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LOWER BOUNDS
AND STOCHASTIC OPTIMIZATION ALGORITHMS

FOR UNIFORM DESIGNS WITH THREE OR FOUR LEVELS

KAI-TAI FANG, DIETMAR MARINGER, YU TANG, AND PETER WINKER

Abstract. New lower bounds for three- and four-level designs under the cen-
tered L2-discrepancy are provided. We describe necessary conditions for the
existence of a uniform design meeting these lower bounds. We consider sev-
eral modifications of two stochastic optimization algorithms for the problem of
finding uniform or close to uniform designs under the centered L2-discrepancy.
Besides the threshold accepting algorithm, we introduce an algorithm named
balance-pursuit heuristic. This algorithm uses some combinatorial properties
of inner structures required for a uniform design. Using the best specifications
of these algorithms we obtain many designs whose discrepancy is lower than
those obtained in previous works, as well as many new low-discrepancy designs
with fairly large scale. Moreover, some of these designs meet the lower bound,
i.e., are uniform designs.

1. Introduction

Proposed in [7, 13], the uniform design has been widely applied in manufactur-
ing, system engineering, pharmaceutics and natural sciences. Many construction
methods for uniform designs have been proposed, including the good lattice point
method ([7, 13]). In general, the previous methods only provide an approxima-
tion to the uniform design. The quality of this approximation is often considered
as unsatisfactory. More recently, two new construction methods have been ap-
plied, i.e., construction via combinatorial design and construction by stochastic
optimization. The first method utilizes the properties of various combinatorial con-
figurations as well as construction techniques frequently used in design theory to
obtain uniform designs without any computation (see, for example, [2, 3, 10, 11]).
Thus, this method can be used to obtain certain infinite classes of uniform designs.
But due to the nonexistence of combinatorial configurations, there will always be
many constraints to the parameters of the designs. When these constraints are
not satisfied, the construction will fail. In this sense, the stochastic optimization
approach appears advantageous. Given arbitrary parameters, we can always gen-
erate a low-discrepancy design by implementing an effective algorithm. Up to now,
the threshold accepting algorithm is most frequently used to construct uniform
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designs (see, for example, [4, 5, 6, 15]). However, due to the high computational
complexity of the uniform design problem and the resulting computational burden,
this stochastic optimization approach has been limited to finding uniform designs
with fairly small scale. In this paper, we present a new combinatorial optimization
approach named balanced-pursuit heuristic, which combines knowledge about cer-
tain combinatorial properties of low-discrepancy designs with a general heuristic
optimization framework. We compare several modifications of this algorithm and
the threshold accepting heuristic in order to identify optimal specifications of the
algorithms. Finally, we assess the relative performance of both approaches for dif-
ferent settings and provide new low-discrepancy and uniform designs for the three-
and four-level case.

The uniform design is a type of “space filling” design for computer experiments
([1]), but if we restrict the design to certain lattice points, the uniform design can
also be utilized as a fractional factorial design. Up to now, most of the existing
uniform designs are based on the U-type designs. A U -type design U(n; qm) of n
runs and m factors with q levels corresponds to an n×m matrix X = (x1, . . . , xm)
such that each column xi takes values from a set of q elements, say {1, 2, . . . , q},
equally often. We use U(n; qm) to denote the set of all U(n; qm) designs. Applying
a map f : l → 2l−1

2q , l = 1, . . . , q, to the n runs of a design U(n; qm), we can obtain
n points in the canonical experimental domain Cm = [0, 1)m. The transferred
design will be denoted by Ũ(n; qm), and the set of all such designs will be denoted
by Ũ(n; qm). The correspondence f between U(n; qm) and Ũ(n; qm) is obviously
one-to-one and linear.

For uniform designs, the measure of uniformity is important. Historically, the
star discrepancy has been used first, e.g., in quasi-Monte Carlo methods (or number-
theoretic methods) and in uniform design theory (see [7] and [12]). The Lp-
discrepancy provides a generalization of this concept. However, [8, 9] pointed out
that the Lp-discrepancy exhibits some weakness and further proposed several mod-
ifications of the Lp-discrepancy. Among those, the centered L2-discrepancy (CD2)
is the most important and attractive one.

Let P be a set of n points in Cm. Then, the centered L2-discrepancy is defined
as follows:

(CD2(P))2 =
∑
u �=∅

∫
Cu

[
N(P ∩ Jw(xu))

n
− Vol(Jw(xu))

]2

dxu,

where u is any nonempty subset of the coordinate indices {1, 2, . . . , m}, |u| denotes
the cardinality of u, Cu is the |u|-dimensional unit cube involving the coordinates
in u, N(P ∩A) denotes the number of points of P falling in A, xu is the projection
of x ∈ P onto Cu, and Jw(xu) is the hyper-rectangle in Cu containing the points
between xu and the nearest vertex of Cu.

An analytical expression for CD2(P) is given by [8]. Using this result and the
definitions
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where xi = (xi1, . . . , xim) ∈ P,1 we obtain (see also [5])

(CD2(P))2

=
(
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)m

− 2
n
·
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(1.1)

Furthermore, let

σ
(1)
i = 2 · n ·

m∏
l=1

αl
i, σ

(2)
i =

m∏
l=1

βl
ii

(
=

m∏
l=1

αl
i

)
, σij =

m∏
l=1

βl
ij .(1.2)

Then, (1.1) can be rewritten as

(1.3) (CD2(P))2 =
(

13
12

)m

+
1
n2

·
n∑

i=1

(
−σ

(1)
i + σ

(2)
i

)
︸ ︷︷ ︸

=σi

+
1
n2

·
∑
i �=j

σij .

In passing, note that σi provides the negative of a measure of the distance of xi

from the central point ( 1
2 , . . . , 1

2 ), while the σij provide information on pairwise
distances between xi and xj .

Given the closed form expression for the centered L2-discrepancy in (1.3), the
application of stochastic optimization algorithms appears feasible. However, we
provide two additional results which increase the efficiency of any local search op-
timization heuristic in this context. First, from (1.3) it is possible to obtain a
formula for a local update of the objective function if only some elements of the
design are modified. Second, for the cases of three- and four-level designs, we pro-
vide lower bounds for their discrepancy. Thus, it becomes possible to prove that
a low-discrepancy design is a uniform design in its proper sense, i.e., has minimal
discrepancy.

The paper is organized as follows. Focused on the special cases for levels three
and four, Section 2 presents lower bounds for the centered L2-discrepancy on the set
of U -type designs, and also analyzes the combinatorial properties of a U -type design
achieving these lower bounds. Based on these combinatorial properties, Section 3
introduces the balance-pursuit heuristic in detail and discusses several modifica-
tions of this new algorithm and the threshold accepting heuristic. In particular,
we study several neighborhood structures on the search space of U -type designs.
Section 4 provides a comparison of the performance of the different approaches and
computational results. The final section summarizes our main findings and suggests
possible extensions for future research.

1Throughout our paper, the set of points P is always chosen from a transferred U-type design
Ũ(n; qm).
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2. Special cases for three-level and four-level designs

Let us first concentrate on the analytical expression (1.1) for three-level designs.
In this case, the variable αl

i = 1 + 1
2 |xil − 1

2 | −
1
2 |xil − 1

2 |2 can only take two possible
values, i.e., 1 or 10

9 , and the variable βl
ij = 1 + 1

2 |xil − 1
2 | +

1
2 |xjl − 1

2 | −
1
2 |xil − xjl|

can also take two possible values, i.e., 1 or 4
3 . Thus, for three-level designs the

formula for (CD2(P))2 can be simplified to

(2.1) (CD2(P))2 =
(
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(
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,

where

γi = �{xil �=
1
2
, l = 1, . . . , m}

and

γij = �{(xil, xjl) : xil = xjl �=
1
2
, l = 1, . . . , m}.

For a further analysis of the above expression, we first discuss the property of the
function f(x) = 1

3 ( 4
3 )x − 2n

9 ( 10
9 )x. Obviously, the function f(x) has a single root,

i.e.,

x0 =
log

(
2n
3

)
log

(
6
5

) ,

and the first derivative of f(x),

df(x)
dx

=
1
3

(
4
3
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,

also has exactly one root point, i.e.,

x1 =
log

(
2n
3

)
+ log log

(
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)
− log log

(
4
3

)
log

(
6
5

) .

So f(x) is strictly decreasing on (−∞, x1], and strictly increasing on [x1,∞). More-
over, it is easy to see that limx→−∞ f(x) = 0 and limx→∞ f(x) = ∞. For the case
x1 ≤ 0, we will have f(y2) < f(y1) for any 0 ≤ y2 < y1, while for the case 0 < x1,
we can plot a graph of f(x) as provided in Figure 1.

Note the point M with coordinates (xµ, f(xµ)) indicated in Figure 1. The func-
tion f(x) has the same value at M as at x = 0, i.e., f(xµ) = f(0). Consequently,
for any y1 ≥ xµ and 0 ≤ y2 < y1, we will always have f(y1) > f(y2). Now, we are
in a position to prove the following two theorems.

Theorem 1. For a U-type design U(n, 3m), if µ = 2
3m and γ = 2m(n−3)

9(n−1) are both
integers and f(µ) ≥ f(0), then

(2.2) (CD2(P))2 ≥
(

13
12

)m

− 2
(

10
9

)µ

+
1
n

(
4
3

)µ

+
n − 1

n

(
4
3

)γ

.

The above lower bound can be obtained if and only if γi = µ, γij = γ, for all i �= j,
where γi and γij appear in (2.1).
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Figure 1. Graph of f(x) in the case of 0 < x1

Proof. Since
∑

i �=j γij = 2mn(n−3)
9 is a constant for any U -type design U(n, 3m),

from the arithmetic and geometric mean inequality, it is straightforward to show
that 1

n2

∑
i �=j ( 4

3 )γij ≥ n−1
n ( 4

3 )γ , and the equality can be achieved if and only if γij =
γ, for all i �= j. Define a function g(γ1, . . . , γn) = − 2

n

∑n
i=1 ( 10

9 )γi + 1
n2

∑n
i=1 ( 4

3 )γi .
It suffices to prove that [−2( 10

9 )µ + 1
n ( 4

3 )µ] is the lower bound of g(γ1, . . . , γn), and
the lower bound can be achieved if and only if γi = µ for all i = 1, 2, . . . , n.

For any n integers γ1, . . . , γn with
∑n

i=1 γi = 2mn
3 and γ1 ≥ µ + 1 ≥ µ − 1 ≥

γ2 ≥ 0, we have γ1 − 1 ≥ µ and 0 ≤ γ2 ≤ γ1 − 1. But
g(γ1, γ2, γ3, . . . , γn) − g(γ1 − 1, γ2 + 1, γ3, . . . , γn)

=
1
n2

[
1
3

(
4
3
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9

(
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3

(
4
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)γ2

+
2n

9

(
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9

)γ2
]

=
1
n2

(f(γ1 − 1) − f(γ2)).

Under the condition f(µ) ≥ f(0), we will always have f(γ1 − 1)− f(γ2) ≥ 0, so the
assertion is then obvious. �

Theorem 1 can only deal with the situations when µ and γ are both integers.
For the more general case, the following theorem holds.

Theorem 2. For a U-type design U(n, 3m), let µ = � 2
3m	, γ = � 2m(n−3)

9(n−1) 	, and

denote nµ = (µ + 1)n − 2mn
3 and nγ = (γ + 1)n(n−1)

2 − mn(n−3)
9 . If f(µ) ≥ f(0),

then

(CD2(P))2 ≥
(

13
12

)m

− 2
n

[
nµ

(
10
9

)µ

+ (n − nµ)
(

10
9

)µ+1
]

(2.3)
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.
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The lower bound can be obtained if and only if nµ γi’s take the value µ, n−nµ γi’s
take the values µ+1, and if, for all i �= j, nγ γij’s take the value γ and n(n−1)

2 −nγ

γij’s take the value γ + 1.

The technique to prove Theorem 2 is essentially the same as that for Theorem
1. However, note that when γ1 ≥ µ + 2 ≥ µ ≥ γ2 ≥ 0, we will also have γ1 − 1 ≥ µ
and 0 ≤ γ2 ≤ γ1 −1. Similarly, it is easy to prove that when nγ γij ’s take the value
γ and n(n−1)

2 −nγ γij ’s take the value γ +1 for all i �= j, then
∑

i �=j ( 4
3 )γij achieves

its minimum.
According to the property of f(x), the condition f(µ) ≥ f(0) is trivial when the

zero point of df(x)
dx , x1, is less than or equal to zero. When x1 > 0, the condition

f(µ) ≥ f(0) is actually a constraint to m and n. In Table 1, we list the smallest m
which satisfies the constraint for different given (small) values of n. Table 2 provides
the numerical values of the lower bounds for some three-level designs where this
requirement holds.

Remark. When the condition f(µ) ≥ f(0) is not satisfied, then Theorem 2 is not
valid. For example, for n = 12 and m = 10, when all γij ’s take 1 or 2, and all
γi’s take 6 or 7, the CD2 value is 0.312198. However, there does exist another
U(12; 310) with CD2 value 0.311965.

Now, consider the four-level case. Similar to the three-level case, the expression
αl

i = 1 + 1
2 |xil − 1

2 | −
1
2 |xil − 1

2 |2 can only take two possible values, i.e., 143
128 or 135

128 ,
while the expression βl

ij = 1 + 1
2 |xil − 1

2 | +
1
2 |xjl − 1

2 | −
1
2 |xil − xjl| can take three

possible values, i.e., 1, 11
8 or 9

8 . Consequently, the analytical expression (1.1) can
be simplified to

(CD2(P))2 =
(
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)m

− 2
n

n∑
i=1

(
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)γi
(
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)m−γi

+
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(
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)m−γi

+
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i �=j

(
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(1)
ij

(
9
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(2)
ij

,

(2.4)

where γi = �{xil = 1
8 or 7

8 , l = 1, . . . , m}, γ
(1)
ij = �{(xil, xjl) ∈ {( 1

8 , 1
8 ), ( 7

8 , 7
8 )},

l = 1, . . . , m}, and γ
(2)
ij = �{(xil, xjl) ∈ {( 3

8 , 3
8 ), ( 5

8 , 5
8 ), ( 1

8 , 3
8 ), ( 5

8 , 7
8 )}, l = 1, . . . , m}.

Similar to the three-level case, we can make use of the arithmetic and geometric
mean inequality to prove that the lower bound of

1
n2

∑
i �=j

σij =
1
n2

∑
i �=j

(
11
8

)γ
(1)
ij

(
9
8

)γ
(2)
ij

is n−1
n eδ̃, where

δ̃ =
m(n − 4)
8(n − 1)

ln
(

11
8

)
+

(
m(n − 4)
8(n − 1)

+
mn

4(n − 1)

)
ln

(
9
8

)
,

Table 1. Smallest m for given n (three-level designs)

n 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

m 6 11 14 17 18 20 21 22 23 24 25 26 27 27 28 28 29 29



L
O

W
E
R

B
O

U
N

D
S

A
N

D
S
T

O
C

H
A

S
T

IC
O

P
T

IM
IZ

A
T

IO
N

A
L
G

O
R

IT
H

M
S

8
6
5

T
a
b
l
e

2
.

L
ow
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bounds

for
selected
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(a
)

U
(n

,3
m

)

m
n 2 3 4 5 6 7 8 9 10 11 12 13

3 0.029578 0.061535 0.116275 0.191630 0.288337 0.431354 0.612071 0.831422 1.140121 1.516970 1.963161 2.576663
6 − − − − 0.150477 0.213476 0.300838 0.413498 0.563481 0.746932 0.965041 1.257973
9 − − − − − − − − − 0.514944 0.657025 0.865048

m
n 14 15 16 17 18 19 20 21 22 23 24
3 3.312508 4.172209 5.339566 6.725619 8.332293 10.498205 13.054053 16.002281 19.959493 24.610902 29.959613
6 1.611589 2.027403 2.602909 3.287498 4.083090 5.145613 6.403199 7.858293 9.802713 12.105863 14.770851
9 1.113203 1.403003 1.781226 2.231992 2.757224 3.481214 4.335311 5.321957 6.624710 8.159739 9.930152
12 0.872241 1.090803 1.370384 1.720700 2.143674 2.687424 3.328801 4.070250 5.041195 6.230572 7.597594
15 − − − 1.431483 1.775544 2.211150 2.724895 3.319226 4.137908 5.096484 6.198060
18 − − − − 1.530124 1.893633 2.322292 2.847807 3.535717 4.340425 5.265036
21 − − − − − − 2.034718 2.511079 3.105581 3.800382 4.598591

24 − − − − − − − 2.258533 2.782978 3.395351 4.098757

(b
)

U
(n

,4
m

)

m
n 2 3 4 5 6 7 8 9 10 11 12 13

4 0.015028 0.039476 0.076399 0.137246 0.219310 0.342198 0.500241 0.726006 1.008982 1.402187 1.887314 2.549491
8 − 0.016824 0.033722 0.060583 0.098319 0.153966 0.227347 0.331473 0.464204 0.648181 0.877905 1.191364
12 − − − − 0.063308 0.098902 0.147023 0.214248 0.301322 0.420864 0.571762 0.776417
16 − − − − − − − 0.158017 0.223036 0.311303 0.423922 0.575534
20 − − − − − − − − − 0.246828 0.336837 0.457050

24 − − − − − − − − − − − 0.378899

m
n 14 15 16 17 18 19 20 21 22 23 24
4 3.357991 4.448174 5.769673 7.536213 9.666549 12.496404 15.896181 20.391240 25.776497 32.871740 41.354301
8 1.577482 2.098529 2.734354 3.585419 4.617007 5.989415 7.644773 9.836817 12.471137 15.947054 20.112780
12 1.030449 1.371919 1.790923 2.350361 3.031238 3.935607 5.029766 6.477193 8.220680 10.519735 13.279906
16 0.765134 1.018718 1.331545 1.747779 2.256337 2.930206 3.747833 4.827634 6.131085 7.847874 9.912312

20 0.608502 0.809960 1.059795 1.390946 1.797092 2.333804 2.986836 3.847597 4.888796 6.258262 7.907600
24 0.505130 0.672090 0.880227 1.155005 1.493287 1.939040 2.482900 3.198280 4.065392 5.204171 6.577768
28 0.431803 0.574242 0.752741 0.987425 1.277434 1.658451 2.124605 2.736460 3.479593 4.454023 5.631153
32 − 0.501201 0.657550 0.862256 1.116171 1.448765 1.856790 2.391176 3.041529 3.892930 4.922982
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and that this lower bound can be achieved when all σij ’s take the value eδ̃, for
i �= j.

Now define

g∗(γ1, γ2, . . . , γn) = − 2
n

n∑
i=1

(
143
128

)γi
(

135
128

)m−γi

+
1
n2

n∑
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8
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(

9
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(
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)m n∑
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+
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(
9
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)m n∑
i=1

(
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)γi

.

Utilizing the same technique as in the case of q = 3, we define a function

f∗(x) =
2

9n2

(
9
8

)m(
11
9

)x

− 16
135n

(
135
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)m(
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)x

.

We find that

x∗
0 =

log
(

8n
15

)
+ m log

(
15
16

)
log

(
15
13

)
is the only root of f∗(x), and

x∗
1 =

log
(

8n
15

)
+ m log

(
15
16

)
+ log log

(
143
135

)
− log log

(
11
9

)
log

(
15
13

)
is the only root of df∗(x)

dx . It is easy to see that limx→−∞ f∗(x)=0 and limx→∞ f∗(x)
= ∞. The function f∗(x) is strictly decreasing on (−∞, x1], and strictly increasing
on [x1,∞).

Denoting µ∗ = �m
2 	, and using a similar proof as for Theorem 1, we obtain that

when f∗(µ∗) ≥ f∗(0), the minimum of g∗(γ1, γ2, . . . , γn) can be achieved when all
γi’s equal µ∗ or µ∗ + 1. Gathering these results, we find

Theorem 3. For a U-type design U(n, 4m), let µ = �m
2 	, and nµ = (µ + 1)n − mn

2 .
If f∗(µ) ≥ f∗(0), then

(CD2(P))2

≥
(

13
12

)m

− 2
n

[
nµ

(
135
128

)m(
143
135

)µ

+ (n − nµ)
(

135
128

)m(
143
135

)µ+1
]

+
1
n2

[
nµ

(
9
8

)m (
11
9

)µ

+ (n − nµ)
(

9
8

)m (
11
9

)µ+1
]

+
n − 1

n
eδ̃.

(2.5)

The lower bound can be obtained if and only if nµ γi’s take the value µ, n−nµ γi’s
take the values µ + 1, and all γij’s take the value eδ̃, for i �= j.

The condition f∗(µ∗) ≥ f∗(0) imposes a constraint on m and n. Table 3 lists
the smallest m, which satisfy the constraint for different (small) values of n. The
numerical values for some four-level designs are provided in Table 2.

Table 3. Smallest m for given n (four-level designs)

n 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

m 1 3 6 9 11 13 14 15 17 17 18 19 20 20 21 22 22 23
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Theorems 1–3 provide lower bounds for uniform designs with three and four
levels, respectively, which can serve as benchmarks for judging the quality of a U -
type design with regard to the centered L2-discrepancy CD2. Besides serving as a
benchmark, these theorems also provide a direct characterization of U -type designs
which are uniform designs. In fact, the above discussion has shown that under
certain conditions, when the distributions of certain variables become as even as
possible, the CD2 value of the design can be expected to achieve the minimum.
We will use this result in the next section when introducing a new optimization
algorithm named balance-pursuit heuristic. Instead of using a purely stochastic
search approach like threshold accepting, this new algorithm uses a more guided
search. Consequently, it is expected to provide fast approximations to uniform
designs. We also compare its performance with different versions of the threshold
accepting algorithm to find out when we can expect a better performance.

3. Balance-pursuit heuristic algorithm

The threshold accepting heuristic has been successfully applied to generate low-
discrepancy and uniform designs [4, 5, 6]. In particular, many known uniform and
almost uniform designs, especially those listed on the web site http://www.math.
hkbu.edu.hk/UniformDesign/, have been obtained by using several implementations
of threshold accepting. The introduction of new lower bounds in Section 2 for the
CD2-discrepancy for the three- and four-level cases allows us to extend the analysis
to these cases and to evaluate new designs.

However, the results presented in the previous section also provide information
about the characteristics of low-discrepancy and uniform designs. Thus, it might
be helpful to use this information for a different optimization approach. While
the previous implementations of the threshold accepting algorithm use a random
approach for generating new candidate solutions, efficient use of the additional
information might result in a more directed search. This idea is implemented in a
new algorithm named balance-pursuit heuristic which is also a sequential procedure.
However, new candidate solutions are generated taking into account the conditions
for uniform designs provided in Theorems 1–3. This approach will be discussed in
more detail in Subsection 3.2.

In this section, we introduce and discuss several modifications of threshold ac-
cepting and the balance-pursuit heuristic. The following section provides a compar-
ison of the performance of these different implementations depending on the size
of the designs under study and the number of iterations, i.e., the computational
resources used.

3.1. Lower bounds. All algorithms considered are local search heuristics, but
differ in the method for generating new candidate solutions and the acceptance
criterion. The pseudo-code of a prototype local search heuristic is provided in
Algorithm 1. The algorithm starts with a randomly generated U -type design Dc.
Then a finite large number, say τ , is used to determine the number of iterations
performed during a single optimization run. The algorithm stops as soon as the
lower bound is reached (step 4). Given that the lower bound cannot be obtained
for all parameters, and since a good approximation might be sufficient for many
applications, step 4 of the algorithm could be replaced by a relaxed condition, e.g.,
Dmin > (lower bound) × 1.01, to allow for deviations of up to one percent. In both
cases, the knowledge about the lower bound helps to reduce computational time if a
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satisfying solution is found early. As long as this is not the case, in each iteration the
algorithm tries to replace the current solution Dc with a new solution Dnew. The new
design is generated in a given neighborhood of the current solution Dc. Obviously,
Dnew should also be a U -type design. Therefore, generating new candidate solutions
is equivalent to imposing a neighborhood structure on the search space U(n; qm).
In Subsection 3.2 we will discuss several neighborhood structures and show how
the findings from Theorems 1–3 translate to such structures. Closely related to
this issue is the idea of local updating of the objective function when comparing
the discrepancy of two candidate designs. This issue will also be discussed in the
following subsection, while Subsection 3.3 is devoted to the different acceptance
criteria and implementation details related to it.

Algorithm 1 Pseudo code for prototype local search heuristic.
1: Initialize τ (number of iterations)
2: Generate starting design Dc ∈ U(n; qm) and let Dmin := Dc

3: for i = 1 to τ do
4: while Dmin > lower bound do
5: Generate Dnew ∈ N (Dc) (neighbor to current solution)
6: Compute ∇ = CD2(Dnew) − CD2(Dc) and generate u (uniform random variable)
7: if (∇ < 0) or acceptance criterion(∇, u) met then Dc = Dnew

8: if Dc < Dmin then Dmin := Dc

9: end while
10: end for

3.2. Neighborhoods. The definition of neighborhoods N has to take into account
several conditions. First, as already pointed out above, N (Dc) ⊂ U(n; qm), i.e.,
each Dnew should also be a U -type design. Second, in order to impose a real
“local” structure, the designs Dc and those in N (Dc) should not differ too much.
Third, the computational complexity of the algorithm depends to a large extent on
calculating ∇, i.e., the difference in the objective function when moving from Dc

to Dnew. Thus, if ∇ can be obtained without calculating CD2(Dnew) from scratch,
a significant speed-up might result.

All three requirements can easily be fulfilled by selecting one or more columns
of Dc and exchanging two elements within each selected column. Then, the first
condition is satisfied by construction. The second condition is also obviously fulfilled
if the number of exchanges is limited to a low number relative to the size of the
design.

For the third condition, assume that Dnew is obtained from Dc by exchanging the
elements in rows i and j of column k. We know that the centered L2-discrepancy
can be expressed as a function of the sum of the σij ’s and the σi’s as defined in
equation (1.2). Now, for a single exchange of two elements in the selected column,
there are altogether 2(n− 2) σij ’s and two σi’s which have to be updated. Suppose
in column k the elements in rows i and j are exchanged. Then for any row l other
than i or j, denote σ̃il and σ̃jl as the new distances between row pair (i, l) and row
pair (j, l), and denote σ̃i = −σ̃

(1)
i + σ̃

(2)
i and σ̃j = −σ̃

(1)
j + σ̃

(2)
j as the new distances

of the single rows i and j from the centered point (1/2, 1/2, . . . , 1/2). Then

σ̃
(1)
i = σ

(1)
i · αk

j /αk
i , σ̃

(1)
j = σ

(1)
j · αk

i /αk
j ,

σ̃
(2)
i = σ

(2)
i · βk

jj/βk
il, σ̃

(2)
j = σ

(2)
j · βk

ii/βk
jj ,

σ̃il = σil · βk
jl/βk

il, σ̃jl = σjl · βk
il/βk

jl,
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with βk
il, βk

jl and αk
i , αk

j as defined in Section 2. The values for σk and σkl for
k, l �= i, j are the same for Dnew and Dc. Using expression (1.3), ∇ = CD2(Dnew)−
CD2(Dc) can be rewritten as

∇ =
1
n2

· (σ̃i − σi + σ̃j − σj) +
1
n2

·
∑
t�=i,j

2 · (σ̃ti − σti + σ̃tj − σtj)

=
1
n2

·
(
−σ

(1)
i ·

(
αk

j

αk
i

− 1

)
− σ

(1)
j ·

(
αk

i

αk
j

− 1

))
+ · · ·

+
1
n2

·
(

σ
(2)
i ·

(
βk

jj

βk
ii

− 1

)
+ σ

(2)
j ·

(
βk

ii

βk
jj

− 1

))
+ · · ·

+
1
n2

·
∑
t�=i,j

2 ·
(

σti ·
(

βk
tj

βk
ti

− 1

))
.

If more than one column are exchanged, i.e., k = k1, . . . , kn, then replace αk
j

αk
i

by∏
κ

αkκ
j

αkκ
i

etc. The updating formula for ∇ avoids calculating CD2(Dnew) from scratch
prior to the acceptance decision. Furthermore, if Dnew is accepted as a new current
solution, the values of the α’s, β’s, σij ’s and σi’s have to be updated only for some
row indices.

The neighborhood definitions used in this paper for the different version of the
threshold accepting heuristic and the balance-pursuit heuristic differ in the selection
of rows i and j for the exchange in a given column k. We consider seven different
cases:

random (“rnd”): randomly select i, j;
preselection 1 (“ps-1”): wi =

∑
l �=i σil; select i s.t. arg maxi(wi) and j s.t.

arg minj(wj);
preselection 2 (“ps-2”): wi = σi; select i s.t. arg maxi(wi) and j s.t.

arg minj(wj);
roulette wheel (“rw”): wi =

∑
l �=i σil; select i with probabilities based on

wi; select j with probabilities based on w−1
i ;

strict roulette wheel (“srw”): wi =
∑

l �=i σil; select i with probabilities
based on (wi −min(w)); select j with probabilities based (wi −max(w))−1;

preselection 3 (“ps-3”): find pair(s) where σil is maximal and where σjι is
minimal; select i and j;

mixed preselection (“ps-mx”): in each iteration, one of the preselection
methods ps-1, ps-2, and ps-3 is randomly chosen.

In previous applications of threshold accepting to uniform design problems, in
general, the rows i and j have been chosen randomly (“rnd”). For the current ap-
plication, we also consider the use of additional information about search directions
which might be more promising. Based on the results provided in Theorems 2 and
3, for the cases q = 3 and 4, respectively, we define three preselection methods. The
two guided preselection methods ps-1 and ps-3 aim at a uniform distribution of the
γij ’s, while the preselection method ps-2 targets the distribution of the γi’s. Taking

into account that σij =
(

4
3

)γij for the three-level case, and σij =
(

11
8

)γ
(1)
ij

(
9
8

)γ
(2)
ij

for the four-level case, the first goal is equivalent to obtaining equal values for all
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σij . Realizing that σ
(1)
i = 2n

(
10
9

)γi and σ
(2)
i =

(
4
3

)γi for the three-level case, while
for the four-level case, σ

(1)
i = 2n

(
143
128

)γi
(

135
128

)m−γi and σ
(2)
i =

(
11
8

)γi
(

9
8

)m−γi ,
σi = −σ

(1)
i + σ

(2)
i represents the distance of a single row i from the central point

(1/2, 1/2, . . . , 1/2).
The preselection method “ps-1” is called “single row with maximal and minimal

sum of distances”. Based on the distances for all pairs of rows of the current design
Dc, we identify a single row with maximal and another single row with minimal sum
of distances, say row i and row j. This means

∑
l �=i σil is maximal and

∑
l �=j σjl

is minimal among
∑

l �=ι σlι, ι = 1, . . . , m. The preselection method “ps-2” is called
“single row with average distribution”. Then, the rows with maximal and minimal
σi’s, respectively, are selected. Since these rows are not unique, the neighborhood
becomes larger by admitting any row with maximal or minimal σi’s, respectively.

Since the preselection methods “ps-1” and “ps-2” define rather small neighbor-
hoods, we also consider two mixed cases, where the selection of rows i and j, though
being random in principle, is biased in favor of row pairs satisfying the condition of
the method preselection 1. These “roulette wheel” methods differ only by including
(“rw”) or excluding (”srw”) the “worst” pair of rows.

The preselection method ps-3 is called “maximal and minimal distances of row
pairs”. Denote by (i, l) and (j, ι) the two row pairs with maximal and minimal
distances (σij) for the current design Dc. Then, the candidate rows are i and j. In
passing, note that the argument is symmetric in i and l as well as in j and ι.

For all neighborhood selection methods, the selection process of i and j plus
the random choice of k are repeated until the obvious condition for a change,
xik �= xjk, is met. A straightforward extension for all neighborhood definitions
consists of allowing for exchanging entries in more than one column. Again, this
leads to larger neighborhoods, which should be considered in particular for larger
designs.

Of course, for the construction of neighborhoods, we are not restricted to us-
ing only a single of these methods. Instead, several methods can be combined,
e.g., by randomly selecting out of a set of methods in each iteration as proposed
for the mixed preselection method (“ps-mx”). This corresponds to forming larger
neighborhoods. We will come back to this argument in Section 4.

3.3. Acceptance. In each iteration, the algorithm will generate a new candidate
solution Dnew in the neighborhood of the current solution Dc (step 5). If this new
candidate solution results in an improved value of the centered L2-discrepancy, i.e.,
if ∇ < 0, the new candidate solution becomes the current solution according to the
first argument in step 7 of the prototype Algorithm 1. However, a simple greedy
method accepting only improvements of the objective function will typically get
stuck in a local minimum of poor quality unless the neighborhoods are defined very
large. Thus, step 7 also provides a second option for accepting Dnew even if it
corresponds to an impairment of the objective function. Again, we consider two
different approaches:

TA (“TA”): In the threshold accepting implementation, a threshold se-
quence is initialized. The value of this sequence, which is reduced on a
regular basis, determines to what extent a worsening of the objective func-
tion is accepted in the acceptance step (step 7). For the present application,
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we use a geometric threshold sequence, which is determined by the initial
and the terminal threshold value. Furthermore, with a low probability, the
elitist solution, i.e., the design Dmin, is reinforced.

Greedy with mutation (“Greedy”): A less complicated acceptance crite-
rion is used for the second method, which is a nearly strict downhill search,
when almost exclusively improvements are accepted in step 7, while impair-
ments are accepted with a rather low probability in order to keep a chance
to escape a poor quality local minimum.

While the second method is already completely described by adding a value for
the number of iterations τ , which takes on values from 1 000 to 500 000 in our
computational experiments, we have to provide some additional information on the
threshold sequence for Threshold Accepting. For finding a reasonable threshold
sequence, several approaches have been discussed in the literature [14]. One has to
take into account that the typical size of local changes ∇ in the fitness function de-
pends strongly on the neighborhood definition. Thus, a standard approach consists
of generating a large set of random designs plus a neighboring design according
to a given neighborhood definition. Then, calculating the ∇’s for these pairs and
evaluating their distribution can provide a first idea. In a next step, different initial
values and terminal values (which were considered reasonable based on these ∇’s)
were tested, and eventually the values T0 = 0.01 and Tτ = 0.00001 were chosen for
the initial and terminal threshold, respectively. The threshold is lowered geometri-
cally after every 200 iterations by a factor such that the terminal value is met for
the last 200 iterations.2

Finally, the reinforcement of the elitist, the elitist principle, is implemented for
the threshold accepting algorithm as follows. If a change has been rejected in
step 7, then with a low probability πε the current solution is replaced with the
best solution found so far. Though the algorithm appears rather insensitive to its
value, preliminary tests suggested that πε = 0.000005 is a reasonable general value.
Ideally, πε ought to be adjusted for different numbers of iterations and problem
size—yet this idea was abandoned for the sake of simplicity. Also, note that πε

is very low and that in many runs the current solution is never replaced with the
elitist; this applies in particular for the runs with a low number of iterations.

4. Comparison of methods and results

In order to analyze the performance of the algorithms using different neighbor-
hood definitions and acceptance criteria, we first concentrate on two examples, i.e.,
the designs U(39; 310) and U(99; 310) for which a total of approximately 3 000 and
4 000 runs were performed, respectively. The implementation for this comparative
study was done in Matlab R13 on Pentium IV 2.7GHz machines. A more com-
prehensive set of designs has been analyzed using those methods which appeared
most attractive in this comparison. These results for the three- and four-level cases
are reported in Subsection 4.2. Detailed up-to-date information on designs can be
found on the web site http://www.math.hkbu.edu.hk/UniformDesign/.

2Alternatively, we also considered a linear threshold sequence with terminal threshold equal
to zero, but did not observe any apparent performance difference to the geometric scheme.
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Figure 2. Average CPU time in seconds for different number of
iterations for U(99; 310)

Figure 3. Quality of current designs in the course of iterations
from two specimen runs for the U(99; 310) design

4.1. Performance analysis.

Acceptance criteria. As described earlier, we consider two alternative acceptance
criteria in the search process: While “Greedy” has a strict preference for improving
steps and allows for mutations (i.e., possible impairments) only with a very low
probability, TA is more tolerant towards impairments as long as they do not exceed
a certain level. This implies that TA accepts more changes during the search
process which demand more CPU time as updates are time costly, as Figure 2
illustrates. It plots the mean computational time (in seconds) across neighborhood
definitions for both acceptance criteria for different numbers of iterations τ . Three
observations are worth noting. First, computational time grows at a linear rate
with the number of iterations. Second, the computational time is hardly affected
by the size of the design under consideration. However, in order to obtain results
of similar quality, it might be necessary to increase the number of iterations with
the size of the design. As long as this increase is linear or polynomial in the size
of the design, the computational complexity of the algorithm remains linear or
polynomial, respectively. Third, the additional computational load of TA relative
to the Greedy strategy appears to be an almost constant factor (note that the
computational time is plotted on a logarithmic scale).

Another advantage of the Greedy strategy is that it has a good chance of identi-
fying an optimum within the current neighborhood as it follows a downhill search
strategy. Hence, when the number of iterations, i.e., the CPU time, is limited, then
Greedy can be expected to find better results than TA. If, however, there is suffi-
cient CPU time, TA turns out to find better results eventually, as it is better suited
to escape local optima. TA therefore benefits more from an increase in CPU time
than the Greedy acceptance criterion does. Figure 3 illustrates this by depicting
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Figure 4. Best found solutions for different CPU times (in sec-
onds; logarithmic scale)

the square of the CD(P)’s of the respective current designs in the course of 100 000
iterations from two specimen runs. In passing, note that for either algorithm, the
last iteration’s design need not be the optimal solution found in this run, Dmin,
and that Dmin is eventually reported. Consequently, there exists a critical amount
of computation time, when TA begins to outperform the Greedy approach. The
larger the problem size, the higher this critical time is, while for smaller problems,
TA finds better results even when the number of iterations is very small (see Figure
4). This figure plots the best found solution for the two acceptance criteria against
computation time. The critical time for the smaller problem instance U(39; 310)
appears to be about one minute, while this value increases to about 10 minutes for
the larger problem instance U(99; 310).

Guided and random search. The suggested neighborhood definitions follow differ-
ent concepts. While the preselection methods make use of the characterization
of uniform designs in Theorems 1–3 in order to derive a search direction, others
incorporate stochastic components or are perfectly random. The effect of these
neighborhood concepts on the search process is rather diverse. While the random
selection (“rnd”) requires almost no computational cost, methods that have to eval-
uate the current situation are of higher computational complexity and therefore take
longer. Also, methods where a search step comes with rather low changes in the
objective function need more interim update steps which, too, has a negative effect
on the computational complexity. Figure 5(a) illustrates this for the U(99; 310) de-
sign and 500 000 iterations—along with the aforementioned effect that TA accepts
more updates and therefore needs additional time.

The more important aspect, however, is how these preselection methods affect
the quality of the results. As can be seen from Figure 5, methods tend to be less
reliable the stronger their deterministic component is. Both acceptance criteria
have a preference for downhill moves. If this preference is combined with a pre-
selection method that also suggests (supposed) downhill moves, then chances are
that the search gets stuck once a local optimum has been reached. In particular,
for preselection methods ps-1 and ps-2, the found solutions are on average worse
than those of the other methods (Figure 5(c)). Also, the standard deviation of
their reported solutions is very high (Figure 5(d)):3 once they have converged to a
local optimum, these two methods have problems escaping them again. Hence, the

3Standard derivations are calculated based on 100 independent runs for each specification of
the algorithms.
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Figure 5. Results for the U(99; 310) design and 500 000 iterations

quality of the found solution depends highly on the initial solution of the search
process. Apparently, these problems become more evident when TA is used rather
than Greedy. One reason might be that the (absolute) values for ∇ are smaller
than for other selection methods; with equal threshold sequence, TA will then ac-
cept more downhill moves than with methods with large (absolute) values for ∇.
This higher acceptance rate therefore increases the computational time and has a
negative effect on convergence. Hence, for these particular selection methods the
threshold sequence ought to be reconsidered.

When there is a higher stochastic component in the selection method, then the
average results become better and more stable. This supports the view that a
neighborhood search strategy should consider not only downhill, but also uphill
moves. This is all the more true for rough and demanding solution spaces than
for this problem. Both acceptance criteria benefit from stochastic components in
the selection step. At the same time, it can also be seen for TA that introducing
a preference for search steps that supposedly improve the solution (such as the
methods ps-1 and ps-2) merely increases the CPU time, but has not necessarily
a positive effect on the quality of the found solutions. TA exhibits a rather poor
convergence behavior with preselection methods ps-1 and ps-2. Partially, this neg-
ative effect could be reduced by introducing refined threshold sequences for this
selection method; nonetheless, the achievable improvements appear limited. On
the other hand, TA works its best when there is a high degree of randomness in the
preselection method: the “rnd” as well as the “rw” and “srw” preselection methods
all report good and stable results.

The positive effect of the stochastic component also explains why preselection
method ps-3 performs better than methods ps-1 and ps-2: In most cases, there is
not a single, but a number of pairs for σil that share the same maximal (or minimal)
value. Hence, this method often makes a stochastic selection. Also, for the mixed
strategy, where in each iteration step one of the preselections ps-1, ps-2 or ps-3
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Figure 6. Best found solution for U(39; 310)

is performed, it is eventually those steps where ps-3 is chosen that contribute the
most.

These findings are confirmed by the results from the second test design with
39 rows. As can be seen from Figure 6, a random selection with even a very
low number of iterations is able to find better results than a strict deterministic
selection rule (in particular preselection 1, yet also the mixed preselection). The
results for other designs considered in detail, including four-level designs U(n, 4m),
look similar; a presentation can therefore be left out; results are available upon
request. Nevertheless, the difference between the pure random selection and the
mixed preselection strategy is not very important. Thus, it cannot be excluded
that for different design parameters, the ranking might change. Therefore, for the
further calculations on an extended set of three- and four-level designs, we consider
both the TA algorithm with the pure random selection and the greedy algorithm
with the mixed preselection method.

4.2. Improved results.

4.2.1. Comparison with existing results. There are many low-discrepancy designs
listed in the web site http://www.math.hkbu.edu.hk/UniformDesign/ at this time.
Those designs have been obtained by implementing the threshold accepting al-
gorithm. However, by implementing our new specification of the TA algorithm
and the greedy balance-pursuit algorithm with the mixed preselection strategy, we
find that many of these designs can still be improved. Note that most of these
improved designs do not satisfy the constraint on m and n which ensures the con-
dition f(µ) ≥ f(0). So the lower bounds of (2.3) and (2.5) are not valid here, but
when the distribution of distances between distinct rows σij ’s becomes even, the
discrepancy of the design is still hoped to be lower.

The results for q = 3 summarized in Table 4 have been obtained from inde-
pendent runs with the Greedy and the TA acceptance criterion. The former ap-
proach was implemented in C++ using the Visual Studio environment, the latter
using Matlab R13. Some of the algorithms’ parameters may differ from those
used for comparison in the previous sections, as altered values for the threshold
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Table 4. Low-discrepancy designs with three levels and compar-
ison with existing results

n m Prev. Res. Results n m Prev. Res. Results

18 6 0.086931 0.086896 18 7 0.114207 0.113591

18 9 0.194699 0.193463 18 10 0.248099 0.246956

21 6 0.088221 0.088205 21 7 0.114634 0.114446

21 8 0.147239 0.147059 21 9 0.187778 0.187364

21 10 0.237259 0.236923 21 11 0.299072 0.296678

27 7 0.109180 0.108284 27 8 0.139677 0.138657

27 9 0.175623 0.175317 27 10 0.220139 0.220005

27 11 0.273620 0.273468 33 6 0.084048 0.083959

33 7 0.107885 0.107875 33 8 0.136667 0.136571

33 9 0.171391 0.171231 33 10 0.212732 0.212241

33 11 0.261448 0.261221 33 12 0.321370 0.319651

36 7 0.106591 0.106444 36 8 0.134521 0.133659

36 9 0.167871 0.166957 36 10 0.207867 0.206584

36 11 0.255643 0.254961 36 12 0.313376 0.311067

39 6 0.083269 0.083180 39 7 0.106408 0.106296

39 9 0.166801 0.166213 39 10 0.205877 0.204760

39 12 0.305374 0.305317 42 8 0.133118 0.133111

42 9 0.165474 0.165094 42 10 0.203445 0.203321

42 11 0.249071 0.248529 42 12 0.303332 0.302409

Remark: The columns “Prev. Res.” indicate the results previously listed on the web site

http://www.math.hkbu.edu.hk/UniformDesign/, while the columns “Results” indicate the

results obtained by our code.

sequence, mutation probability, etc. proved favorable for different designs. Also,
more demanding problems were conceded for a higher number of iterations, typi-
cally, 1 500 000 or more. For designs with m exceeding 15, the values of up to three
columns rather than of a single column were exchanged per search step.

4.2.2. Comparison with the lower bound. According to the lower bound (2.3) in
Theorem 2, we implement our algorithms to search the design with parameters
row n and column m, which satisfy the constraint f(µ) ≥ f(0). For each row n
from 6 to 24, we search designs with up to 24 columns. Table 5 summarizes for
which three-level designs the lower bound has been reached by at least one of our
algorithms.

Table 5. Three-level designs U(n, 3m) for which the lower bound
has been reached (

√
) (−: no lower bound available; ◦ (†; ‡; 
):

best reported solution deviates 0.1 (0.5; 1; 1.5) percent or less from
lower bound)

number of columns, m
n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
6

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

9 − − − − − √ √ √ √ √ √ √ √ √ √ √ √ √ √

12 − − − − − − − − √ √ √ √ √ √ √ √ √ √ √

15 − − − − − − − − − − − √ √ √ √ † √ √ √

18 − − − − − − − − − − − − √ √ ‡ † √ √ √

21 − − − − − − − − − − − − − − � † ◦ ◦ †
24 − − − − − − − − − − − − − − − � † † ‡
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5. Conclusion and discussion

In this paper, we investigate the analytical expression of the centered L2-discrep-
ancy in depth. This analysis provides new lower bounds for three- and four-level U -
type designs. Furthermore, these results can be used to characterize low discrepancy
designs and to use this characterization for a guided selection of the search direction
in optimization heuristics. We compare the performance of a search heuristic based
on these findings, called balance-pursuit heuristic, with a multipurpose implemen-
tation of the threshold accepting algorithm. Although the guided search does not
always outperform the threshold accepting approach, the quality of its results is
often similar. In particular, when the computational time is small compared to the
design size, the novel approach might be preferred.

We use both the new algorithm and a modified threshold accepting implementa-
tion to search for low-discrepancy or even uniform three- and four-level designs. It
turns out that quite often we can improve on previous solutions. For the three-level
case, we can even obtain many new uniform designs.

Given that the idea for the construction of the lower bounds and the balance-
pursuit approach is valid for higher level designs as well, future research will con-
centrate on generalizing our results for designs with more or even arbitrary levels.
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