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SUPERCONVERGENCE OF LOCAL DISCONTINUOUS

GALERKIN METHODS FOR ONE-DIMENSIONAL

LINEAR PARABOLIC EQUATIONS

WAIXIANG CAO AND ZHIMIN ZHANG

Abstract. In this paper, we study superconvergence properties of the local
discontinuous Galerkin method for one-dimensional linear parabolic equations
when alternating fluxes are used. We prove, for any polynomial degree k, that
the numerical fluxes converge at a rate of 2k + 1 (or 2k + 1/2) for all mesh
nodes and the domain average under some suitable initial discretization. We
further prove a k+1th superconvergence rate for the derivative approximation
and a k + 2th superconvergence rate for the function value approximation at
the Radau points. Numerical experiments demonstrate that in most cases, our
error estimates are optimal, i.e., the error bounds are sharp.

1. Introduction

The superconvergence behavior of discontinuous Galerkin (DG) and local discon-
tinuous Galerkin (LDG) [10] methods has been studied for some years. Some early
results can be found in Thomée’s 1997 book [13]. Later, in [1], Adjerid et al. showed
a k+2th superconvergence rate of the DG solution at the downwind-biased Radau
points for some ordinary differential equations; in [6], Celiker and Cockburn studied
superconvergence of the numerical traces for DG and hybridizable DG methods in
solving some steady state problems. Recently, Yang and Shu investigated super-
convergence phenomenon of the DG method for hyperbolic conservation laws [15]
and linear parabolic equations [16] in the one-dimensional setting. Superconver-
gence properties of DG and LDG methods for hyperbolic and parabolic problems
based on Fourier approach were studied in [12]. We also refer to [2,3,8,9,14,17] for
an incomplete list of references. Very recently, in [5], we studied superconvergence
properties of a DG method for linear hyperbolic equations when upwind fluxes were
used. We proved a 2k+1th superconvergence rate of the DG approximation at the
downwind points (on average) as well as the domain average under suitable initial
discretization.

The current work is the second in a series to study superconvergence phenomena
of the DG method in solving partial differential equations where parabolic equa-
tions are under concern. Our main result is a rigorous mathematical proof of the
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2k + 1th (or 2k + 1/2th) superconvergence rate for the domain average and nu-
merical fluxes at mesh nodes. To the best of our knowledge, the best rate proved
so far in the literature is k + 2 [16]. As a by-product, we also prove a pointwise
k + 2th superconvergence rate for the function value approximation and k + 1th
superconvergence rate for the derivative approximation at the Radau (left or right)
points. By doing so, we paint a full picture for superconvergence properties of the
LDG method for linear parabolic equations in one space dimension.

In order to establish the 2k + 1th superconvergence rate, some new analysis
tools are needed. At the core of our analysis here is the construction of a correc-
tion function. The correction function idea has been successfully applied to finite
element methods (FEM) and finite volume methods (FVM) for elliptic equations
(see, e.g. [4, 7]), and more recently, to the DG method for hyperbolic equations
[5]. However, the construction for parabolic equations is very different from steady
state problems using finite element [7] or finite volume methods [4] due to the time
dependent effects. Moreover, it is also quite different from the DG method for hy-
perbolic equations [5] due to the interplay between two correction functions. The
main difficulty for parabolic equations lies in that correction functions for both
variables (the exact solution u and an auxiliary variable q = ux) have to be con-
structed simultaneously. To be more precise, we shall correct the error between the
LDG solution and the Gauss-Radau projection of the exact solution (P−

h u, P+
h q)

or (P+
h u, P−

h q), depending on the choice of numerical fluxes. The construction not
only is more complicated than that of hyperbolic equations, but also requires a
novel idea to match the two variables.

With help of the correction functions, we prove that the LDG solution (uh, qh)
is super-close with order 2k + 1 to our specially constructed interpolation function
(uI , qI) (defined in Section 3). It is this super-closeness that leads to the 2k + 1th
superconvergence rate for the numerical fluxes at all nodes (on average) and for the
domain average.

To end this introduction, we would like to point out that all superconvergent
results here are valid for one-dimensional linear systems, and the proof is along the
same line without any difficulty. Our analysis also leads to some interesting new
numerical discoveries, which will be reported in the last section.

The rest of the paper is organized as follows. In Section 2, we present the
LDG scheme for linear parabolic equations. Section 3 is the most technical part,
where we construct some special functions to correct the error between the LDG
solution and the Gauss-Radau projection of the exact solution. Section 4 is the main
body of the paper, where superconvergence results are proved with suitable initial
discretization. In Section 5, we provide some numerical examples to support our
theoretical findings. Finally, some possible future works and concluding remarks
are presented in Section 6.

Throughout this paper, we adopt standard notation for Sobolev spaces such as
Wm,p(D) on sub-domain D ⊂ Ω equipped with the norm ‖ · ‖m,p,D and semi-norm
| · |m,p,D. When D = Ω, we omit the index D, and if p = 2, we set Wm,p(D) =
Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D. Notation“A � B” implies
that A can be bounded by B multiplied by a constant independent of the mesh size
h and the exact solution u. “A ∼ B” stands for “A � B” and “B � A”.
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2. LDG schemes

We consider local discontinuous Galerkin (LDG) methods for the following one-
dimensional linear parabolic equation

ut = uxx, (x, t) ∈ [0, 2π]× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(2.1)

where u0 is sufficiently smooth. We will consider both the periodic boundary condi-
tion u(0, t) = u(2π, t) and the mixed boundary condition u(0, t) = g0(t), ux(2π, t) =
g1(t) or ux(0, t) = g0(t), u(2π, t) = g1(t).

Let Ω = [0, 2π] and 0 = x 1
2
< x 3

2
< . . . < xN+ 1

2
= 2π be N + 1 distinct points

on the interval Ω. For any positive integer r, we define Zr = {1, . . . , r} and denote
by

τj = (xj− 1
2
, xj+ 1

2
), xj =

1

2
(xj− 1

2
+ xj+ 1

2
), j ∈ ZN

the cells and cell centers, respectively. Let hj = xj+ 1
2
− xj− 1

2
, h̄j = hj/2 and

h = max
j

hj . We assume that the mesh is quasi-uniform, i.e., there exists a constant

c such that h ≤ chj , j ∈ ZN . Define the finite element space

Vh = {v : v|τj
∈ Pk(τj), j ∈ ZN},

where Pk denotes the space of polynomials of degree at most k with coefficients as
functions of t.

To construct the LDG scheme, we introduce an auxiliary variable q = ux, then
(2.1) can be rewritten as a first order linear system

(2.2) ut = qx, q = ux.

The LDG scheme for (2.1) reads as: Find uh, qh ∈ Vh such that for any v, w ∈ Vh,

(uht, v)j = −(qh, vx)j + q̂hv
−|j+ 1

2
− q̂hv

+|j− 1
2
,

(qh, w)j = −(uh, wx)j + ûhw
−|j+ 1

2
− ûhw

+|j− 1
2
.

(2.3)

Here (u, v)j =
∫
τj
uvdx, v−|j+ 1

2
and v+|j+ 1

2
denote the left and right limits of v at

the point xj+ 1
2
, respectively, and ûh, q̂h are numerical fluxes. For LDG schemes,

we consider alternating fluxes

(2.4) ûh = u−
h , q̂h = q+h

or

(2.5) ûh = u+
h , q̂h = q−h .

In this paper, we use both (2.4) and (2.5) as numerical fluxes in the periodic bound-
ary condition, (2.4) in the mixed boundary condition u(0, t) = g0(t), ux(2π, t) =
g1(t), and (2.5) in the mixed boundary condition ux(0, t) = g0(t), u(2π, t) = g1(t).

Define

H1
h = {v : v|τj

∈ H1(τj), j ∈ ZN}
and for all ξ, η, v ∈ H1

h, let

a1(ξ, η; v) =
N∑
j=1

a1j (ξ, η; v), a2(ξ, η; v) =
N∑
j=1

a2j (ξ, η; v)
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where

a1j(ξ, η; v) = (ξt, v)j + (η, vx)j − η̂v−|j+ 1
2
+ η̂v+|j− 1

2
,

a2j(ξ, η; v) = (η, v)j + (ξ, vx)j − ξ̂v−|j+ 1
2
+ ξ̂v+|j− 1

2
.

Here ξ̂, η̂ are taken as the alternating fluxes (2.4) or (2.5). Then we deduce from
(2.3):

(2.6) a1(uh, qh; v) = 0, a2(uh, qh;w) = 0, ∀v, w ∈ Vh.

Obviously, the exact solutions u, q also satisfy

(2.7) a1(u, q; v) = 0, a2(u, q;w) = 0, ∀v, w ∈ Vh.

By a direct calculation, there hold

(2.8) a1(v, w; v) + a2(v, w;w) = (vt, v) + (w,w)− w+v−|N+ 1
2
+ w+v−| 1

2

for the fluxes choice (2.4) and

(2.9) a1(v, w; v) + a2(v, w;w) = (vt, v) + (w,w)− w−v+|N+ 1
2
+ w−v+| 1

2

for the fluxes choice (2.5).

3. Construction of special interpolation functions

Our goal here is to construct a special interpolation function (uI , qI), which is
super-close to the LDG solution (uh, qh).

We begin with some preliminaries. First, for any r, we denote by �r	 the maximal
integer no more than r, and 
r� the minimal integer no less than r. Next, we define
on v ∈ H1

h, two Gauss-Radau projections P−
h , P+

h by

(P−
h v, w)j = (v, w)j , ∀w ∈ Pk−1(τj) and P−

h v(x−
j+ 1

2

) = v(x−
j+ 1

2

),

(P+
h v, w)j = (v, w)j , ∀w ∈ Pk−1(τj) and P+

h v(x+
j− 1

2

) = v(x+
j− 1

2

),

and an integral operator D−1
s by

D−1
s v(x) =

1

h̄j

∫ x

x
j− 1

2

v(x′)dx′ =

∫ s

−1

v̂(s′)ds′, x ∈ τj , j ∈ ZN ,

where

s = (x− xj)/h̄j ∈ [−1, 1], v̂(s) = v(x).

We have, for any function v ∈ H1
h, the following Legendre expansion in each

element τj , j ∈ ZN ,

v(x, t) =
∞∑

m=0

vj,m(t)Lj,m(x), vj,m =
2m+ 1

hj
(v, Lj,m)j ,

where Lj,m denotes the normalized Legendre polynomial of degree m on τj . By the
definition of P−

h , P+
h ,

(v − P−
h v)(x, t) = v̄j,k(t)Lj,k +

∞∑
m=k+1

vj,m(t)Lj,m(x),

(v − P+
h v)(x, t) = ṽj,k(t)Lj,k +

∞∑
m=k+1

vj,m(t)Lj,m(x),
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where

v̄j,k = −v(x−
j+ 1

2

, t) +
1

hj

∫
τj

v(x, t)
k∑

m=0

(2m+ 1)Lj,m(x)dx,(3.1)

ṽj,k = (−1)k+1v(x+
j− 1

2

, t) +
1

hj

∫
τj

v(x, t)
k∑

m=0

(−1)k+m(2m+ 1)Lj,m(x)dx.(3.2)

Obviously,

(3.3) (v − P−
h v, w)j = v̄j,k(Lj,k, w)j , (v − P+

h v, w) = ṽj,k(Lj,k, w)j , ∀w ∈ Vh.

In each element τj , j ∈ ZN , we define

F1,1 = P+
h D−1

s Lj,k, F1,i = (P+
h D−1

s P−
h D−1

s )i−1F1,1, i ≥ 2,(3.4)

F2,1 = P−
h D−1

s Lj,k, F2,i = (P−
h D−1

s P+
h D−1

s )i−1F2,1, i ≥ 2.(3.5)

Lemma 3.1. For all 1 ≤ i ≤ 
k/2�, x ∈ τj , j ∈ ZN , F1,i(x), F2,i(x) have the
following representations

F1,i(x) =
∑k

m=k−2i+2 ai,m(Lj,m + Lj,m−1)(x),(3.6)

F2,i(x) =
∑k

m=k−2i+2 bi,m(Lj,m − Lj,m−1)(x),(3.7)

where the coefficients ai,m, bi,m are some bounded constants independent of the mesh
size hj, and Lj,m + Lj,m−1, Lj,m − Lj,m,m ≥ 1 are the left and right Radau poly-
nomials of degree m on τj, respectively. Consequently,

F1,i(x
+
j− 1

2

) = 0, ‖F1,i‖0,∞,τj
� 1,(3.8)

F2,i(x
−
j+ 1

2

) = 0, ‖F2,i‖0,∞,τj
� 1.(3.9)

Proof. For all m ≥ 1, noticing that ‖Lj,m‖0,∞,τj
= 1 and

(Lj,m + Lj,m−1)(x
+
j− 1

2

) = 0, (Lj,m − Lj,m−1)(x
−
j+ 1

2

) = 0,

then (3.8)-(3.9) follow directly from (3.6)-(3.7).
In the following, We shall focus our attention on (3.6) since (3.7) can be obtained

by following the same line. We show (3.6) by induction. First, by the definition of
P+
h and the fact that

(3.10) D−1
s Lj,m =

1

2m+ 1
(Lj,m+1 − Lj,m−1), m ≥ 1,

we derive

F1,1 = − 1

2k + 1
(Lj,k + Lj,k−1),

which implies (3.6) is valid for i = 1 with a1,k = − 1
2k+1 . Now we suppose (3.6) is

valid for i, i ≤ 
k/2� − 1. Since

P−
h Lj,k+1 = Lj,k, P+

h Lj,k+1 = −Lj,k, PhLj,m = Lj,m, 1 ≤ m ≤ k,

where Ph = P−
h or P+

h , it is easy to deduce from (3.10) that

P−
h D−1

s Lj,k =
1

2k + 1
(Lj,k − Lj,k−1), P+

h D−1
s Lj,k =

−1

2k + 1
(Lj,k + Lj,k−1),

PhD
−1
s Lj,m =

1

2m+ 1
(Lj,m+1 − Lj,m−1), 1 ≤ m ≤ k − 1.
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Therefore,

(3.11) P−
h D−1

s F1,i =

k∑
m=k−2i+1

βi,m(Lj,m − Lj,m−1),

where

βi,m =
ai,m+1 + ai,m

2m+ 1
+

ai,m + ai,m−1

2m− 1

with ai,k+1 = ai,k−2i+1 = ai,k−2i = 0. Now we consider F1,i+1. Note that

F1,i+1 = P+
h D−1

s P−
h D−1

s F1,i,

and we have from (3.11) that

F1,i+1 =
k∑

m=k−2i+1

βi,mP+
h D−1

s (Lj,m − Lj,m−1)

=

k∑
m=k−2i

ai+1,m(Lj,m + Lj,m−1),

where

ai+1,m =
βi,m+1 − βi,m

2m+ 1
+

βi,m−1 − βi,m

2m− 1

with βi,k+1 = βi,k−2i = βi,k−2i−1 = 0. Consequently, (3.6) is valid for i + 1. Then
(3.6) follows. This completes our proof. �

With the functions F1,i, F2,i, we define in each τj , j ∈ ZN two other functions
F̄1,i, F̄2,i as

(3.12) F̄1,i = P−
h D−1

s F1,i, F̄2,i = P+
h D−1

s F2,i, 1 ≤ i ≤ �k/2	.

By the same arguments as in Lemma 3.1, we obtain

F̄1,i =
k∑

m=k−2i+1

βi,m(Lj,m − Lj,m−1),(3.13)

F̄2,i =

k∑
m=k−2i+1

γi,m(Lj,m + Lj,m−1),(3.14)

where βi,m, γi,m are constants independent of hj . Consequently,

F̄1,i(x
−
j+ 1

2

) = 0, ‖F̄1,i‖0,∞,τj
� 1,(3.15)

F̄2,i(x
+
j− 1

2

) = 0, ‖F̄2,i‖0,∞,τj
� 1.(3.16)

In addition, a straightforward calculation from (3.4)-(3.5) and (3.12) yields

(3.17) F1,i+1 = P+
h D−1

s F̄1,i, F2,i+1 = P−
h D−1

s F̄2,i, 1 ≤ i ≤ �k/2	.
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3.1. Correction functions for the fluxes (2.4). In each element τj , j ∈ ZN , we
have, from (3.3),

(3.18) (u−P−
h u, v)j = ūj,k(t)(Lj,k, v)j , (q−P+

h q, v)j = q̃j,k(t)(Lj,k, v)j , ∀v ∈ Vh,

where the coefficients ūj,k, q̃j,k are given by (3.1)-(3.2). Let

Gi(t) = Di
tūj,k(t), Qi(t) = Di

tq̃j,k(t), 0 ≤ i ≤ 
k/2�.

By the standard approximation theory, if u ∈ W k+2+2i,∞(Ω),

|Gi| � hk+1‖∂i
tu‖k+1,∞,τj

� hk+1‖u‖k+1+2i,∞,τj
,(3.19)

|Qi| � hk+1‖∂i
tu‖k+2,∞,τj

� hk+1‖u‖k+2+2i,∞,τj
.(3.20)

Now we are ready to construct our correction functions. For all 1 ≤ l ≤ k, we
define, first at the boundary points x = x 1

2
and x = xN+ 1

2
,

(3.21) W l
1(x

+
N+ 1

2

, t) = 0, W l
2(x

−
1
2

, t) = 0, ∀t ≥ 0,

and then in each element τj , j ∈ ZN ,

(3.22) W l
1(x, t) =

�l/2�∑
i=1

w1,i +

�l/2�∑
i=1

w̄2,i, W l
2(x, t) =

�l/2�∑
i=1

w̄1,i +

�l/2�∑
i=1

w2,i,

where

w1,i = (h̄j)
2i−1

GiF1,i, w̄1,i = (h̄j)
2iGiF̄1,i,(3.23)

w2,i = (h̄j)
2i−1Qi−1F2,i, w̄2,i = (h̄j)

2iQiF̄2,i.(3.24)

Lemma 3.2. Suppose W l
1,W

l
2 ∈ Vh are defined by (3.21)-(3.24). Then

W l
1(x

+
j− 1

2

, t) = 0, W l
2(x

−
j− 1

2

, t) = 0, ∀j ∈ ZN+1.(3.25)

Moreover, if l = 2r is even, then

((W l
2)t, v)j + (W l

1, vx)j = (w1,1, vx)j + ((w̄1,rt)t, v)j ,(3.26)

(W l
2, vx)j + (W l

1, v)j = (w2,1, vx)j + (w̄2,r, v)j .(3.27)

If l = 2r + 1 is odd, then

((W l
2)t, v)j + (W l

1, vx)j = (w1,1, vx)j + ((w2,r+1)t, v)j ,(3.28)

(W l
2, vx)j + (W l

1, v)j = (w2,1, vx)j + (w1,r+1, v)j .(3.29)

Proof. By (3.8)-(3.9) and (3.15)-(3.16),

w1,i(x
+
j− 1

2

, t) = w̄2,i(x
+
j− 1

2

, t) = 0, w2,i(x
−
j+ 1

2

, t) = w̄1,i(x
−
j+ 1

2

, t) = 0, j ∈ ZN .

Then (3.25) follows from (3.21)-(3.22).
We now show (3.26)-(3.29). For any integer l, 1 ≤ l ≤ k, a direct calculation

from (3.6)-(3.7) and (3.13)-(3.14) gives

D−1
s F1,i(x

−
j+ 1

2

) = D−1
s F1,i(x

+
j− 1

2

) = 0, D−1
s F2,i(x

−
j+ 1

2

) = D−1
s F2,i(x

+
j− 1

2

) = 0

for all i ∈ Z�l/2�, and

D−1
s F̄1,i(x

−
j+ 1

2

) = D−1
s F̄1,i(x

+
j− 1

2

) = 0, D−1
s F̄2,i(x

−
j+ 1

2

) = D−1
s F̄2,i(x

+
j− 1

2

) = 0
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for all i ∈ Z�l/2�−1 in case l = 2r and i ∈ Z�l/2� in case l = 2r + 1. Then by
integration by parts, (3.12) and (3.17), we obtain

(w̄1,i, vx)j + (w1,i, v)j = (h̄j)
2iGi(F̄1,i, vx)j + (h̄j)

2i−1Gi(F1,i, v)j

= (h̄j)
2iGi(F̄1,i −D−1

s F1,i, vx)j = 0,

((w2,i)t, v)j + (w̄2,i, vx)j = (h̄j)
2i−1Qi(F2,i, v)j + (h̄j)

2iQi(F̄2,i, vx)j

= (h̄j)
2iQi(F̄2,i −D−1

s F2,i, vx)j = 0

for all i ∈ Z�l/2�, and

((w̄1,i)t, v)j + (w1,i+1, vx)j = (h̄j)
2iGi+1(F̄1,i, v)j + (h̄j)

2i+1Gi+1(F1,i+1, vx)j

= (h̄j)
2i+1Gi+1(F1,i+1 −D−1

s F̄1,i, vx)j = 0,

(w2,i+1, vx)j + (w̄2,i, v)j = (h̄j)
2i+1Qi(F2,i+1, vx)j + (h̄j)

2iQi(F̄2,i, v)j

= (h̄j)
2i+1Qi(F2,i+1 −D−1

s F̄2,i, vx)j = 0

for all i ∈ Z�l/2�−1 in case l = 2r and i ∈ Z�l/2� in case l = 2r+1. Then the desired
results (3.26)-(3.29) follow by summing over all i. �

With the correction functions W l
1,W

l
2, 1 ≤ l ≤ k, we define the special interpo-

lation functions

(3.30) ul
I = P−

h u−W l
2, qlI = P+

h q −W l
1.

By (3.25), we have

(3.31) ul
I(x

−
j− 1

2

, t) = u(x−
j− 1

2

, t), qlI(x
+
j− 1

2

, t) = q(x+
j− 1

2

, t), ∀j ∈ ZN+1.

3.2. Correction functions for the fluxes (2.5). In this case, we still use the
notation

Gi(t) = Di
tũj,k(t), Qi(t) = Di

tq̄j,k(t), 0 ≤ i ≤ 
k/2�,
where ũj,k, q̄j,k are defined by (3.1)-(3.2).

Similarly as the fluxes choice (2.4), we construct the correction functions as
follows. For all 1 < l ≤ k, t ≥ 0, we define, at the boundary points x = x 1

2
and

x = xN+ 1
2
,

(3.32) W l
1(x

−
1
2

, t) = 0, W l
2(x

+
N+ 1

2

, t) = 0,

and in each element τj , j ∈ ZN ,

(3.33) W l
1(x, t) =

�l/2�∑
i=1

w̄1,i +

�l/2�∑
i=1

w2,i, W l
2(x, t) =

�l/2�∑
i=1

w1,i +

�l/2�∑
i=1

w̄2,i,

where

w1,i = (h̄j)
2i−1Qi−1F1,i, w̄1,i = (h̄j)

2iQiF̄1,i,

w2,i = (h̄j)
2i−1GiF2,i, w̄2,i = (h̄j)

2iGiF̄2,i.

We define the special interpolation functions in each element τj , j ∈ ZN as

(3.34) ul
I = P+

h u−W l
2, qlI = P−

h q −W l
1, 1 ≤ l ≤ k.

A direct calculation yields

(3.35) ul
I(x

+
j− 1

2

, t) = u(x+
j− 1

2

, t), qlI(x
−
j− 1

2

, t) = q(x−
j− 1

2

, t), ∀j ∈ ZN+1.
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3.3. Estimates. We shall present in this subsection some estimates for W l
1,W

l
2

and the interpolation function (uI , qI), which play important roles in our supercon-
vergence analysis.

Theorem 3.3. Let u ∈ W k+l+3,∞(Ω), 1 ≤ l ≤ k be the solution of (2.1). Suppose
W l

1,W
l
2 are defined by (3.21)-(3.22) for fluxes (2.4) or (3.32)-(3.33) for fluxes (2.5).

Then for all j ∈ ZN ,

(3.36) ‖W l
1‖0,∞,τj

+ ‖W l
2‖0,∞,τj

� hk+2‖u‖k+l+2,∞,τj
.

Moreover, if (ul
I , q

l
I) ∈ Vh is the corresponding interpolation function defined by

(3.30) and (3.34) for fluxes (2.4) and (2.5), respectively, then∣∣((ul
I − u)t, v)j − (W l

1, vx)j
∣∣ � hk+l+1‖u‖k+l+3,∞,τj

‖v‖0,1,τj
,(3.37) ∣∣(qlI − q, v)j − (W l

2, vx)j
∣∣ � hk+l+1‖u‖k+l+3,∞,τj

‖v‖0,1,τj
.(3.38)

Proof. We only consider the fluxes (2.4), since the the proof for fluxes (2.5) is
similar. For all i ≥ 1, as direct consequences of the second inequality of (3.8)-(3.9)
and (3.15)-(3.16), and (3.19)-(3.20), we obtain

‖w1,i‖0,∞,τj
� hk+2i‖u‖k+1+2i,∞,τj

, ‖w̄1,i‖0,∞,τj
� hk+2i+1‖u‖k+1+2i,∞,τj

,(3.39)

‖w2,i‖0,∞,τj
� hk+2i‖u‖k+2i,∞,τj

, ‖w̄2,i‖0,∞,τj
� hk+2i+1‖u‖k+2+2i,∞,τj

.(3.40)

Then (3.36) follows.
We now show (3.37)-(3.38). By (3.18), integration by parts, and the first formula

of (3.4)-(3.5),

(P−
h ut − ut, v)j = −G1(Lj,k, v)j = h̄jG1(F1,1, vx)j = (w1,1, vx)j ,

(P+
h q − q, v)j = −Q0(Lj,k, v)j = h̄jQ0(F2,1, vx)j = (w2,1, vx)j .

Then

((ul
I − u)t, v)j − (W l

1, vx)j = (w1,1, vx)j − ((W l
2)t, v)j − (W l

1, vx)j ,

(qlI − q, v)j − (W l
2, vx)j = (w2,1, vx)j − (W l

1, v)j − (W l
2, vx)j .

In light of (3.26)-(3.29), we have

((ul
I − u)t, v)j − (W l

1, vx)j = ((w̄1,r)t, v)j , (qlI − q, v)j − (W l
2, vx)j = (w̄2,r, v)j

for l = 2r and

((ul
I − u)t, v)j − (W l

1, vx)j = ((w2,r+1)t, v)j , (qlI − q, v)j − (W l
2, vx)j = (w1,r+1, v)j

for l = 2r + 1. By (3.39)-(3.40) and the fact that ut = uxx, we have for all l ≥ 1,

|((ul
I − u)t, v)j − (W l

1, vx)j | � hk+l+1‖u‖k+l+3,∞,τj
‖v‖0,1,τj

,

|(qlI − q, v)j − (W l
2, vx)j | � hk+l+1‖u‖k+l+3,∞,τj

‖v‖0,1,τj
.

The proof is completed. �

4. Superconvergence

In this section, we shall study superconvergence properties of the LDG solution
at some special points: nodes, left and right Radau points, and superconvergence
for the domain and cell average. We denote by Rl

j,m, Rr
j,m,m ∈ Zk the k interior left

and right Radau points in the interval τj , j ∈ ZN , respectively. Namely, Rl
j,m,m ∈

Zk are zeros of Lj,k+1 + Lj,k except the point x = xj− 1
2
, and Rr

j,m,m ∈ Zk are

zeros of Lj,k+1 − Lj,k except the point x = xj+ 1
2
.



72 WAIXIANG CAO AND ZHIMIN ZHANG

We begin with a study of the error between the LDG solution (uh, qh) and the
interpolation function (ul

I , q
l
I), 1 ≤ l ≤ k defined in (3.30) or (3.34).

Theorem 4.1. Let u ∈ W k+l+3,∞(Ω), 1 ≤ l ≤ k be the solution of (2.1), and
uh, qh ∈ Vh the solution of (2.3). Let ul

I , q
l
I ∈ Vh be defined by (3.30) for fluxes

(2.4) or (3.34) for fluxes (2.5). Suppose the initial solution uh(·, 0) = ul
I(·, 0). Then

for both the periodic and mixed boundary conditions,

‖ul
I − uh‖0(t) � (1 + t)hk+l+1‖u‖k+l+3,∞,

‖qlI − qh‖0(t) � (1 + t
1
2 )hk+l+1‖u‖k+l+3,∞.

(4.1)

Proof. Let ηu = ul
I − uh, ηq = qlI − qh. Recall the definition of a1(·, ·; ·), a2(·, ·; ·)

and (2.6)-(2.7), we have for all v, w ∈ Vh,

a1(ηu, ηq; v) = (ul
It − ut, v)− (W l

1, vx),

a2(ηu, ηq;w) = (qlI − q, w)− (W l
2, wx).

By Theorem 3.3, the inequalities (3.37)-(3.38) hold for both the fluxes (2.4) and
(2.5), then

|a1(ηu, ηq; v)| � hk+l+1‖u‖k+l+3,∞‖v‖0,1,
|a2(ηu, ηq;w)| � hk+l+1‖u‖k+l+3,∞‖w‖0,1.

We now show (4.1). We first consider the periodic boundary condition. Since

(ul
I − uh)

−
N+ 1

2

= (ul
I − uh)

−
1
2

, (ul
I − uh)

+
N+ 1

2

= (ul
I − uh)

+
1
2

,

(qlI − qh)
+
N+ 1

2

= (qlI − qh)
+
1
2

, (qlI − qh)
−
N+ 1

2

= (qlI − qh)
−
1
2

,

by choosing v = ηu, w = ηq in (2.8) for fluxes (2.4), or in (2.9) for fluxes(2.5), we
obtain for both fluxes choice

|(ηut, ηu) + (ηq, ηq)| = |a1(ηu, ηq; ηu) + a2(ηu, ηq; ηq)|
� hk+l+1‖u‖k+l+3,∞(‖ηu‖0,1 + ‖ηq‖0,1).

By Cauchy-Schwarz inequality, we get

(4.2)
1

2

d

dt
‖ηu‖20 = (ηut, ηu) � hk+l+1‖u‖k+l+3,∞(‖ηu‖0 + hk+l+1‖u‖k+l+3,∞).

Due to the special choice of initial condition, we have ‖ηu‖0(0) = 0, which yields

‖ηu‖20(t) =
∫ t

0

d

dt
‖ηu‖20dt � thk+l+1‖u‖k+l+3,∞(‖ηu‖0(t) + hk+l+1‖u‖k+l+3,∞).

Then the first inequality of (4.1) follows from a direct calculation. Note that

‖ηq‖20 � hk+l+1‖u‖k+l+3,∞‖ηu‖0 + hk+l+1‖u‖k+l+3,∞‖ηq‖0,
we obtain

‖ηq‖0 � (1 + t
1
2 )hk+l+1‖u‖k+l+3,∞.

This finishes the second inequality of (4.1) for the periodic boundary condition.
Now we consider the mixed boundary condition. Noticing that

(ul
I − uh)

−
1
2

= 0, (qlI − qh)
+
N+ 1

2

= 0

for the condition u(0, t) = g0(t), ux(2π, t) = g1(t) and

(qlI − qh)
−
1
2

= 0, (ul
I − uh)

+
N+ 1

2

= 0
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for the condition ux(0, t) = g0(t), u(2π, t) = g1(t), by choosing v = ηu, w = ηq in
(2.8) and (2.9), respectively, we derive in both cases

(ηut, ηu) + (ηq, ηq) = a1(ηu, ηq; ηu) + a2(ηu, ηq; ηq).

Following the same line as in the periodic case, we obtain (4.1) directly for the
mixed boundary condition. �

Remark 4.2. By choosing l = k in Theorem 4.1, the special interpolation function
(uk

I , q
k
I ) is super-close to the LDG solution (uh, qh), with a superconvergence rate

2k + 1. It is the super-closeness that leads to the 2k + 1 superconvergence rate at
nodes as well as the domain average.

As direct consequences of (4.1) and (3.36), we have the following superconver-
gence results.

Corollary 4.3. Let u ∈ W k+5,∞(Ω) be the solution of (2.1), and uh, qh ∈ Vh,
the solution of (2.3). Suppose the initial solution uh(·, 0) = ul

I(·, 0), l = 2 with
ul
I defined by (3.30) for fluxes (2.4) or (3.34) for fluxes (2.5). Then for both the

periodic and mixed boundary conditions,

(4.3) ‖ξu‖0 � (1 + th)hk+2‖u‖k+5,∞, ‖ξq‖0 � (1 + t
1
2 h)hk+2‖u‖k+5,∞,

where ξu = P−
h u − uh, ξq = P+

h q − qh for fluxes (2.4) and ξu = P+
h u − uh, ξq =

P−
h q − qh for fluxes (2.5).

Remark 4.4. In Theorem 4.1 and Corollary 4.3, if we choose the initial solution
uh(·, 0) = uk

I (·, 0) instead of uh(·, 0) = ul
I(·, 0), 1 ≤ l ≤ k, we have

‖uh − ul
I‖0(0) = ‖uk

I − ul
I‖0(0) � hk+l+1‖u‖k+l+2,∞.

Following the same line of argument, estimates in (4.1) and (4.3) are still valid.

4.1. Superconvergence of the numerical fluxes at nodal points. We are now
ready to present our superconvergence results of the numerical fluxes at nodes.

Theorem 4.5. Let u ∈ W 2k+3,∞(Ω) be the solution of (2.1), and uh, qh the solu-
tion of (2.3). Suppose the initial solution uh(·, 0) = uk

I (·, 0) with uk
I (·, 0) defined by

(3.30) for fluxes (2.4), or (3.34) for fluxes (2.5). Then for both the periodic and
mixed boundary conditions,

eu,n � (1 + t)h2k+ 1
2 ‖u‖2k+3,∞, eq,n � (1 + t

1
2 )h2k+ 1

2 ‖u‖2k+3,∞,(4.4)

‖eu‖∗ � (1 + t)h2k+1‖u‖2k+3,∞, ‖eq‖∗ � (1 + t
1
2 )h2k+1‖u‖2k+3,∞,(4.5)

where

eu,n = max
j∈ZN+1

∣∣∣(u − ûh)(xj− 1
2
, t)

∣∣∣ , ‖eu‖∗ =

(
1

N + 1

N+1∑
j=1

(
u − ûh

)2(
xj− 1

2
, t
)) 1

2

,

eq,n = max
j∈ZN+1

∣∣∣(q − q̂h)(xj− 1
2
, t)

∣∣∣ , ‖eq‖∗ =

(
1

N + 1

N+1∑
j=1

(
q − q̂h

)2(
xj− 1

2
, t
)) 1

2

,

with the numerical fluxes ûh, q̂h taken as (2.4) or (2.5).

Proof. Let (uI , qI) = (uk
I , q

k
I ). By (3.31) and (3.35),

u(xj− 1
2
, t) = ûI(xj− 1

2
, t), q(xj− 1

2
, t) = q̂I(xj− 1

2
, t), j ∈ ZN+1.
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For any fixed t, uI − uh ∈ Pk in each τj , j ∈ ZN . Then the inverse inequality holds
and thus,

∣∣∣(ûI − ûh)(xj+ 1
2
, t)

∣∣∣ ≤ ‖uI − uh‖0,∞,Ωj
(t) � h− 1

2 ‖uI − uh‖0,Ωj
(t),(4.6) ∣∣∣(q̂I − q̂h)(xj+ 1

2
, t)

∣∣∣ ≤ ‖qI − qh‖0,∞,Ωj
(t) � h− 1

2 ‖qI − qh‖0,Ωj
(t).(4.7)

Here Ωj = τj ∪ τj+1, j ∈ ZN−1 and Ωj = τ1 ∪ τN , j = 0, N . By (4.1), the desired
result (4.4) follows.

We next show (4.5). Again by the inverse inequality,

1

N

N∑
j=1

‖v‖20,∞,τj
� 1

N

N∑
j=1

h−1
j ‖v‖20,τj

� ‖v‖20, ∀v ∈ Vh.

Then

1

N + 1

N+1∑
j=1

(
ûI − ûh

)2(
xj− 1

2
, t
)

� ‖uI − uh‖20(t),

1

N + 1

N+1∑
j=1

(
q̂I − q̂h

)2(
xj− 1

2
, t
)

� ‖qI − qh‖20(t).

The inequality (4.5) follows directly from the estimate (4.1). �

4.2. Superconvegence for the domain and cell averages. We first denote by
‖eu‖d and ‖eu‖c the domain average and the cell average of u − uh, respectively.
Precisely,

‖eu‖d =

∣∣∣∣ 1

2π

∫ 2π

0

(u− uh)(x, t)dx

∣∣∣∣ ,

‖eu‖c =

⎛
⎝ 1

N

N∑
j=1

( 1

hj

∫ x
j+ 1

2

x
j− 1

2

(u− uh)(x, t)dx
)2

⎞
⎠

1
2

.

Similarly, the domain average ‖eq‖d and the cell average ‖eq‖c of q − qh can be
defined in the same way.

We have the following superconvergence results for the domain and cell averages.

Theorem 4.6. Suppose all the conditions of Theorem 4.5 hold. Then

(4.8) ‖eu‖c � (h+ t
3
2 + t)h2k‖u‖2k+3,∞, ‖eq‖c � (1 + t)h2k‖u‖2k+3,∞.

In addition, for the periodic boundary condition, there holds

(4.9) ‖eu‖d � h2k+1‖u‖2k+3,∞, ‖eq‖d = 0,

and for the mixed boundary condition

(4.10) ‖eu‖d � (h
1
2 + t

3
2 + t)h2k+ 1

2 ‖u‖2k+3,∞, ‖eq‖d � (1 + t)h2k+ 1
2 ‖u‖2k+3,∞.
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Proof. Note that aij(u − uh, q − qh; v) = 0, ∀v ∈ Vh, i = 1, 2, j ∈ ZN . By taking
v = 1, we obtain∫ x

j+ 1
2

x
j− 1

2

(q − qh)(x, t)dx = (u− ûh)(xj+ 1
2
, t)− (u− ûh)(xj− 1

2
, t),

∫ x
j+ 1

2

x
j− 1

2

(u− uh)t(x, t)dx = (q − q̂h)(xj+ 1
2
, t)− (q − q̂h)(xj− 1

2
, t).

In light of (4.6)-(4.7),∣∣∣∣∣∣
∫ x

j+ 1
2

x
j− 1

2

(q − qh)(x, t)dx

∣∣∣∣∣∣ � h− 1
2 ‖uk

I − uh‖0,Ωj
,

∣∣∣∣∣∣
∫ x

j+ 1
2

x
j− 1

2

(u− uh)t(x, t)dx

∣∣∣∣∣∣ � h− 1
2 ‖qkI − qh‖0,Ωj

.

Then

‖eq‖c �

⎛
⎝ 1

N

N∑
j=1

h−3‖uk
I − uh‖20,Ωj

⎞
⎠

1
2

� h−1‖uk
I − uh‖0.

The second inequality of (4.8) follows directly from the estimate (4.1). On the
other hand, since
∫ x

j+ 1
2

x
j− 1

2

(u− uh)(x, t)dx =

∫ x
j+ 1

2

x
j− 1

2

(u− uh)(x, 0)dx+

∫ t

0

d

dt

∫ x
j+ 1

2

x
j− 1

2

(u− uh)(x, t)dxdt

�
∫ x

j+ 1
2

x
j− 1

2

(u− uh)(x, 0)dx+ th− 1
2 ‖qkI − qI‖0,Ωj

,

then the estimate for the cell average of u − uh at τj , j ∈ ZN at any time t > 0 is
reduced to the estimate at t = 0. By the special initial condition,∫ x

j+ 1
2

x
j− 1

2

(u− uh)(x, 0)dx =

∫ x
j+ 1

2

x
j− 1

2

(u− uk
I )(x, 0)dx =

∫ x
j+ 1

2

x
j− 1

2

W k
2 (x, 0)dx,

where W k
2 is defined by (3.22) for fluxes (2.4) or (3.33) for fluxes (2.5). When W k

2

is defined by (3.22), we have, from (3.8)-(3.9), (3.15)-(3.16) and the orthogonal
properties of Legendre polynomials,∫ x

j+ 1
2

x
j− 1

2

W k
2 (x, t)dx =

∫ x
j+ 1

2

x
j− 1

2

w̄1,r(x, t)dx, k = 2r,

∫ x
j+ 1

2

x
j− 1

2

W k
2 (x, t)dx =

∫ x
j+ 1

2

x
j− 1

2

w2,r+1(x, t)dx, k = 2r + 1.

Recall the estimates for w̄1,r and w̄2,r+1 in (3.39)-(3.40), we obtain for all k ≥ 1,∣∣∣∣∣∣
∫ x

j+ 1
2

x
j− 1

2

W k
2 (x, t)dx

∣∣∣∣∣∣ � h2k+2‖u‖2k+2,∞,τj
, ∀j ∈ ZN .
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Similarly, when W k
2 is defined by (3.33), the above inequality still holds true. Then,

(4.11)

∣∣∣∣∣∣
∫ x

j+ 1
2

x
j− 1

2

(u− uh)(x, 0)dx

∣∣∣∣∣∣ � h2k+2‖u‖2k+2,∞,τj
,

which yields∣∣∣∣∣∣
∫ x

j+ 1
2

x
j− 1

2

(u− uh)(x, t)dx

∣∣∣∣∣∣ � h2k+2‖u‖2k+2,∞,τj
+ th− 1

2 ‖qkI − qI‖0,Ωj
.

Then a direct calculation and the estimate (4.1) yield the first inequality of (4.8).
Now we move on to the domain average. Noticing that

∫ 2π

0

(q − qh)(x, t)dx = (u− ûh)(xN+ 1
2
, t)− (u− ûh)(x 1

2
, t),

∫ 2π

0

(u− uh)t(x, t)dx = (q − q̂h)(xN+ 1
2
, t)− (q − q̂h)(x 1

2
, t),

the second inequalities of (4.9) and (4.10) follow from the fact (u− ûh)(xN+ 1
2
, t) =

(u−ûh)(x 1
2
, t) for the periodic boundary condition and (4.4) for the mixed boundary

condition, respectively. As for the domain average of u−uh, by (4.4), the fact that
(q − q̂h)(xN+ 1

2
, t) = (q − q̂h)(x 1

2
, t) for the periodic boundary condition, we obtain

for the periodic boundary condition
∫ 2π

0

(u− uh)(x, t)dx =

∫ 2π

0

(u− uh)(x, 0)dx,

and for the mixed boundary condition∣∣∣∣
∫ 2π

0

(u− uh)(x, t)dx

∣∣∣∣ �
∣∣∣∣
∫ 2π

0

(u− uh)(x, 0)dx

∣∣∣∣+ (t
3
2 + t)h2k+ 1

2 ‖u‖2k+3,∞.

In light of (4.11), the first inequalities of (4.9) and (4.10) follow. �

4.3. Superconvergence of the function value approximation at Radau
points. As a by-product of (4.1), we have the following superconvergence results
of the function value approximation at Radau points.

Theorem 4.7. Suppose all the conditions of Corollary 4.3 hold. For both the
periodic and mixed boundary conditions, there hold,

eu,r � (1 + t
√
h)hk+2‖u‖k+5,∞, eq,l � (1 +

√
th)hk+2‖u‖k+5,∞(4.12)

for fluxes (2.4) and

eu,l � (1 + t
√
h)hk+2‖u‖k+5,∞, eq,r � (1 +

√
th)hk+2‖u‖k+5,∞(4.13)

for fluxes (2.5). Here

eu,r = max
(j,m)∈ZN×Zk

∣∣(u− uh)(R
r
j,m, t)

∣∣ , eu,l = max
(j,m)∈ZN×Zk

∣∣(u− uh)(R
l
j,m, t)

∣∣ ,
eq,r = max

(j,m)∈ZN×Zk

∣∣(q − qh)(R
r
j,m, t)

∣∣ , eq,l = max
(j,m)∈ZN×Zk

∣∣(q − qh)(R
l
j,m, t)

∣∣ .
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Proof. We first consider (4.12). By using the inverse inequality and choosing l = 2
in (4.1), we obtain

‖u2
I − uh‖0,∞ � h− 1

2 ‖u2
I − uh‖0 � (1 + t)hk+ 5

2 ‖u‖k+5,∞,

‖q2I − qh‖0,∞ � h− 1
2 ‖q2I − qh‖0 � (1 + t

1
2 )hk+ 5

2 ‖u‖k+5,∞.

By (3.36) and the triangular inequality,

‖uh − P−
h u‖0,∞ � ‖W 2

2 ‖0,∞ + ‖u2
I − uh‖0,∞ � (1 + t

√
h)hk+2‖u‖k+5,∞,(4.14)

‖qh − P+
h q‖0,∞ � ‖W 2

1 ‖0,∞ + ‖q2I − qh‖0,∞ � (1 +
√
th)hk+2‖u‖k+5,∞.(4.15)

For all v ∈ W k+2,∞(Ω), the standard approximation theory gives∣∣(v − P−
h v)(Rr

j,m, t)
∣∣ � hk+2‖v‖k+2,∞,

∣∣(v − P+
h v)(Rl

j,m, t)
∣∣ � hk+2‖v‖k+2,∞.

Then (4.12) follows. The proof of (4.13) can be obtained by the same arguments.
�

4.4. Superconvergence of the derivative approximation at Radau points.
For all v ∈ W k+2,∞(Ω), it is shown in [5] that

(4.16)
∣∣∂x(v − P−

h v)(Rl
j,m, t)

∣∣ � hk+1‖v‖k+2,∞, ∀(j,m) ∈ ZN × Zk.

Similarly, we can obtain

(4.17)
∣∣∂x(v − P+

h v)(Rr
j,m, t)

∣∣ � hk+1‖v‖k+2,∞, ∀(j,m) ∈ ZN × Zk.

We have the following superconvergence results.

Theorem 4.8. Suppose all the conditions of Corollary 4.3 hold. Let

eux,l = max
j,m

∣∣∂x(u− uh)(R
l
j,m, t)

∣∣ , eux,r = max
j,m

∣∣∂x(u− uh)(R
r
j,m, t)

∣∣ ,
eqx,l = max

j,m

∣∣∂x(q − qh)(R
l
j,m, t)

∣∣ , eqx,r = max
j,m

∣∣∂x(q − qh)(R
r
j,m, t)

∣∣ .
For both the periodic and mixed boundary conditions, there hold,

eux,l � (1 + t
√
h)hk+1‖u‖k+5,∞, eqx,r � (1 +

√
th)hk+1‖u‖k+5,∞(4.18)

for fluxes (2.4) and

eux,r � (1 + t
√
h)hk+1‖u‖k+5,∞, eqx,l � (1 +

√
th)hk+1‖u‖k+5,∞(4.19)

for fluxes (2.5).

Proof. Using the inverse inequality in (4.14)-(4.15) gives

|P−
h u− uh|1,∞ � (1 + t

√
h)hk+1‖u‖k+5,∞,

|P+
h q − qh|1,∞ � (1 +

√
th)hk+1‖u‖k+5,∞.

Then the desired result (4.18) follows from (4.16)-(4.17) and the triangular inequal-
ity. The proof of (4.19) follows the same line. �

To end this section, we would like to demonstrate how to calculate ul
I(x, 0), 1 ≤

l ≤ k using only the information of the initial value u0(x). Without loss of gener-
ality, we consider the fluxes choice (2.4). Since ut = uxx, we have for all integers
i ≥ 1,

∂i
tu(x, 0) = D2i

x u0(x), ∀x ∈ Ω.
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Therefore, by (3.1)-(3.2), we have the derivatives at t = 0,

(4.20) Di
tūj,k = −D2i

x u0(x
−
j+ 1

2

) +
1

hj

∫
τj

D2i
x u0

k∑
m=0

(2m+ 1)Lj,m

and

Di
tq̃j,k = (−1)k+1D2i+1

x u0(x
+
j− 1

2

)(4.21)

+
1

hj

∫
τj

D2i+1
x u0

k∑
m=0

(−1)k+m(2m+ 1)Lj,m.

Now we divide the process into the following steps:

1. In each element τj , calculate Gi = Di
tūj,k, Qi = Di

tq̃j,k by (4.20)-(4.21).
2. Compute F1,i, F2,i from (3.4) and (3.5).
3. Calculate F̄1,i by F1,i and (3.12).

4. Choose wl =
∑�l/2�

i=1 w̄1,i +
∑�l/2�

i=1 w2,i with w̄1,i = (h̄j)
2iGiF̄1,i, w2,i =

(h̄j)
2i−1Qi−1F2,i.

5. Figure out ul
I = P−

h u0 − wl.

5. Numerical results

In this section, we present numerical examples to verify our theoretical findings.
We shall measure various errors, including ξu, ξq, the numerical fluxes at nodes,
interior left and right Radau points, and the domain and cell averages, which are
defined in Corollary 4.3 and Theorems 4.5–4.8, respectively.

Example 1. We consider the following problem:

ut = uxx, (x, t) ∈ [0, 2π]× (0, 1],

u(x, 0) = sin(x), x ∈ [0, 2π]

with periodic boundary condition u(0, t) = u(2π, t). The exact solution is

u(x, t) = e−t sin(x).

We solve this problem by the LDG scheme (2.3) with k = 3, 4, respectively. The
numerical fluxes are chosen as (2.4), and the initial solution uh(x, 0) = uk

I (x, 0) with
uk
I defined by (3.30). We construct our meshes by equally dividing each interval,

[0, 3π4 ] and [ 3π4 , 2π], into N/2 subintervals, N = 2m, m = 2, 3, . . . , 7. To reduce
the time discretization error, we use the ninth order strong-stability preserving
(SSP) Runge-Kutta method [11] with time step �t = 0.01h2

min in k = 3 and
�t = 0.001h2

min in k = 4, where hmin = 3π/2N .
Numerical data are demonstrated in Tables 5.1–5.2, and corresponding error

curves are depicted in Figures 5.1–5.2 on the log-log scale.
We observe from Figures 5.1–5.2 a convergence rate k + 2 for ‖ξu‖0, ‖ξq‖0,

eu,r, eq,l, eux,l and eqx,r, and 2k + 1 for ‖eu‖∗, ‖eq‖∗ and eu,n, eq,n. These re-
sults confirm our theoretical findings in Corollary 4.3, Theorem 4.5, and Theorems
4.7–4.8 : for fluxes choice (2.4), the LDG solution (uh, qh) is k + 2th order super-
convergent to the Gauss-Radau projection of the exact solution (P−

h u, P+
h q); the

function value error u−uh at right Radau points and its derivative error ∂x(u−uh)
at interior left Radau points, and q − qh at left Radau points and ∂x(q − qh) at
interior right Radau points, all converge with the same rate k + 2; the maximum
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Table 5.1. Various errors in the periodic boundary condition for
k = 3.

N ‖ξu‖0 eu,r eux,l eu,n ‖eu‖∗ ‖eu‖c ‖eu‖d
4 5.06e-04 2.82e-04 1.72e-04 1.04e-04 5.92e-05 7.57e-05 3.12e-04
8 1.29e-05 5.13e-06 4.14e-06 7.19e-07 4.17e-07 5.11e-07 2.00e-06
16 3.92e-07 1.35e-07 1.25e-07 5.65e-09 3.16e-09 3.89e-09 1.44e-08
32 1.22e-08 3.98e-09 3.92e-09 4.37e-11 2.44e-11 3.01e-11 1.08e-10
64 3.80e-10 1.24e-10 1.23e-10 3.40e-13 1.89e-13 2.34e-13 8.30e-13
128 1.19e-11 3.85e-12 3.85e-12 2.65e-15 1.47e-15 1.83e-15 6.43e-15
N ‖ξq‖0 eq,l eqx,r eq,n ‖eq‖∗ ‖eq‖c ‖eq‖d
4 4.01e-04 1.72e-04 2.41e-04 1.12e-04 6.67e-05 3.74e-05 1.84e-13
8 1.11e-05 4.14e-06 4.76e-06 6.86e-07 4.12e-07 3.18e-07 4.05e-17
16 3.44e-07 1.25e-07 1.32e-07 5.24e-09 3.17e-09 2.56e-09 9.64e-21
32 1.07e-08 3.92e-09 3.98e-09 4.14e-11 2.47e-11 2.02e-11 2.34e-24
64 3.35e-10 1.23e-10 1.24e-10 3.24e-13 1.93e-13 1.59e-13 5.70e-28
128 1.05e-11 3.85e-12 3.85e-12 2.54e-15 1.51e-15 1.24e-15 1.39e-31

Table 5.2. Various errors in the periodic boundary condition for
k = 4

N ‖ξu‖0 eu,r eux,l eu,n ‖eu‖∗ ‖eu‖c ‖eu‖d
4 2.34e-05 8.40e-06 1.06e-05 1.47e-06 7.96e-07 1.04e-06 2.94e-06
8 3.92e-07 1.32e-07 1.28e-07 2.62e-09 1.47e-09 1.74e-09 5.96e-09
16 6.21e-09 2.02e-09 2.05e-09 5.06e-12 2.85e-12 3.37e-12 1.21e-11
32 9.73e-11 3.18e-11 3.18e-11 1.01e-14 5.59e-15 6.60e-15 2.41e-14
64 1.52e-12 4.97e-13 4.97e-13 1.97e-17 1.09e-17 1.29e-17 4.77e-17
128 2.38e-14 7.76e-15 7.76e-15 3.85e-20 2.14e-20 2.53e-20 9.37e-20
N ‖ξq‖0 eq,l eqx,r eq,n ‖eq‖∗ ‖eq‖c ‖eq‖d
4 3.06e-05 1.07e-05 9.30e-06 1.92e-06 1.14e-06 6.52e-07 1.86e-13
8 4.56e-07 1.28e-07 1.33e-07 2.41e-09 1.50e-09 1.23e-09 4.06e-17
16 7.09e-09 2.05e-09 2.03e-09 4.44e-12 2.78e-12 2.37e-12 9.64e-21
32 1.11e-10 3.18e-11 3.18e-11 8.55e-15 5.36e-15 4.60e-15 2.34e-24
64 1.73e-12 4.97e-13 4.96e-13 1.66e-17 1.04e-17 8.97e-18 5.70e-28
128 2.70e-14 7.76e-15 7.76e-15 3.25e-20 2.03e-20 1.75e-20 1.39e-31

and average errors of u − uh and q − qh are supercovergent at downwind points
and upwind points, respectively, with the same rate 2k + 1. Moreover, our numer-
ical results demonstrate that the superconvergence rates in (4.3), (4.5) and (4.12)
are optimal; while the convergence rate for the derivative approximation at Radau
points is one order better than the estimate provided in (4.18).

For the domain and cell averages, we first observe, from Tables 5.1–5.2, that the
error for the domain average of q − qh reaches the machine precision at the initial
mesh, which indicates the equality in (4.9) is true. Then from Figures 5.1–5.2,
we observe a 2k + 1th superconvergence rate for the domain average of u − uh, as
predicted in (4.9). Furthermore, we also observe 2k + 1th superconvergence rates
for the cell average of u − uh and q − qh, one order higher than the one given in
(4.8).
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Figure 5.1. Error curves in the periodic boundary condition for
k = 3.
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Figure 5.2. Error curves in the periodic boundary condition for
k = 4
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Example 2. We consider the following problem

ut = uxx, (x, t) ∈ [0, 2π]× (0, 1],

u(x, 0) = cos(x) + ex+1

with mixed boundary condition

ux(0, t) = et+1, u(2π, t) = e−t + e2π+t+1.

The exact solution to this problem is

u(x, t) = e−t cos(x) + ex+t+1.

The problem is solved by the LDG scheme (2.3) with k = 3, 4, respectively. The
numerical fluxes are chosen as (2.5), and the initial solution uh(x, 0) = uk

I (x, 0) with
uk
I defined by (3.34). Uniform meshes are used, which are constructed by dividing

the interval [0, 2π] into N = 2m (m = 2, 3, . . . , 6) equal subintervals. The fourth
order Runge-Kutta method is used to diminish the time discretization error with
time step �t = T/n using n = 1000N2 in k = 3, and n = 5000N2 in k = 4.

Listed in Tables 5.3–5.4 are numerical data for various errors in cases k = 3, 4.
Depicted in Figures 5.3–5.4 are corresponding error curves with log-log scale.

Again, we observe similar superconvergence phenomena as in the periodic case.
To be more precise, if we choose the numerical fluxes (2.5), the LDG solution uh

converges to the Gauss-Radau projection P+
h u with a rate of k + 2, as well as the

derivative approximation at all interior right Radau points and the function value
approximation at all left Radau points; as for the domain and cell averages, along
with the maximum and average errors at upwinding points, the convergent rate is
2k+1; while for the solution qh, it is convergent to the Gauss-Radau projection P−

h q
with a rate of k + 2, the same rate for the derivative approximation at all interior
left Radau points and the function value approximation at all right Radau points;
finally, convergence rates of the maximum and average errors at downwind points
as well as the domain and cell averages are all 2k + 1. These results confirm our
theoretical findings in Corollary 4.3 and Theorems 4.5–4.8. Note that the 2k+1th
superconvergence rate for the domain average is 1/2 order higher than the one given
in (4.10), and the k + 2th superconvergence rate for the derivative approximation
is one order better than the estimate provided in (4.19).

Table 5.3. Various errors in the mixed boundary condition for
k = 3.

N ‖ξu‖0 eu,l eux,r eu,n ‖eu‖∗ ‖eu‖c ‖eu‖d
4 5.08e-01 2.63e-01 2.33e-01 5.50e-03 3.64e-03 1.46e-02 6.67e-02
8 1.89e-02 1.06e-02 1.05e-02 2.57e-05 1.63e-05 1.36e-04 5.59e-04
16 6.28e-04 3.73e-04 3.85e-04 1.62e-07 9.89e-08 1.13e-06 4.46e-06
32 2.00e-05 1.24e-05 1.29e-05 1.16e-09 7.00e-10 8.99e-09 3.49e-08
64 6.31e-07 4.07e-07 4.19e-07 8.80e-12 5.25e-12 7.05e-11 2.73e-10
N ‖ξq‖0 eq,r eqx,l eq,n ‖eq‖∗ ‖eq‖c ‖eq‖d
4 5.99e-01 2.33e-01 2.62e-01 4.48e-02 2.30e-02 2.02e-03 7.30e-04
8 2.07e-02 1.05e-02 1.06e-02 4.68e-04 1.85e-04 8.39e-06 4.90e-06
16 6.57e-04 3.85e-04 3.73e-04 3.95e-06 1.32e-06 5.22e-08 3.62e-08
32 2.05e-05 1.29e-05 1.24e-05 3.14e-08 9.63e-09 3.88e-10 2.76e-10
64 6.38e-07 4.19e-07 4.07e-07 2.47e-10 7.21e-11 3.00e-12 2.14e-12
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Table 5.4. Various errors in the mixed boundary condition for
k = 4.

N ‖ξu‖0 eu,l eux,r eu,n ‖eu‖∗ ‖eu‖c ‖eu‖d
4 3.05e-02 1.14e-02 1.12e-02 2.59e-05 1.61e-05 1.03e-04 4.55e-04
8 5.61e-04 2.40e-04 2.47e-04 3.60e-08 2.12e-08 2.55e-07 1.01e-06
16 9.23e-06 4.67e-06 4.72e-06 6.42e-11 3.77e-11 5.36e-10 2.07e-09
32 1.47e-07 8.09e-08 8.14e-08 1.27e-13 7.36e-14 1.07e-12 4.10e-12
64 2.31e-09 1.33e-09 1.34e-09 2.50e-16 1.46e-16 2.10e-15 8.06e-15
N ‖ξq‖0 eq,r eqx,l eq,n ‖eq‖∗ ‖eq‖c ‖eq‖d
4 3.46e-02 1.12e-02 1.14e-02 3.64e-04 1.85e-04 8.32e-06 3.43e-06
8 5.99e-04 2.47e-04 2.40e-04 9.08e-07 3.57e-07 1.34e-08 6.60e-09
16 9.54e-06 4.72e-06 4.67e-06 1.89e-09 6.33e-10 2.42e-11 1.30e-11
32 1.49e-07 8.14e-08 8.09e-08 3.75e-12 1.15e-12 4.63e-14 2.58e-14
64 2.33e-09 1.34e-09 1.33e-09 7.64e-15 2.16e-15 8.99e-17 5.07e-17
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Figure 5.3. Error curves in the mixed boundary condition for k = 3.
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Figure 5.4. Error curves in the mixed boundary condition for k = 4.

6. Concluding remarks

To summarize, we have established a 2k + 1th superconvergence rate for the
domain average and numerical fluxes at all nodes (on average). As a direct conse-
quence, we obtain a k+1th superconvergence rate for the derivative approximation
and a k + 2th superconvergence rate for the function value approximation of the
LDG solution at the Radau points. In addition, we also prove that the LDG so-
lution is superconvergent with a k + 2th rate to the Gauss-Radau projection of
the exact solution, and a 2kth rate to the exact solution in the cell average sense.
Numerical test data demonstrates that most of our error bounds are sharp, and
to the best of our knowledge, the k + 2th derivative superconvergence rate at the
Radau points is reported for the first time in the literature. Our current and future
works include convection-diffusion equations and 2-D problems, which would be
more challenging and interesting.
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