+
(

1 +
||B1||
β∗1

)
inf

τ̃ h∈M̃1,h

||σ − (τ̃ h + σ0,h)|| .

(4.10)

Hence, as a consequence of (4.8), (4.9) and (4.10), and using also the discrete
inf-sup condition for B, we deduce that there exists C̃ > 0, depending only on α,
γ, ||B1||, β∗1 , ||B|| and β∗, such that for all h ∈ I:

||(t,σ)− (th,σh)|| ≤ C̃

{
inf

(sh,τ h)∈Xh
||(t,σ)− (sh, τ h)||

+ sup
s̃h∈X̃1,h
s̃h 6=0

{
[F1 −A1(t)−B∗1(σ), s̃h]

||s̃h||

}

+ sup
τ̃ h∈M̃1,h

τ̃ h 6=0

{
[G1 −B1(t), τ̃ h]

||τ̃h||

}}
.

(4.11)

On the other hand, following the usual approach from [22] and applying now
the properties of the operators A and B one can prove that there exists C̄ > 0,



A DUAL-DUAL MIXED FORMULATION 1471

depending only on γ, ||B1||, ||B|| and β∗, such that for all h ∈ I:

||u− uh|| ≤ C̄

{
||(t,σ)− (th,σh)|| + inf

vh∈Mh

||u− vh||
}
.(4.12)

Finally, (4.11) and (4.12) yield (4.7), thus completing the proof of the theorem.

It is important to observe that if X̃1,h ⊆ X̃1, then

sup
s̃h∈X̃1,h
s̃h 6=0

{
[F1 −A1(t)−B∗1(σ), s̃h]

||s̃h||

}
= 0 .

Similarly, if M̃1,h ⊆ M̃1, then

sup
τ̃ h∈M̃1,h

τ̃ h 6=0

{
[G1 −B1(t), τ̃ h]

||τ̃ h||

}
= 0 .

It follows that if Vh ⊆ V , then (4.7) becomes the usual Cea estimate for the Galerkin
error. In other words, the second and third terms on the right hand side of (4.7)
constitute the consistency error for the case in which Vh is not a subspace of V .

5. Existence, uniqueness and approximation results

5.1. The continuous problem. We now go back to our problem from Section 3.
In the sequel, we show that (3.12) satisfies the hypotheses of Theorem 4.1.

To begin with, we state the continuous inf-sup condition for B.

Lemma 5.1. There exists β > 0 such that for all v ∈M ,

sup
(s,τ )∈X
(s,τ ) 6=0

[B(s, τ ), v]
||(s, τ )||X

≥ β ||v||M .

Proof. We only observe that

sup
(s,τ )∈X
(s,τ ) 6=0

[B(s, τ ), v]
||(s, τ )||X

≥ sup
τ∈M1
τ 6=0

−
∫

Ω v div τ dx
||τ ||H(div;Ω)

.

The rest of the proof is quite standard and we refer the interested reader to [22],
[20] or [31].

It is important to remark that, using classical regularity results, one can show
(cf. Lemma 4.4 in [31]), that there exists β > 0 such that

sup
τ∈[H1(Ω)]2∩H0(div;Ω)

τ 6=0

−
∫

Ω
v div τ dx

||τ ||[H1(Ω)]2
≥ β ||v||L2(Ω) ∀ v ∈ L2(Ω) .(5.1)

This stronger inf-sup condition will be needed in subsection 5.2 to prove the discrete
inf-sup condition for B.

On the other hand, it is straigthforward to see that V := Ker(B) = X̃1 × M̃1,
where

X̃1 = X1 and M̃1 = { τ ∈M1 : div τ = 0 in Ω } .
Then, the inf-sup condition for B1 is also easily established.
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Lemma 5.2. We have

sup
s∈X̃1
s 6=0

[B1(s), τ ]
||s||X1

≥ ||τ ||H(div;Ω) ∀ τ ∈ M̃1 .

Proof. Since [B1(s), τ ] = −
∫

Ω
ζ · τ dx+ 〈λ, τ · ν〉 for all s := (ζ, λ) ∈ X̃1, it follows

that

sup
s∈X̃1
s 6=0

[B1(s), τ ]
||s||X1

≥ sup
(ζ ,0)∈X̃1

ζ 6=0

−
∫

Ω
ζ · τ dx

||ζ||[L2(Ω)]2
= ||τ ||[L2(Ω)]2 = ||τ ||H(div;Ω)

for all τ ∈ M̃1, which completes the proof.

Let us now recall that the nonlinear coefficients ai satisfy the assumptions (A.3)
and (A.4) (cf. Section 3). Then, the following lemma establishes the strong mono-
tonicity and Lipschitz-continuity of the nonlinear operator A1 : X1 → X ′1.

Lemma 5.3. There exist positive constants α, γ such that

[A1(t)−A1(s), t− s] ≥ α ||t− s||2X1
(5.2)

and

||A1(t)−A1(s)||X′1 ≤ γ ||t− s||X1(5.3)

for all t, s ∈ X1.

Proof. Let t := (θ, ξ) and s := (ζ, λ) ∈ X1. Then, we have

[A1(t)−A1(s), t− s] =
∫

Ω1

[a(·,θ)− a(·, ζ)] · [θ − ζ] dx

+||θ − ζ||2[L2(Ω2)]2 + 2 〈ξ − λ,W(ξ − λ)〉 ,
which, using the coerciveness property (2.4), yields

[A1(t)−A1(s), t− s] ≥
∫

Ω1
[a(·,θ)− a(·, ζ)] · [θ − ζ] dx

+||θ − ζ||2[L2(Ω2)]2 + 2C0 ||ξ − λ||2H1/2(Γ)
.

(5.4)

Now, proceeding as in Section 5 of [17], we find that

ai(x,θ(x)) − ai(x, ζ(x)) =
∫ 1

0

2∑
j=1

∂

∂θ̂j
ai(x, θ̂(x, t)) [θj(x) − ζj(x)] dt ,(5.5)

where θ̂(x, t) := ζ(x) + t[θ(x)− ζ(x)], θ = (θ1, θ2) and ζ = (ζ1, ζ2).
Thus, applying (5.5) and (A.3), we deduce that∫

Ω1

[a(·,θ)− a(·, ζ)] · [θ − ζ] dx =
2∑
i=1

∫
Ω1

[ai(·,θ)− ai(·, ζ)] [θi − ζi] dx

=
2∑
i=1

∫
Ω1

∫ 1

0

2∑
j=1

∂

∂θ̂j
ai(·, θ̂(·, t)) [θj − ζj ] [θi − ζi] dt dx

≥ C
2∑
i=1

∫
Ω1

[θi − ζi]2 dx = C ||θ − ζ||2[L2(Ω1)]2 .

(5.6)
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Therefore, replacing (5.6) back into (5.4) we obtain (5.2).
On the other hand, the proof of (5.3), which proceeds similarly to Section 6 of

[17], again uses the relation (5.5) and applies now the assumption (A.4) and the
continuity property of the boundary integral operator W. Hence, we omit further
details.

Corollary 5.4. Let V1 := { s ∈ X̃1 : [B1(s), τ ] = 0 ∀ τ ∈ M̃1 } and let Π1 : X ′1 →
V ′1 be the canonical imbedding. Then, for any t̃ ∈ X1, the nonlinear operator
Π1A1(·+ t̃) : V1 → V ′1 is strongly monotone.

Proof. It follows straigthforwardly from the previous lemma and the fact that V1 ⊆
X̃1 = X1. Indeed, given t̃ ∈ X1, t, s ∈ V1, we have

[Π1A1(t + t̃)−Π1A1(s + t̃), t− s]

= [A1(t + t̃)−A1(s + t̃), (t + t̃)− (s + t̃)] ≥ α ||t− s||2X1
,

which ends the proof.

We are now in position to provide our main result concerning the solvability of
the continuous problem (3.12).

Theorem 5.5. There exists a unique ((t,σ), u) ∈ X×M solution of the dual-dual
mixed formulation (3.12).

Proof. By virtue of the previous results of this section, the proof follows from a
direct application of the abstract Theorem 4.1.

5.2. A discrete Galerkin scheme. Now, we introduce specific finite element
subspaces, define the associated Galerkin scheme, and prove that the hypotheses of
both Theorem 4.2 and Theorem 4.3 are satisfied.

First, given N ∈ N, we let 0 = t0 < t1 < · · · < tN = 2π be a uniform partition of
[0, 2π] with tj+1 − tj = h̃ = 2π

N for j ∈ {0, 1, ..., N − 1}. Also, let z : [0, 2π]→ Γ be
the usual parametrization of the circle Γ given by z(t) := r (cos(t), sin(t))T for all
t ∈ [0, 2π]. We denote by Ωh̃ the annular domain bounded by Γ0 and the polygonal
line Γh̃ whose vertices are {z(t1), z(t2), ..., z(tN )}.

Let Th̃ be a regular triangulation of Ωh̃ by triangles T of diameter hT such that
h := supT∈Th̃ hT . For simplicity, we assume that for each T ∈ Th̃, either T ⊆ Ω1

or T ⊆ Ω2. Then, we replace each triangle T ∈ Th̃ with one side along Γh̃, by the
corresponding curved triangle with one side along Γ. In this way, we obtain from
Th̃ a triangulation Th of Ω made up of straight and curved triangles.

Next, we consider the canonical triangle with vertices P̂1 = (0, 0)T , P̂2 = (1, 0)T

and P̂3 = (0, 1)T as a reference triangle T̂ , and introduce a family of bijective
mappings {FT }T∈Th , such that FT (T̂ ) = T . In particular, if T is a straight triangle
of Th, then FT is the well known invertible affine mapping defined by FT (x̂) =
BT x̂ + bT , where BT , a square matrix of order 2, and bT ∈ R2 depend on the
vertices of T .

Now, if T is a curved triangle with vertices P1, P2 and P3, such that P2 =
z(tj−1) ∈ Γ and P3 = z(tj) ∈ Γ, then FT (x̂) = BT x̂ + bT + GT (x̂) for all x̂ :=
(x̂1, x̂2) ∈ T̂ , where

GT (x̂) =
x̂1

1− x̂2

{
z(tj−1 + x̂2(tj − tj−1))− [z(tj−1) + x̂2 (z(tj)− z(tj−1))]

}
.
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It can be proved (see, e.g., Theorem 22.4 in [35]) that FT is a diffeomorphism
of class C∞ that maps one-to-one T̂ onto the curved triangle T in such a way that
FT (P̂i) = Pi for i ∈ {1, 2, 3}. Also, the image of edge P̂2P̂3 is the curved side of T
and, since GT (x̂) = (0, 0)T for x̂1 = 0 and for x̂2 = 0, the two other edges of T̂ are
transformed linearly under FT to the straight sides of T .

We now consider the lowest order Raviart-Thomas spaces. For this purpose, we
first let

RT 0(T̂ ) := span
{(

1
0

)
,

(
0
1

)
,

(
x̂1

x̂2

)}
,

and for each triangle T ∈ Th, we put

RT 0(T ) := { τ : τ = J(FT )−1 (DFT ) τ̂ ◦ F−1
T , τ̂ ∈ RT 0(T̂ ) } ,

where J(FT ) and D(FT ) denote, respectively, the jacobian and the Frêchet differ-
ential of the mapping FT .

Then, we define the finite element subspaces for the unknowns θ and σ, as
follows:

Xθ1,h :=
{
τ h ∈ [L2(Ω)]2 : τh|T ∈ RT 0(T ) ∀T ∈ Th

}
(5.7)

and

M1,h := Xθ1,h ∩ H0(div; Ω) .(5.8)

Note that Xθ1,h does not require continuity of the normal components through
the sides of each triangle T , while M1,h certainly does.

Next, we set

Hh(0, 2π) :=
{
λ̃h : [0, 2π]→ R , λ̃h is continuous and periodic of period 2π

λ̃h|[tj−1,tj ] ∈ P1(tj−1, tj) ∀ j ∈ {1, ..., N} ,
∫ 2π

0

λ̃h(t) dt = 0
}

and define the finite element subspace for the unknown ξ:

Xξ
1,h := {λh : Γ→ R, λh = λ̃h ◦ z−1, λ̃h ∈ Hh(0, 2π) } .(5.9)

Hereafter, given a non-negative integer k and a subset S of R or R2, Pk(S) denotes
the space of polynomials defined on S of degree ≤ k. At this point we remark that
the simplicity of the definition of Xξ

1,h is due to the fact that Γ is a circle, which
yields a constant jacobian of the transformation z. If this were not the case, then
one should proceed differently (see, e.g., [30]).

Note that Hh(0, 2π) ⊆ H1/2[0, 2π], where for each p > 0, Hp[0, 2π] denotes the
usual Sobolev space of 2π-periodic functions (see, e.g., Section 8.2 of [29]). Hence,
according to the regularity of z and the definition of the Sobolev spaces on the
boundary Γ (see, e.g., Section 8.3 in [29]), we deduce that Xξ

1,h ⊆ H
1/2
0 (Γ). Finally,

we put

X1,h := Xθ1,h × Xξ
1,h ,(5.10)

Xh := X1,h × M1,h ,(5.11)
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and consider the piecewise constant functions as the finite element subspace for the
unknown u, that is

Mh := { vh ∈ L2(Ω) : vh|T ∈ P0(T ) ∀T ∈ Th } .(5.12)

In this way, the Galerkin scheme associated with the continuous problem (3.12)
reads as follows: Find ((th,σh), uh) ∈ Xh ×Mh such that

[A(th,σh), (sh, τh)] + [B∗(uh), (sh, τ h)] = 0 ,

[B(th,σh), vh] = [G, vh] ,
(5.13)

for all ((sh, τ h), vh) ∈ Xh ×Mh.
In what follows, we verify that the introduced finite element subspaces above

satisfy the corresponding discrete inf-sup conditions.

Lemma 5.6. There exists β∗ > 0, independent of the subspaces involved, such that
for all vh ∈Mh

sup
(sh,τ h)∈Xh
(sh,τ h) 6=0

[B(sh, τ h), vh]
||(sh, τh)||X

≥ β∗ ||vh||M .

Proof. We proceed similarly as in Lemma 4.3 of [31]. First, we observe that

sup
(sh,τ h)∈Xh
(sh,τ h) 6=0

[B(sh, τh), vh]
||(sh, τh)||X

≥ sup
τ h∈M1,h
τ h 6=0

−
∫

Ω
vh div τ h dx

||τ h||H(div;Ω)
.(5.14)

Then, we introduce the equilibrium interpolation operator (cf. [2], [33]) Eh :
[H1(Ω)]2 → Xθ1,h ∩H(div; Ω), which is characterized on each T ∈ Th by∫

e

(Ehτ ) · ν ds =
∫
e

τ · ν ds for all edges e of T .(5.15)

It is well known that Eh satisfies the commuting diagram property

div (Ehτ ) = Ph (div τ ) ∀τ ∈ [H1(Ω)]2 ,(5.16)

where Ph is the orthogonal projection from L2(Ω) onto the subspace Mh. In other
words, ∫

Ω

div (Ehτ ) vh dx =
∫

Ω

vh div τ dx ∀ vh ∈Mh ,(5.17)

and also, from (5.15) we get∫
Γ

(Ehτ ) · ν ds =
∫

Γ

τ · ν ds ∀ τ ∈ [H1(Ω)]2 .

It follows that (Ehτ ) ∈ Xθ1,h ∩ H0(div; Ω) for all τ ∈ [H1(Ω)]2 ∩ H0(div; Ω).
Moreover, using (5.16) and the approximation properties of Eh (cf. [2] or [33]),
we conclude that the family of operators Eh : [H1(Ω)]2 ∩ H0(div; Ω) → M1,h is
uniformly bounded. This means that there exists C̃ > 0, independent of h ∈ I,
such that

||Eh τ ||H(div;Ω) ≤ C̃ ||τ ||[H1(Ω)]2 ∀ τ ∈ [H1(Ω)]2 ∩H0(div; Ω) .(5.18)
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Now, going back to (5.14), using (5.17), (5.18) and the stronger continuous inf-
sup condition (5.1), we can write

sup
τ h∈M1,h
τ h 6=0

−
∫

Ω vh div τ h dx
||τ h||H(div;Ω)

≥ sup
τ∈[H1(Ω)]2∩H0(div;Ω)

τ 6=0

∫
Ω vh div (Ehτ ) dx
||Ehτ ||H(div;Ω)

≥ 1
C̃

sup
τ∈[H1(Ω)]2∩H0(div;Ω)

τ 6=0

∫
Ω
vh div τ dx
||τ ||[H1(Ω)]2

≥ β∗ ||vh||M ,

which finishes the proof.

In order to continue our analysis, we need to characterize the discrete kernel Vh.

Lemma 5.7. We have Vh = X̃1,h × M̃1,h, where X̃1,h = X1,h and

M̃1,h := { τh ∈M1,h : div τ h = 0 in Ω } .

Proof. According to the definition of B, we have

Vh = { (sh, τh) ∈ Xh :
∫

Ω

vh div τ h dx = 0 ∀ vh ∈Mh} ,

and then Vh = X̃1,h × M̃1,h, with X̃1,h = X1,h and

M̃1,h = { τh ∈M1,h :
∫

Ω

vh div τh dx = 0 ∀ vh ∈Mh} .

Now, given τh ∈ M̃1,h and T ∈ Th, we may choose vh ∈Mh such that vh|T ≡ 1

and vh ≡ 0 in Ω − T . It follows that
∫
T

div τh dx = 0 for all T ∈ Th. But, using

Lemma 1.5 (identity (1.49)) in Chapter III of [2], we can write

0 =
∫
T

div τ h dx =
∫
T̂

div τ̂ h,T dx̂ ,(5.19)

where τ̂h,T ∈ RT 0(T̂ ) is such that τh|T = J(FT )−1 (DFT ) τ̂h,T ◦ F−1
T .

Since div τ̂h,T is constant in T̂ , we deduce from (5.19) that div τ̂ h,T = 0 for
all T ∈ Th, and therefore, applying the identity (1.47) in Chapter III of [2], we
conclude that

div (τ h|T ) = J(FT )−1 div τ̂ h,T = 0 ∀T ∈ Th .

This completes the proof.

We now prove the discrete inf-sup condition for B1.

Lemma 5.8. There exists β∗1 > 0, independent of the subspaces involved, such that
for all τh ∈ M̃1,h

sup
sh∈X̃1,h
sh 6=0

[B1(sh), τ h]
||sh||X1

≥ β∗1 ||τ h||M1 .



A DUAL-DUAL MIXED FORMULATION 1477

Proof. Since X̃1,h = X1,h = Xθ1,h ×X
ξ
1,h, we have for all τh ∈ M̃1,h

sup
sh∈X̃1,h
sh 6=0

[B1(sh), τ h]
||sh||X1

≥ sup
ζh∈Xθ1,h
ζh 6=0

−
∫

Ω
τh · ζh dx

||ζh||[L2(Ω)]2
.

Then, using that M̃1,h ⊆M1,h ⊆ Xθ1,h, we deduce that

sup
ζh∈Xθ1,h
ζh 6=0

−
∫

Ω
τ h · ζh dx

||ζh||[L2(Ω)]2
= ||τ h||[L2(Ω)]2 = ||τ h||H(div;Ω) ,

where the last equality follows from the characterization of M̃1,h given in Lemma
5.7. This ends the proof.

The unique solvability of the Galerkin scheme (5.13) and the corresponding error
estimate can be established now.

Theorem 5.9. There exists a unique ((th,σh), uh) ∈ Xh × Mh solution of the
Galerkin scheme (5.13). In addition, there exists C > 0, independent of h, such
that the following Cea estimate holds

||((t,σ), u) − ((th,σh), uh)||

≤ C inf
((sh,τ h),vh)∈Xh×Mh

||((t,σ), u) − ((sh, τh), vh)|| .

Proof. We first observe that Lemma 5.3 and Corollary 5.4 guarantee that the dis-
crete operator A1,h : X1 → X ′1,h is also Lipschitz-continuous, and that the family of
operators {Π1,h A1,h(·+ t̃) : t̃ ∈ X1,h , h ∈ I } is uniformly strongly monotone.
Here, A1,h and Π1,h are defined as in Theorem 4.2. In addition, from Lemma 5.7
and the definition of V given in subsection 5.1, we deduce that Vh ⊆ V .

Therefore, by virtue of Lemmas 5.6 and 5.8, a direct application of the abstract
Theorems 4.2 and 4.3 finishes the proof.

As a consequence of the Cea estimate given by the previous theorem, we deduce
the following error bound.

Theorem 5.10. Let ((t,σ), u) and ((th,σh), uh) be the unique solutions of (3.12)
and (5.13), respectively, with t := (θ, ξ) and th := (θh, ξh). In addition, assume
that θ|T ∈ [H1(T )]2 ∀T ∈ Th, ξ ∈ H3/2(Γ), σ ∈ [H1(Ω)]2, divσ ∈ H1(Ω) and
u ∈ H1(Ω). Then, there exists C̃ > 0, independent of h, such that the following
estimate holds

||(θ, ξ,σ, u)− (θh, ξh,σh, uh)||

≤ C̃ h
{ ∑
T∈Th

||θ||2[H1(T )]2 + ||ξ||2H3/2(Γ)

+ ||σ||2[H1(Ω)]2 + ||divσ||2H1(Ω) + ||u||2H1(Ω)

}1/2

.
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Proof. Let us denote by Eh,T the restriction of the equilibrium operator Eh to
a given triangle T of Th. We also introduce the Lagrange interpolation operator
Lh from H3/2[0, 2π] onto Hh(0, 2π). Further, as before, let Ph be the orthogonal
projection from L2(Ω) onto Mh.

Then from Theorem 5.9 and using again the commuting diagram property (5.16),
we deduce that

||(θ, ξ,σ, u)− (θh, ξh,σh, uh)||2

≤ C

{ ∑
T∈Th

||θ − Eh,T θ||2[L2(T )]2 + || [ (ξ ◦ z)− Lh(ξ ◦ z) ] ◦ z−1||2H1/2(Γ)

+ ||σ − Eh σ||2[L2(Ω)]2 +||divσ − Ph (divσ)||2L2(Ω)+||u− Phu||2L2(Ω)

}
.

Thus, the result follows from classical error estimates for interpolation and pro-
jection operators in the corresponding Sobolev spaces. In particular, for the sec-
ond term, and using again the definition of the Sobolev spaces on Γ through the
parametrization z (see Section 8.3 in [29]), we obtain

|| [ (ξ ◦ z)− Lh(ξ ◦ z) ] ◦ z−1||H1/2(Γ) ≤ C ||(ξ ◦ z)− Lh(ξ ◦ z)||H1/2 [0,2π]

≤ C h ||ξ ◦ z||H3/2 [0,2π] ≤ C h ||ξ||H3/2(Γ) .

Since the other estimates are straightforward, we omit further details.

We end this paper by remarking that efficient numerical algorithms for solving
discrete schemes of dual-dual structure, which are based on minimum residual and
conjugate gradient methods, are provided in [13], [14] and [15].
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