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ON TRACTABILITY OF WEIGHTED INTEGRATION
OVER BOUNDED AND UNBOUNDED REGIONS IN Rs

FRED J. HICKERNELL, IAN H. SLOAN, AND GRZEGORZ W. WASILKOWSKI

Abstract. We prove that for the space of functions with mixed first deriva-

tives bounded in L1 norm, the weighted integration problem over bounded

or unbounded regions is equivalent to the corresponding classical integration

problem over the unit cube, provided that the integration domain and weight

have product forms. This correspondence yields tractability of the general

weighted integration problem.

1. Introduction

In recent years there has been great interest in the tractability of multiple in-
tegration in high dimensions, much of it stimulated by the apparent success of
quasi–Monte Carlo methods applied to integrals from mathematical finance over
hundreds or even thousands of dimensions; see, e.g., [8], [9] and [13] for more refer-
ences. Most analysis has been carried out for the problem of integration over the
s-dimensional unit cube in a reproducing kernel Hilbert space setting of functions
whose mixed first derivatives are square integrable; see, e.g., [7], [12].

However, as pointed out in [11], there is a fundamental difficulty in applying the
Hilbert space results to the integrals from mathematical finance. These integrals
are typically with respect to probability densities over unbounded regions. The
difficulty (discussed in more detail below) is that after mapping to the unit cube
most problems of this kind yield integrands that do not belong to the Hilbert space:
the derivatives are integrable, but not square integrable. In the present paper we
study the tractability of the weighted integration problem, over both bounded and
unbounded regions, in the Banach space of functions whose mixed first derivatives
are in L1. We assume that the weight function and the domain of integration have
product forms (see below). We shall see that only in L1 (in contrast to Lp for p > 1)
is there a natural correspondence between the weighted integration problems over
a general region and the unweighted integration problem over the unit cube.

We emphasise that in this paper we do not weight the various coordinate direc-
tions in the manner of [12]. It is known from the work of [2] that for the L1 case
the unweighted integration problem over the unit cube is tractable, whereas this is
believed to be not the case for p > 1, and is known [7] not to be so for p = 2. In this
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paper we establish the tractability of the weighted integration problem over general
regions for the L1 case by exploiting the above-mentioned connection between the
weighted integration problem over general regions and the unweighted problem over
the unit cube, and then extending the result of [2].

In more detail, in this paper we study the tractability in a worst-case setting of
the weighted integration problem

Iρ(f) =
∫
D

f(x)ρ(x) dx,

where D is an s-dimensional box

(1) D = (a1, b1)× · · · × (as, bs) ⊆ Rs,

and ρ(x) has the product form

(2) ρ(x) =
s∏

k=1

ρk(xk)

for nonnegative functions ρk ⊆ L1((ak, bk)). The intervals (ak, bk) can be either
bounded or unbounded. For simplicity, we shall assume

(3)
∫ bk

ak

ρk(x) dx = 1.

Our analysis will be carried out in tensor product spaces of functions defined on
D, with norm ‖f‖p,s given for p = 1 by (9) below, and for general p > 1 by (10).
For the explanatory purposes of this introduction it is sufficient to consider just the
1-dimensional case, for which the norm in the case p = 1 is

(4) ‖f‖1,1 := |f(c1)|+
∫ b1

a1

|f ′(x)| dx,

where c1 (the “anchor”) is a fixed number in (a1, b1). In the 1-dimensional case the
weighted integration problem, namely

Iρ1 (f) :=
∫ b1

a1

f(x)ρ1(x) dx,

is mapped to an unweighted integration problem on the unit interval by the simple
transformation

(5) y = W1(x) :=
∫ x

a1

ρ1(z) dz.

Specifically, we find

Iρ1 (f) =
∫ 1

0

F (y) dy,

where

(6) F (y) = f(W−1
1 (y)).

At the same time this transformation converts the norm (4) to

‖f‖1,1 = |F (W1(c1))|+
∫ 1

0

|F ′(y)| dy =: ‖F‖1,1.
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The norm on the right is appropriate for the analysis of the unweighted integration
problem on the unit interval.

To understand the special nature of the L1 case, suppose that instead we were
to define the norm on the unit interval by

‖F‖p,1 :=
(
|F (W1(c1))|p +

∫ 1

0

|F ′(y)|p dy
)1/p

,

with p > 1. The connection between the unweighted problem on the unit interval
and the original weighted integration problem is now more complicated. Indeed,
under transformations (5) and (6) we find

‖F‖p,1 =

(
|f(c1)|p +

∫ b1

a1

|f ′(x)|p dx

(ρ1(x))p−1

)1/p

=: |||f |||p,1.

The norm on the right is made unattractive by the factor ρp−1
1 in the denominator.

This factor is especially restrictive if the region is unbounded, say if b1 = ∞,
since in that case a necessary condition for |||f |||p,1 to be finite is that f ′(x) =
o
(
ρ1(x)(p−1)/p/x1/p

)
as x→∞, a condition which in applications may seem quite

unnatural. The difficulty disappears when p = 1, since in that case ρp−1
1 = 1. In

this paper, as in many others, we exploit the connection between worst-case error
for f in the unit ball of our space and “discrepancy”. However, we need here a
somewhat more general notion of discrepancy: we introduce in Section 3 the notion
of “same-quadrant discrepancy”, of which the “L∞ star discrepancy” is a special
case. (Another special case is the “centered discrepancy” of [3].) There is a natural
motivation for this generalization within the present work, arising from the fact
that we allow D to be an unbounded region, say Rs. In such a case the “anchor”
c in the s-dimensional generalization of (4) cannot be on the boundary of D, and
hence after a smooth transformation cannot be on the boundary of the unit cube.
The star discrepancy arises if in our language the anchor c is chosen to be at one
of the vertices of the unit cube. But that choice is too restrictive when unbounded
regions are considered. By applying the present results to the classical unweighted
integration problem over the unit cube, we obtain in Section 3 a simple proof of
the famous Koksma-Hlawka inequality, and of a generalization when the anchor is
allowed to move freely over the unit cube. In Section 4 we show that the weighted
integration problem over a general region can be reduced to the unweighted problem
over the unit cube. Tractability of the general problem is discussed in Section 5.
Finally, some extensions are considered briefly in Section 6.

2. Basic definitions

In this section, we briefly present some definitions and basic facts concerning
the worst case setting. For more detailed discussion we refer to, e.g., [6], [14]. We
study the approximation of multivariate integrals of the form

(7) Iρ(f) =
∫
D

f(x) ρ(x) dx,

where f is from a Banach space F of functions that will be specified later. Here
D is the s-dimensional box (1). The intervals can be unbounded; this is why we
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write (ai, bi) instead of [ai, bi]. The weight function ρ is of the tensor product form
(2). For simplicity, we shall assume that each ρk is a probability density on (ak, bk)
(i.e., a nonnegative, Lebesgue integrable function such that (3) holds), although, as
explained in Section 6, for the tractability result it is sufficient to assume that the
integral of ρk is finite. Classical examples of suitable weights ρ are provided by

• the uniform distribution with D = [0, 1]s and ρ(x) = 1,
• exponential distribution with D = Rs+ and

ρ(x) =
s∏

k=1

exp(−xk/λk)/λk,

• Gaussian distribution with D = Rs and

ρ(x) =
s∏

k=1

exp(−x2
k/(2λk))/(

√
2πλk).

Without loss of generality, we can restrict the analysis to linear algorithms (or
cubatures) of the form

A(f) :=
n∑
i=1

ai f(xi)

that use n function values at points xi. The worst-case error of the algorithm A is
defined as

error(A,F) := sup
‖f‖≤1

|Iρ(f)−A(f)|,

where ‖f‖ is the norm of f in the space F . Since the error equals the operator
norm ‖Iρ −A‖, we have

|Iρ(f)−A(f)| ≤ error(A,F) ‖f‖, ∀ f ∈ F .
The number n of function values used by an algorithm is called the cardinality

of A, and is denoted by card(A). Since it is a natural measure of the cost, we
are interested in the smallest errors that can be achieved with n optimally chosen
function evaluations,

error(n,F) := inf{error(A,F) : A such that card(A) = n}.
Such minimal errors are called nth minimal errors. To provide a standard to com-
pare with, let

(8) error(0,F) := ‖Iρ‖
be the initial error, i.e., the error of the zero algorithm. If the ratio of nth minimal
error and the initial error depends polynomially on s and n−1, then we say that
the corresponding problem is tractable.

More specifically, consider now a sequence of weighted integration problems,
each defined for a space of functions of s variables, s = 1, 2, . . . . To stress the
dependence on s, we will write sometimes error(n,F , s) instead of error(n,F). We
say that the corresponding problem (or more formally a sequence of problems) is
tractable if there exist positive constants C, q1, and q2 such that

error(n,F , s)
error(0,F , s) ≤ C s

q1 n−q2 ∀n, s.
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3. Function spaces, errors, and discrepancies

Of course, tractability (or lack of it) depends very much on the choice of F .
In this paper, we consider the following space denoted by F1,s. Let Hk be the
space of absolutely continuous functions on (ak, bk) whose first derivatives are in
L1((ak, bk)). Recall that L1((ak, bk)) is the space of functions whose absolute value
is integrable over the interval (ak, bk). Let Hs =

⊗s
k=1Hk be the (algebraic) tensor

product space, i.e., the space of all linear combinations of functions f of the product
form

f : D → R and f(x) =
s∏

k=1

hk(xk) with hk ∈ Hk.

The space F1,s is the completion of Hs with respect to the norm

(9) ‖f‖1,s := |f(c)|+
∑
U 6=∅
‖f ′U‖L1(DU ).

Here c = [c1, . . . , cs], called an anchor, is a point from D. The summation is with
respect to subsets U of {1, . . . , s}, and

f ′U (xU ) :=
∂|U|∏
k∈U ∂xk

f(xU , c),

where (xU , c) denotes the s-dimensional vector whose kth component is xk if k ∈ U ,
and is ck if k /∈ U . By xU we mean the |U |-dimensional vector obtained from
x by removing all components xk with k /∈ U . This means that xU ∈ DU =∏
k∈U (ak, bk) and f ′U is a function defined on DU . To simplify the notation, we

shall also write f ′∅ and ‖f ′∅‖Lp to denote f(c) and |f(c)|, respectively, and we often
drop DU by writing ‖·‖Lp instead of ‖·‖Lp(DU ). This allows a more concise formula
for the norm,

‖f‖1,s =
∑
U

‖f ′U‖L1 .

The essence of F1,s is that it is a tensor product space consisting of functions
whose mixed first partial derivatives are bounded in L1 norm. Natural extensions
are spaces Fp,s of functions with derivatives bounded in Lp norms for p ∈ (1,∞].
That is, the norm in Fp,s is given by

(10) ‖f‖p,s :=

(∑
U

‖f ′U‖
p
Lp

)1/p

for p <∞

and
‖f‖∞,s := max

U
‖f ′U‖L∞ for p =∞.

The following representation of f will play an important role in our analysis. Let

Mk(x, t) :=


1 if ck < t < x,

−1 if x < t < ck,

0 otherwise,

M(x, t) :=
s∏

k=1

Mk(xk, tk),
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and
MU (xU , tU ) :=

∏
k∈U

Mk(xk, tk),

with the convention that M∅ ≡ 1. We will refer to Mk, M , and MU as kernels.

Proposition 1. For every f ∈ Fp,s and every x ∈ D,

(11) f(x) =
∑
U

∫
DU

f ′U (tU )MU (xU , tU ) dtU .

As an illustration, consider s = 2. In this case the subsets U of {1, 2} are
∅, {1}, {2} and {1, 2}, and the representation (11) reduces to

f(x1, x2) = f(c1, c2) +
∫ x1

c1

∂

∂t1
f(t1, c2) dt1

+
∫ x2

c2

∂

∂t2
f(c1, t2) dt2 +

∫ x1

c1

∫ x2

c2

∂2

∂t1∂t2
f(t1, t2) dt2 dt1

= f(c1, c2) + [f(x1, c2)− f(c1, c2)] + [f(c1, x2)− f(c1, c2)]

+ [f(x1, x2)− f(c1, x2)− f(x1, c2) + f(c1, c2)].

The representation (11) has been used, at least implicitly, in a number of papers;
see, e.g., [3]. For completeness, we present a short proof.

Proof of Proposition 1. Of course, (11) holds for s = 1. Suppose therefore that it
holds for s and consider a function f of s+ 1 variables. Let R denote the resulting
right-hand side of (11), i.e.,

R(x) =
∑
U

∫
DU

f ′U (tU )MU (xU , tU ) dtU ,

where the summation now is over all subsets of {1, . . . , s + 1}. This sum can be
expressed as a sum R1 over only those subsets U that do not contain s + 1, plus
a sum R2 over every U containing s + 1. For the sum R2 write U = V ∪ {s+ 1},
where V ⊆ {1, . . . , s}. Then R2 can be rewritten as

R2(x) =
∑
V

∫
DV

∫ bs+1

as+1

∂

∂ts+1
f ′V (tV , ts+1)Ms+1(xs+1, ts+1) dts+1MV (xV , tV ) dtV

=
∑
V

∫
DV

f ′V (tV , xs+1)MV (xV , tV ) dtV

−
∑
V

∫
DV

f ′V (tV , cs+1)MV (xV , tV ) dtV ,

with the summations now over all subsets of {1, . . . , s}. Of course, the second sum
above equals R1. Hence

R(x) = R1(x) +R2(x) =
∑
V

∫
DV

f ′V (tV , xs+1)MV (xV , tV ) dtV .

Since f = f(·, xs+1) is a function of s variables only, it follows from the inductive
hypothesis that R(x) = f(x1, . . . , xs, xs+1), so that (11) holds with s replaced by
s+ 1, thus completing the proof by induction. �
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The representation of f given by (11) allows the error of the algorithm A applied
to f to be expressed in terms of the error of A applied to the kernel MU (·, tU ).
Indeed, due to linearity of A and Iρ, we have from (11) that

A(f) = A
(∑

U

∫
DU

f ′U (tU )MU (·, tU ) dtU

)
=
∑
U

∫
DU

f ′U (tU )A (MU (·, tU )) dtU ,

and similarly

Iρ(f) =
∑
U

∫
DU

f ′U (tU ) Iρ (MU (·, tU )) dtU .

This leads to the following generalization of Zaremba’s formula (see [15]):

(12) Iρ(f)−A(f) =
∑
U

∫
DU

f ′U (tU )hU (tU ) dtU ,

where

(13) hU (tU ) := Iρ(MU (·, tU ))−A(MU (·, tU )).

In this way, Proposition 1 leads to the following form of the worst case error of A;
see also [3] where D = [0, 1]s was considered.

Theorem 1. The error of any linear algorithm A is

(14) error(A,F1,s) = max
U

sup
t∈D
|Iρ(MU (·, tU ))−A(MU (·, tU ))|.

Proof. By Hölder’s inequality applied to (12),

|Iρ(f)−A(f)| ≤
∑
U

‖f ′U‖L1 ‖hU‖L∞ ≤ ‖f‖1,s max
U
‖hU‖L∞ .

This proves that the error of A is bounded from above by the right-hand side of
(14). We now prove the opposite inequality.

Given ε > 0, there exist Z ⊆ {1, . . . , s} and t∗ ∈ Int(D) such that hZ is contin-
uous at t∗Z , and

|hZ(t∗Z)| ≥ max
U
‖hU‖L∞ − ε.

If Z = ∅, the worst case error is attained at the constant function f̃ ≡ 1. Consider
now Z 6= ∅. For δ ' 0, define

vk,δ(x) =
{

(2δ)−1 if |x− t∗k| ≤ δ,
0 otherwise.

Consider now gZ ∈ L1(DZ) defined by

gZ(xZ) = sign(hZ(t∗Z))
∏
k∈Z

vk,δ(xk)

and

f̃(y) =
∫
DZ

gZ(t)MZ(yZ , tZ) dtZ .
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For example, if Z = {1, 2}, then f̃(y1, y2) =
∫ y1

c1

∫ y2

c2
gZ(t1, t2) dt2 dt1. Note that

f̃(y) is independent of yk if k /∈ Z, and f̃(y) = 0 if yk = ck for some k ∈ Z. From
this it follows that f̃ ′U ≡ 0 if Z 6= U , and f̃ ′Z = gZ . Hence

‖f̃‖1,s = ‖gZ‖L1(DZ) =
∏
k∈Z

∫ bk

ak

vk,δ(x) dx = 1

for small enough δ, and by (12),

Iρ(f̃)−A(f̃) =
∫
DZ

gZ(tZ)hZ(tZ) dtZ =
∫
DZ

∏
k∈Z

vk,δ(tk) |hZ(tZ)| dtZ .

Since the right-hand side of the above equation tends to |hZ(t∗Z)| as δ tends to zero,
this proves that Iρ(f̃)−A(f̃ ) ≥ maxU ‖hU‖L∞ − 2ε if δ is sufficiently small. Since
ε can be arbitrarily close to 0, this completes the proof. �

For illustration, we apply Theorem 1 to the classical case, i.e., ρ ≡ 1 and D =
[0, 1]s, choosing two different anchors, namely c = 1 and c inside the cube D. In
both cases, we shall take for A a quasi–Monte Carlo algorithm,

A(f) = QMC(f) = n−1
n∑
i=1

f(xi),

with xi ∈ D.
When c = 1 we have Mk(x, t) = −1 if x < t < 1, and Mk(x, t) = 0 otherwise.

Hence
I1(MU (·, tU )) = (−1)|U|

∏
k∈U

tk = (−1)|U|Vol([0, tU )),

and

QMC(MU (·, tU )) = (−1)|U| n−1
n∑
i=1

1[0,tU )(xiU ),

where 1A denotes the characteristic (indicator) function of A ⊆ D, and Vol(A)
denotes the volume of A. Thus from (13)

(15) ‖hU‖L∞ = sup
tU

∣∣∣∣∣Vol([0, tU ))− n−1
n∑
i=1

1[0,tU )(xiU )

∣∣∣∣∣ ,
which is the classical L∞ star discrepancy for the |U |-dimensional unit cube DU .
Thus Theorem 1, when applied to QMC methods for the classical case with c = 1,
yields the famous Koksma-Hlawka inequality:

|I1(f)−QMC(f)| ≤ ‖f‖1,sD∗∞(x1, . . . ,xn),

where D∗∞ is the L∞ star discrepancy of the point-set {x1, . . . ,xn}. That is,

D∗∞(x1, . . . ,xn) := sup
t∈[0,1]s

∣∣∣∣∣Vol([0, t))− n−1
n∑
i=1

1[0,t)(xi)

∣∣∣∣∣ ;
see, e.g., [1], [5]. Note that the maximum over U no longer appears, because for
c = 1 the largest value of ‖hU‖L∞ in (15) occurs at U = {1, . . . , s}. Theorem 1
also states that this inequality is attained arbitrarily closely for some functions from
F1,s. We next consider the case in which the anchor c = [c1, . . . , cs] is in the interior
(0, 1)s of the cube; for example c1 = · · · = cs = 1/2. In the right-hand side of (14)
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we may assume that tk 6= ck for k = 1, . . . , s, since MU (·, tU ) = 0 if tk = ck for some
k ∈ U . The set of all points t ∈ [0, 1]s which satisfy this condition is partitioned
into 2s quadrants, according to whether tk < ck or tk > ck for k = 1, . . . , s. Given
a t in one of these quadrants, let

B(t) = B(t; c) ⊆ [0, 1]s

denote the box with one corner at t and the opposite corner given by the unique
vertex of D that lies in the same quadrant as t. This box is to be a product of half
open intervals, with the open end of the kth interval at tk. For example, for s = 2
and c1 = c2 = 1/2, if t = (1/3, 2/3), then

B(t; c) = [0, 1/3)× (2/3, 1].

With this notation, it is easily seen that

I1(MU (·, tU )) = (−1)|U−| Vol(BU (tU )),

where BU (tU ) is the projection of B(t) onto DU , and U− is the subset of U con-
taining those indices k for which tk < ck. Similarly,

A(MU (·, tU )) =
(−1)|U−|

n

n∑
i=1

1BU (tU )(xiU ).

Thus the expression (14) is the same as that for the classical case c = 1, except that
the box

∏
k[0, tk) is replaced by B(t). Another difference is that for interior c, the

maximum with respect to U is not necessarily attained by U = {1, . . . , s}. In other
words, Theorem 1 shows that the error of A is the L∞ same-quadrant discrepancy
with anchor at c, given by

(16) D∞,c(x1, . . . ,xn) := sup
t∈D

max
U 6=∅

∣∣∣∣∣Vol(BU (tU ; cU ))− n−1
n∑
i=1

1BU (tU ;cU )(xi)

∣∣∣∣∣ .
For completeness of the definition (16), we define BU (tU ; cU ) = ∅ if tk = ck for
some k ∈ U . With this understanding, the L∞ star discrepancy D∗∞(x1, . . . ,xn) is
the special case of (16) with c = 1. When c is at the center of the cube, D∞,c is
also called the L∞ centered discrepancy; see, e.g., [3], [7]. The following proposition
sums up the classical case.

Proposition 2. Let D = [0, 1]s and ρ(x) ≡ 1. The error of the quasi–Monte Carlo
algorithm with the points x1, . . . ,xn is

error(QMC,F1,s) = D∞,c(x1, . . . ,xn).

4. Reduction to classical problem

Recall that by a classical problem we mean the integration problem over [0, 1]s

with constant weight function ρ ≡ 1. In this section, we show that the general
problem over D with a general ρ can be reduced to a classical problem.

Given ρ, define the transformations

Wk(x) =
∫ x

ak

ρk(z) dz, k = 1, . . . , s.
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Then Wk : (ak, bk)→ [0, 1]. Define also

(17) W (x) = [W1(x1), . . . ,Ws(xs)] and d = W (c).

Theorem 2. i) The error of any algorithm A(f) =
∑n
i=1 aif(xi) for the integra-

tion problem (7) satisfies

(18) error(A,F1,s) = error(Ã, F̃1,s),

where Ã(g)=
∑n
i=1 ai g(W (xi)) is an algorithm approximating I1(g)=

∫
[0,1]s g(x) dx

and F̃1,s is defined in the same way as F1,s but with D = [0, 1]s and anchor d =
W (c).

ii) In particular, if A = QMC is a quasi–Monte Carlo algorithm, then

(19) error(QMC,F1,s) = D∞,d(W (x1), . . . ,W (xn)).

Proof. Due to Theorem 1, the error of A is given by

error(A,F1,s) = max
U 6=∅

sup
t∈D
|hU (t)|

with

hU (t) = Iρ(MU (·, tU ))−
n∑
i=1

aiMU (xiU , tU ).

Note that for tk < ck, or equivalently Wk(tk) < dk,∫ bk

ak

Mk(x, tk)ρk(x) dx = −Wk(tk) = −Vol([0,Wk(tk)])

and
Mk(xik, tk) = −1[ak,tk)(xik) = −1[0,Wk(tk))(Wk(xik)),

with the last equality holding because of the monotonicity of Wk and 0 = Wk(ak).
On the other hand, for tk > ck, or equivalently Wk(tk) > dk,∫ bk

ak

Mk(x, tk)ρk(x) dx = 1−Wk(tk) = Vol([Wk(tk), 1])

and
Mk(xik, tk) = 1(tk,bk](xik) = 1(Wk(tk),1](Wk(xik)).

This implies that

hU (t) = (−1)U−
(

Vol(BU (yU ; dU ))−
n∑
i=1

ai 1BU (yU ,dU )(WU (xiU ))

)
,

where yU = WU (tU ), from which (18) follows by a second application of Theorem 1.
The last part of the theorem then follows from Proposition 1. �

Theorem 2 implies that weighted integration over (bounded or unbounded) D
has nth minimal error equal to the nth minimal error of the classical problem with
the anchor d = W (c).

Since the classical case has been extensively studied, Theorem 2 provides (at
least conceptually) a technique for studying tractability of and deriving algorithms
for weighted integration. Indeed, suppose that we have a point-set {y1, . . . ,yn}
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inside [0, 1]s with low L∞ same-quadrant discrepancy. Then for ‖f‖1,s ≤ 1, the
algorithm

QMC(f) = n−1
n∑
i=1

f(W−1(yi))

approximates the weighted integral Iρ(f) with error not exceeding the discrepancy
of {y1, . . . ,yn}.

5. Tractability of the weighted integration problem

From (8) the initial error of the weighted integration problem in the space F1,s

equals 1,
error(0,F1,s) = 1.

Thus according to Theorem 2 ii), to prove tractability it is enough to show that there
exist n points z1, . . . , zn in (0, 1)s whose L∞ same-quadrant discrepancy anchored
at d ∈ D is bounded by a polynomial in s and n−1. The first result in the following
theorem is then an easy application of a result from [2]. The second is shown using
proof ideas from [2]; however it is more elaborate and yields a sharper upper bound
than the corresponding upper bound from Theorem 1 in [2].

Theorem 3. The weighted integration problem (7) for a general region D of the
form (1) and a general weight of the form (2) is tractable. The nth minimal error
satisfies

(20) error(n,F1,s) ≤ C
√
s/n

for an unknown constant C independent of s and n, and also

(21) error(n,F1,s) ≤
(
s

nc
ln
(

3 +
√
snc/ ln 2

)
+

ln 2
nc

)1/2

with
c = 3 ln 3− 2 ' 1.2958.

Proof. Let d be as in Theorem 2, and let z1, . . . , zn ∈ (0, 1)s. Although the boxes
BU (tU ; dU ) in the definition of D∞,d are of dimension |U |, we can replace them by
boxes of dimension s, since∣∣∣∣∣Vol(BU (tU ; dU ))− n−1

n∑
i=1

1BU (tU ;dU )(ziU )

∣∣∣∣∣ =

∣∣∣∣∣Vol([g,h)) − n−1
n∑
i=1

1[g,h)(zi)

∣∣∣∣∣ ,
where g,h ∈ [0, 1]s with the kth edge of [g,h] being the same as that of BU (tU ; dU )
if k ∈ U , and [0, 1) otherwise. Hence, the corresponding discrepancy is bounded
from above by the corresponding unanchored discrepancy

D∞,d(z1, . . . , zn) ≤ D∞(z1, . . . , zn)

:= sup
g,h∈[0,1]s

∣∣∣∣∣Vol([g,h)) − n−1
n∑
i=1

1[g,h)(zi)

∣∣∣∣∣ .
Therefore, the first upper bound of the theorem follows from Theorem 2 ii) and the
fact that there are points z1, . . . , zn ∈ (0, 1)s for which D∞(z1, . . . , zn) ≤ C

√
s/n;

see, Theorem 4 in [2] and the discussion that follows it.
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We now show the second result. For a positive δ, define m = m(δ, s) = ds/δe. Let
Γm be the equidistant grid on [0, 1]s with spacing 1/m in each coordinate direction,
and let Γm,U be its corresponding projection on [0, 1]U . Of course, the cardinalities
of these grids are

|Γm| = (m+ 1)s and |Γm,U | = (m+ 1)|U|.

As in [2] it can be shown that for any nonempty U and any points ti ∈ [0, 1]s,

sup
y∈[0,1]s

∣∣∣∣∣Vol(BU (yU ; dU ))− n−1
n∑
i=1

1BU (yU ;dU )(tiU )

∣∣∣∣∣
≤ δ + sup

y∈Γm,U

∣∣∣∣∣Vol(BU (y; dU ))− n−1
n∑
i=1

1BU (yU ;dU )(tiU )

∣∣∣∣∣ .
Now let the ti be independent random variables, uniformly distributed in [0, 1]s.
Given U and y ∈ Γm,U , define random variables

ζ
(i)
y,U = Vol(BU (y; dU ))− 1BU (y;dU )(tiU ), i = 1, . . . , n.

Of course, the expression in the last supremum equals the absolute value of∑n
i=1 ζ

(i)
y,U/n. We recall Bennett’s inequality (see, e.g., [10]), which states the follow-

ing. Let Y1, . . . , Yn be independent random variables with zero means and bounded
ranges |Yi| ≤ M . Let σ2

i be the variance of Yi and let V be any number such that
V ≥

∑n
i=1 σ

2
i . Then for each η > 0,

Prob {|Y1 + · · ·+ Yn| ≥ η} ≤ 2 exp
(
− η

2

2V
B(Mη/V )

)
,

where B(t) = 2 t−2 ((1 + t) ln(1 + t)− t). We shall use this inequality with Yi =
ζ

(i)
y,U . Indeed, ζ(i)

y,U has a zero mean and its values are between −1 and 1. Denoting
its variance by σ2 and taking η = nδ and V = nσ2, we get
(22)

Prob

{∣∣∣∣∣n−1
n∑
i=1

ζ
(i)
y,U

∣∣∣∣∣ ≥ δ
}
≤ 2 exp

(
− nσ2

(
(1 + δ/σ2) ln(1 + δ/σ2)− δ/σ2

) )
.

It is easy to check that σ2 = Vol(BU (y; dU ))(1−Vol(BU (y; dU ))) ≤ 1/4. Moreover,
the right-hand side of (22) increases with σ2. Hence

Prob

{∣∣∣∣∣n−1
n∑
i

ζ
(i)
y,U

∣∣∣∣∣ ≥ δ
}
≤ 2 exp

(
−n4−1((1 + 4δ) ln(1 + 4δ)− 4δ)

)
.

Now assume that δ ≤ 1/2. Then we claim

(23) (1 + 4δ) ln(1 + 4δ)− 4δ ≥ 4cδ2

with c = 3 ln 3− 2. To show this, consider

f(x) = ((1 + x) ln(1 + x)− x)/x2 for x = 4δ ∈ (0, 2].

To prove (23), it is enough to show that

(24) inf
x∈(0,2]

f(x) ≥ c/4.
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Note that

f ′(x) = g(x)/x3 with g(x) = 2x− (2 + x) ln(1 + x).

Moreover,

g′(x) =
x

1 + x
− ln(1 + x) and g′′(x) =

−x
(1 + x)2

.

Since g′′(x) is negative, g′ decreases and g′(x) ≤ g′(0) = 0, implying in turn
g(x) ≤ g(0) = 0. Hence f also decreases and

f(x) ≥ f(2) =
3 ln 3− 2

4
=
c

4
,

as claimed in (24). Using (23), we get

Prob

{∣∣∣∣∣n−1
n∑
i=1

ζ
(i)
y,U

∣∣∣∣∣ ≤ δ
}
≤ 2 exp(−ncδ2).

Since the number of all possible pairs (y, U) satisfies
s∑

k=1

(
s

k

)
(m+ 1)k < (m+ 2)s,

we have that

Prob
{
D∞,d(t1, . . . , tn) ≤ 2δ

}
> Prob

{
max
U

max
y∈Γm,U

∣∣∣∣∣Vol(BU (y; dU ))− n−1
n∑
i=1

1BU (y;dU )(tiU )

∣∣∣∣∣ ≤ δ
}

≥ 1− 2(m+ 2)s exp(−ncδ2).

The latter expression is nonnegative if δ ≥ δ0, where δ0 = δ0(n, s) is given by

δ2
0 = (nc)−1 (s ln(ds/δ0e+ 2) + ln(2)) .

Of course, δ2
0 ≥ (nc)−1(s + 1) ln 2. Using this to estimate s/δ0 on the right-hand

side of the above equation, we conclude that there exist points ti with

D∞,d(t1, . . . , tn) ≤ 2δ

when
δ2 ≥

(
s ln

(
3 +

√
snc/ ln 2

)
+ ln 2

)
/(nc).

This completes the proof. �

We end this section with the following remark.

Remark 1. Recall that the maximum over the subsets U occurs in the definition
(16) of the same-quadrant discrepancy. Consider now a discrepancy with U fixed
and equal to {1, . . . , s}. That is, let

D∞,d,s(x1, . . . ,xn) := sup
y∈[0,1]s

∣∣∣∣∣Vol(B(y; d)) − n−1
n∑
i=1

1B(y;d)(xi)

∣∣∣∣∣ .
As can easily be shown, this discrepancy is equal to the error of the quasi–Monte
Carlo algorithm for the subspace of F1,s consisting of functions that satisfy the
zero conditions at the anchor, i.e., fU ≡ 0 for any proper subset U of {1, . . . , s}.
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Suppose also that the anchor d is inside the cube D = [0, 1]s and denote by γ its
distance from the boundary of D, measured in ‖ · ‖∞-norm. That is,

γ = γ(d) := max
k

max{dk, 1− dk} < 1.

Observe that now Vol(B(y; d)) ≤ γs and

σ2 = Vol(B(y; d))(1 −Vol(B(y; d))) ≤ γs

for any point y. Hence, repeating the proof of Theorem 3, one can show that there
are points xi for which

(25) D∞,d,s(x1, . . . ,xn) ≤
(
(ncs)−1

(
ln (2 + s

√
ncs) + s−1 ln 2

))1/2
with

cs = ln γ−1 − ln(2e)/s.

Consider now a sequence of problems for increasing s with anchors ds such that

γ∞ := sup
s
γ(ds) < 1;

e.g., γ∞ = 1/2 for ds = (1/2, . . . , 1/2). Then

cs ≥ c∞ = ln(1/γ∞)(1 + o(1)),

and

inf
{xi}
D∞,d,s(x1, . . . ,xn)

≤
(
(n ln(1/γ∞))−1 (ln(s) + 1/2 ln(n ln(γ∞)))

)1/2 · (1 + o(1)) as s→∞.

Since for large s this is much smaller than the bounds given in (20) and (21), it
seems unlikely that the maximum over U is achieved at U = {1, . . . , s} when the
anchor d is in the interior with γ∞ < 1.

6. Extensions

We conclude the paper by discussing a number of possible generalizations.

6.1. More general weight ρ. The tractability results of this and the preceding
sections hold for weights ρ of the product form (2) that are not probability densities,
as long as ρ ≥ 0 and

αk :=
∫ bk

ak

ρk(x) dx <∞, k = 1, 2, . . . .

Let α =
∏s
k=1 αk. For any linear algorithm A,

Iρ(f)−A(f) = α ·
(
Iρ̂(f)− α−1A(f)

)
,

where now ρ̂ = ρ/α is a probability density. Hence, the error bounds from previous
theorems should be multiplied by α. However, since the initial error now equals α,
this does not change the tractability property.
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6.2. More general class of functions. The assumption that ‖f‖1,s is finite might
be too strong for a number of applications with unbounded domain D. Indeed, it
requires that the derivatives f ′U (xU ) converge to zero sufficiently fast with ‖x‖ →
∞. In this subsection, we show how it can be weakened by considering tractability
with respect to a larger class of functions. Suppose that ‖f ν‖1,s <∞ for a positive
function ν. We assume that

(26) ν(x) =
s∏

k=1

νk(xk)

and that

(27) β :=
∫
D

ρ(x)
ν(x)

dx <∞.

Replacing ρ by

ρν(x) :=
ρ(x)
β ν(x)

,

we conclude from Theorem 2 that the integral

Iρ(f) = β Iρν (f ν)

can be approximated by

A(f) = βQMC(f ν),

with the error bounded by β ‖fν‖1,sD∞,d(W (x1), . . . ,W (xn)). Since the initial
error is also multiplied by β, the problem with bounded ‖f ν‖1,s remains tractable.

To illustrate this, consider D = Rs,

ρ(x) =
s∏
i=1

(2σi)−1/2 exp

(
−

s∑
k=1

x2
i /(2σi)

)
,

and

ν(x) =
s∏
i=1

(2δi)−1/2 exp

(
−

s∑
k=1

x2
i /(2δi)

)
with σi < δi. Then the corresponding problem of approximating Iρ(f) is tractable
even though the space of functions with bounded ‖f ν‖1,s is relatively very large,
certainly much larger than the original F1,s.

6.3. Space Fp,s. The error analysis performed in this paper for the space F1,s has
an analog for Fp,s for 1 < p ≤ ∞ that we summarize here. However, there are
some wrinkles. In the proof of Theorem 1 one may take a general form of Hölder’s
inequality to obtain

(28) error(A,Fp,s) =

{∑
U

∫
DU

|Iρ(MU (·, tU ))−A(MU (·, tU ))|q dtU

}1/q

,
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where p−1 + q−1 = 1. By the proof of Theorem 2 it is known that{∑
U

∫
DU

|Iρ(MU (·, tU ))−A(MU (·, tU ))|q dtU

}1/q

=

{∑
U

∫
DU

|hU (t)|q dtU

}1/q

=

{∑
U

∫
[0,1]U

∣∣∣∣ Vol(BU (yU ; dU ))

− n−1
n∑
i=1

1BU (yU ;dU )(WU (xiU ))
∣∣∣∣q dyU
ρU (W−1(yU ))

}1/q

The quantity above looks like the Lq star discrepancy except for the factor
1/ρU(W−1(yU )).

Going back to the definition of the Banach space of integrands, one may define,
instead of Fp,s, the spaces F̃p,s with norms given by

(29a) |||f |||p,s :=

(∑
U

‖f ′U/ρ
1/q
U ‖

p
Lp

)1/p

for p <∞

and

(29b) |||f |||∞,s := max
U
‖f ′U/ρU‖L∞ for p =∞.

Note that 1/q = 0 for p = 1 and, hence ||| · |||1,s and ‖ · ‖1,s coincide. For this space
of functions one has

error(A, F̃p,s) =

{∑
U

∫
DU

|Iρ(MU (·, tU ))−A(MU (·, tU ))|qρU (tU ) dtU

}1/q

=

{∑
U

∫
[0,1]U

∣∣∣∣∣Vol(BU (yU ; dU ))− n−1
n∑
i=1

1BU (yU ;dU )(WU (xiU ))

∣∣∣∣∣
q

dyU

}1/q

= Dq,d(W (x1), . . . ,W (xn)).

So, the worst-case quadrature error for the space F̃p,s is the Lq same-quadrant
discrepancy with anchor at d = W (c).

For unbounded domains one always has ρk(xk) → 0 as xk → ∞, which implies
that the derivatives of f must decay quite rapidly to zero. Thus, the spaces F̃p,s
are typically much smaller than Fp,s, except for the case p = 1 where they coincide.
On the other hand, one may also use the device of the previous subsection to obtain
the error bound

|Iρ(f)−A(f)| ≤ β · ‖fν‖p,s · Dq,d(W (x1), . . . ,W (xn)).

By choosing ν decaying to zero fast enough (but not too fast to make β infinite),
one may enlarge the space of integrands for which one has a finite error bound.

Even for the classical problem tractability requires some weighting of the coor-
dinates for p > 1; see [7]. For general regions and weighted integrals, this problem
will be taken up in another paper [4].
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