
MATHEMATICS OF COMPUTATION
Volume 86, Number 307, September 2017, Pages 2409–2427
http://dx.doi.org/10.1090/mcom/3184

Article electronically published on February 15, 2017

EXPLICIT BARYCENTRIC FORMULAE

FOR OSCULATORY INTERPOLATION AT ROOTS

OF CLASSICAL ORTHOGONAL POLYNOMIALS

PRZEMYS�LAW RUTKA AND RYSZARD SMARZEWSKI

Abstract. In this paper we extend the recent results of H. Wang et al. [Math.
Comp. 81 (2012) and 83 (2014), pp. 861-877 and 2893-2914, respectively],
on barycentric Lagrange interpolation at the roots of Hermite, Laguerre and
Jacobi orthogonal polynomials, not only to all classical distributions, but also
to osculatory Fejér and Hermite interpolation at the roots (xν)

n
1 of ortho-

gonal polynomials pn (x), generated by these distributions. More precisely, we
present comparatively simple unified proofs of representations for barycentric
weights of Fejér, Hermite and Lagrange type in terms of values pn−1 (xν),
p′n (xν) and Christoffel numbers λν without any additional assumptions on
the classical distributions. The first two representations enable us to design a
general O

(
n2

)
-algorithm to simultaneous computations of barycentric weights

and Christoffel numbers, which is based on the stable and efficient divide-and-
conquer O

(
n2

)
-algorithm for the symmetric tridiagonal eigenproblem due to

M. Gu and S. C. Eisenstat [SIAM J. Matrix Anal. Appl. 16 (1995), pp. 172-
191]. On the other hand, the third representations can be used to compute
all classical barycentric weights in the faster O (n) way proposed for the La-
grange interpolation at the roots of Hermite, Laguerre and Jacobi orthogonal
polynomials by H. Wang et al. in the second cited paper. Such an essential
accelaration requires one to use the O (n)-algorithm of A. Glaser et al. [SIAM
J. Sci. Comput. 29 (2007), pp. 1420-1438] to compute the roots xν and
Christoffel numbers λν by applying the Runge-Kutta and Newton methods
to solve the Sturm-Liouville differential problem, which is generic for classical

orthogonal polynomials. Finally, in the four special important cases of Jacobi

weights w (x) = (1− x)α (1 + x)β with α = ± 1
2

and β = ± 1
2
, that is, of the

Chebyshev and Szegő weights of the first and second kind, we present explicit
representations of the Fejér and Hermite barycentric weights, which yield an
O (1)-algorithm.

1. Introduction and preliminaries

Let {pn (x)}n�0 be a finite or infinite sequence of monic polynomials,

(1.1) p0 (x) = 1, pn (x) =
n∏

ν=1

(x− xν) , n < nw,
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orthogonal with respect to the weighted L2
w (a, b)-inner product

(1.2)

∫ b

a

pn (x) pm (x)w (x) dx = hnδn,m.

Here δn,m denotes the Kronecker delta, nw ∈ N ∪ {∞} depends only on the dis-
tribution w (x) dx, and w (x) is a classical weight function on a finite or infinite
interval (a, b). The last assumption means that w (x) is a positive solution of the
Pearson differential equation

d

dx
[A (x)w (x)] = B (x)w (x) , a < x < b,

with boundary conditions

lim
x↓a

A (x)w (x) = lim
x↑b

A (x)w (x) = 0,

where polynomial coefficients

A (x) = a2x
2 + a1x+ a0, B (x) = b1x+ b0

are such that A (x) > 0 on (a, b) and b1 �= 0.
The orthogonal polynomials pn (x) associated with a classical distribution

w (x) dx will be called below classical. By the Pearson equation it follows that
each polynomial pn (x), n = 1, 2, . . ., is a solution of the Sturm-Liouville differential
equation [20] of the form

(1.3) A (x) p′′
n (x) +B (x) p′

n (x) = n [(n− 1) a2 + b1] pn (x) , a < x < b.

It is well known that there are exactly six different types of classical weight
functions and orthogonal polynomials, up to a linear change of variable [20]. These
classical weights are listed in Table 1, and unspecified parameters from its last row
are defined as follows:

a1 = 2
AB + CD
A2 + C2

, a0 =
B2 +D2

A2 + C2
, ζ =

AD − BC
A2 + C2

> 0,

(1.4)

b0 = (1− α) a1 + βζ, E (x) =
1

ζ

(
x+

1

2
a1

)
.

Among classical orthogonal polynomials there are exactly three infinite sequences
of orthogonal polynomials of Hermite, Laguerre and Jacobi [45], and exactly three,
less known, finite sequences of generalized Bessel, Jacobi on (0,+∞) and pseudo-
Jacobi orthogonal polynomials [20, 22, 28, 29]. The lengths nw = � 1−b1

2 � of these
finite polynomial sequences {pn (x)}0�n<nw

depend only on the leading coefficients

b1 = α, 2 − α, 2 (1− α) of the polynomials B (x), presented in Table 1. Thus the
lengths nw = nw (α) increase to infinity, whenever |α| → ∞.

Basic properties of the classical orthogonal polynomials were studied in several
articles and monographs; cf. Bochner [5], Hahn [14], Krall [23–25], Agarwal and
Milovanović [1], Andrews et al. [3], Chihara [7], Nikiforov and Uvarov [34], Koekoek
et al. [20], Suetin [43], Koepf and Masjed-Jamei [21, 22], Masjed-Jamei [31], the
authors [36–38, 40], Horváth [18], Wang and Xiang [47], and Wang et al. [46]. In
particular, Koepf and Masjed-Jamei [21] observed that pseudo-Jacobi distribution
generalizes the Student t-distribution, one of the most important distributions in the
sampling problems of normal population. According to [21, 31], this distribution
also extends the F -distribution. In our papers [36, 37], we gave solutions of the
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Table 1. The basic types of classical weights w (x).

Weights Polynomial A (x) Polynomial B (x)

1
Hermite,

e−x2

on (−∞,+∞)
1 −2x

2
Laguerre,

xαe−x on (0,+∞)
x

−x+ α+ 1
α > −1

3
Jacobi,

(1− x)α (1 + x)β on (−1, 1)
−x2 + 1

− (α+ β + 2) x+ β − α
α > −1, β > −1

4
Generalized Bessel,

xα−2e−
β
x on (0,+∞)

x2
αx+ β

α /∈ {−2,−3, . . .} ,
α < −1, β > 0

5
Jacobi,

xβ

(1+x)α+β on (0,+∞)
x2 + x

(2− α) x+ β + 1
α � 3, β > −1

6
Pseudo-Jacobi,

eβ arctanE(x)

Aα(x)
on (−∞,+∞)

x2 + a1x+ a0
2 (1− α) x+ b0
α � 3

2
, β ∈ R

electrostatic equilibrium problem and the interpolatory Fejér type problem for all
classical weight functions. This subject has been continued for some other weighted
distributions, generating exceptional Laguerre and Jacobi polynomials, by Horváth
[18]. Finally, in the articles [46, 47], Wang et al. expressed explicitly, in terms
of Christoffel numbers, the barycentric weights for the Lagrange interpolation at
the zeros of Hermite, Laguerre and Jacobi orthogonal polynomials. Next, they
applied these results together with the O (n)-algorithm of Glaser et al. [10] to
implement superfast algorithm to evaluate these weights. However, in the case of
Jacobi polynomials they proposed to use the Hale and Townsend O (n)-algorithm
[15], which is more efficient than the previous algorithm.

In this paper we extend the results of Wang et al. [46,47] not only to all classical
weight functions, but also to osculatory interpolation of Fejér and Hermite types
at the zeros of orthogonal polynomials generated by these weights. Next, we apply
our results to the Lagrange interpolation, which solves the problem considered by
Wang et al. [46, 47] in full generality.

It should be noted that our simplified and unified approach, proposed to deal with
barycentric formulae, has been already applied to solve the electrostatic problem
in our paper [36]. It is based on the following fundamental recurrence formula, due
to Al-Salam and Chihara [2], for the derivatives of classical orthogonal polynomials

(1.5) A (x) p′
n (x) = (δnx+ ηn) pn (x) + ρnpn−1 (x) , n = 1, 2, . . . ,

with coefficients δn, ηn and ρn satisfying

δn = na2, ηn = n
(n− 1) a1a2 + a1b1 − a2b0

2 (n− 1) a2 + b1
,

(1.6)

ρn = −dnr2n−1, dn = nrn−2
sn−1 (rn−1a1 − a2b0)− a0r

2
2n−2

r2n−3r22n−2r2n−1
.
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Here we assume that 0/0 = 1 and that

rk = ka2 + b1, sk = ka1 + b0.

Moreover, we note that coefficients dn can be also derived from the following three-
term recurrence relations [7, 20, 45]:

p0 (x) = 1, p1 (x) = x− c0,
(1.7)

pn+1 (x) = (x− cn) pn (x)− dnpn−1 (x) , n = 1, 2, . . . ,

for the monic classical orthogonal polynomials, where constant coefficients cn are
defined by

cn = −2na1rn−1 − b0 (2a2 − b1)

r2n−2r2n
.(1.8)

2. Barycentric formulae for osculatory interpolation

Let w (x) and w1 (x) = A (x)w (x) be classical weights on (a, b), and let the clas-
sical orthogonal monic polynomials p0 (x) = 1 and pn (x) = (x− x1) · · · (x− xn),
0 < n < nw, be associated with the distribution w (x) dx. Then the derivatives
{p′

n (x)}0<n<nw
are classical orthogonal polynomials, corresponding to the distri-

bution w1 (x) dx; cf. Hahn [14], Krall [23–25], Agarwal and Milovanović [1], and
Mastroianni and Milovanović [32]. Without loss of generality, we may assume that
the weight w (x) is basic, i.e., that it is as in Table 1. Otherwise, it suffices to
apply an appropriate linear change of the argument x in order to transform a given
classical weight to a basic one.

Now we consider the Fejér interpolating positive operator Fn which, for any
continuous function f ∈ C (a, b), satisfies the interpolating conditions

(Fnf) (xν) = f (xν) , (Fnf)
′
(xν) = 0, ν = 1, 2, . . . , n,

at the roots of a classical orthogonal polynomial pn (x). It is defined by the formula

(2.1) (Fnf) (x) = w1 (x)

n∑
ν=1

f (xν)
l2ν (x)

w1 (xν)
,

where

lν (x) =
pn (x)

(x− xν) p′
n (xν)

are the fundamental Lagrange polynomials. The important feature of Fejér operator
consists in the fact that its knots are the unique solution of the extremal problem

min
a<z1<...<zn<b

sup
a<z<b

w1 (z)

n∑
ν=1

l2ν (z)

w1 (zν)
= 1, lν (z) =

n∏
k=1
k �=ν

z − zk
zν − zk

,

which was first proved by Fejér [9] for the Legendre weight w (x) = 1, then by
Karlin and Studden [19] for Hermite, Laguerre and Jacobi weights, and recently by
the authors [37] for all remaining classical weights. It is worth noting that many
interesting modifications of the interpolatory problem of Fejér, including among
others the non-classical weights, were also studied by Balázs [4], Lau and Studden
[26, 27], Lubinsky [30], Szabó [44] and Horváth [16, 17].



BARYCENTRIC FORMULAE FOR OSCULATORY INTERPOLATION 2413

It is well known that the Hermite formula (2.1) is unstable and too slow in
numerical computations of the Fejér operator (Fnf) (x). For this purpose, we
recommend [39, 46] its barycentric form

(2.2) (Fnf) (x) = w1 (x) p
2
n (x)

n∑
ν=1

f (xν)
γν

(x− xν)
2

with the barycentric weights (γν)
n
1 independent of f (x).

Theorem 2.1. The barycentric weights (γν)
n
1 of the Fejér operator Fn satisfy

(2.3) γν =
1

A (xν)w (xν) [p′
n (xν)]

2 =
A (xν)

ρ2nw (xν) [pn−1 (xν)]
2 .

Additionally, the constants ρn are, for the six basic classical weights, as in Table 2.

Proof. For the proof of the first part of (2.3) it is sufficient to compare the formulae
(2.1) and (2.2). Next, we insert roots x = xν of pn (x) into the Al-Salam and
Chihara differentation formula (1.5) to get

(2.4) p′
n (xν) =

ρnpn−1 (xν)

A (xν)
.

Hence the second part of (2.3) follows from its first part. Thus it remains to
compute the constants ρn = −r2n−1dn, n � 1, for all classical weights. During these
computations we take occasion to evaluate also the constants (cn)n�0, (dn)n�1 and

mn = d1d2 · · · dn (n � 1) ,

which are necessary in Section 4. Since rk = ka2 + b1 and sk = ka1 + b0, we insert
coefficients aj and bj of polynomials A (x) and B (x) from Table 1 in the formula
(1.8) and in the last two formulae in (1.6) to get:

(i) rk = −2, sk = 0, cn = 0, ρn = 2dn = n, and mn = n!
2n , in the case of Hermite

weight w (x),

(ii) rk = −1, sk = k + α+ 1, cn = 2n+ α+ 1, ρn = dn = n (n+ α), and

mn = n! (1 + α)n, in the case of Laguerre weight w (x),

(iii) rk = − (k + α+ β + 2), sk = β − α, cn = β2−α2

(2n+α+β)(2n+2+α+β) ,

ρn = (2n+ 1 + α+ β) dn = 4n(n+α)(n+β)(n+α+β)

(2n−1+α+β)(2n+α+β)2
, and

mn =
4nn!(1+α)n(1+β)n(2+α+β)n−1

(2n+1+α+β)(2+α+β)22n−1

, whenever w (x) is the Jacobi weight,

(iv) rk = k + α, sk = β, cn = β(2−α)
(2n−2+α)(2n+α) ,

ρn = (1− 2n− α) dn = n(n−2+α)β2

(2n−3+α)(2n−2+α)2
, and

mn =
(−1)nn!β2n(α)n−1

(2n−1+α)(α)22n−1

, if w (x) is generalized Bessel weight,

(v) rk = k + 2− α, sk = k + β + 1, cn = α(β+1)−2n(n+1−α)
(2n−α)(2n+2−α) ,

−ρn = (2n+ 1− α) dn = n(n−α)(n+β)(n−α−β)

(2n−1−α)(2n−α)2
, and

mn =
n!(2−α)n−1(1+β)n(1−α−β)n

(2n+1−α)(2−α)22n−1

, in the case of Jacobi on (0,+∞) weight,
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(vi) rk = k + 2 (1− α), sk = (k + 1− α) a1 + βζ, cn = αβζ
2(n−α)(n+1−α) −

a1

2 ,

ρn = (2α− 2n− 1) dn =
n(n−2α)[4(n−α)2+β2]ζ2

4(n−α)2(2n−1−2α)
, and

mn =
(−1)nn!(2−2α)n−1

∏n
j=1[4(j−α)2+β2]

(2n+1−2α)(2−2α)22n−1ζ
−2n , whenever w (x) is the pseudo-Jacobi

weight.

Hence the proof of the Theorem 2.1 is finished. �

Remark 2.1. During computations of the coefficient c0 or d1 for the Jacobi weight,
the division by zero can take place, whenever n = α+ β = 0 or n = − (α+ β) = 1.
Then we have to use the convention 0

0 = 1 in order to get the correct values

c0 =
β − α

2
and d1 =

ρ1
2

= 2 (1 + α) (1 + β) .

Note that (Fnf) (x) is a modification of the Hermite interpolating polynomial
(Hnf) (x) of degree at most 2n− 1, defined by the interpolating conditions

(Hnf) (xν) = f (xν) , (Hnf)
′
(xν) = f ′ (xν) , ν = 1, 2, . . . , n,

at the roots of the orthogonal polynomial, associated with a classical weight function
w (x). It can be expressed, in terms of the fundamental Lagrange polynomials lν (x),
as follows [6]:

(2.5) (Hnf) (x) =

n∑
ν=1

{f (xν) [1− 2 (x− xν) l
′
ν (xν)] + f ′ (xν) (x− xν)} l2ν (x) .

Hence (Hnf) (x) has the barycentric form

(2.6) (Hnf) (x) = p2n (x)

n∑
ν=1

{
f (xν)

[
γν,0

(x− xν)
2 +

γν,1
x− xν

]
+ f ′ (xν)

γν,0
x− xν

}
.

Theorem 2.2. For the Hermite interpolating operator (Hnf) (x) at the roots (xν)
n
1

of a classical orthogonal monic polynomial pn (x), the barycentric weights are equal
to

γν,0 =
1

[p′
n (xν)]

2 =
A2 (xν)

ρ2n [pn−1 (xν)]
2 ,

(2.7)

γν,1 =
B (xν)

A (xν) [p′
n (xν)]

2 =
A (xν)B (xν)

ρ2n [pn−1 (xν)]
2 .

Moreover, for all six basic classical weights, the constant factors ρn are given in
Table 2.

Proof. By comparing the right-hand sides of (2.5) and (2.6), we obtain

(2.8) γν,0 =
1

[p′
n (xν)]

2 and γν,1 = −2l′ν (xν) γν,0.

It follows from formula (2.4) that the second representation (2.7) of γν,0 hold. To
prove the second part of (2.7), we apply the l’Hospital’s rule to the quotient

l′ν (x) =
p′
n (x) (x− xν)− pn (x)

(x− xν)
2 p′

n (xν)
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at the point x = xν , in order to get

(2.9) l′ν (xν) =
p′′
n (xν)

2p′
n (xν)

.

On the other hand, the Sturm-Liouville differential equation (1.3) yields

A (xν) p
′′
n (xν) +B (xν) p

′
n (xν) = 0.

Hence it follows from (2.9) and (2.8) that

γν,1 =
B (xν)

A (xν) [p′
n (xν)]

2 .

This combined with (2.4) completes the proof. �

Since the Lagrange interpolating operator

(Lnf) (x) =

n∑
ν=1

f (xν) lν (x)

has the barycentric form

(Lnf) (x) = pn (x)

n∑
ν=1

f (xν)
σν

x− xν
, σν =

1

p′
n (xν)

,

we get the following extension of the results presented in [46] for the infinite se-
quences of classical orthogonal monic polynomials pn (x).

Theorem 2.3. The formulae

(2.10) σν =
1

p′
n (xν)

=
A (xν)

ρnpn−1 (xν)

hold for barycentric weights of Lagrange interpolating operator (Lnf) (x) at the roots
(xν)

n
1 of arbitrary classical orthogonal polynomial pn (x). Additionally, the constant

coefficients ρn are listed in Table 2 for all six basic classical weight functions.

Proof. The second identity in (2.10) follows immediately from the first identity and
formula (2.4). �

3. Barycentric weights and Christoffel numbers

Throughout this section we assume that p0 (x) = 1 and pn (x) = (x− x1) · · ·
(x− xn), 0 < n < nw+1

2 , are classical orthogonal monic polynomials corresponding
to distributions w (x) dx. Moreover, we suppose that the leading coefficient b1
of the polynomial B (x), from the definition of w (x), is such that the inequality
2n−1 < nw holds. Then the Gauss quadrature formula of approximate integration,

Qn (f) =

n∑
ν=1

λνf (xν) ≈
∫ b

a

f (x)w (x) dx,

with coefficients defined by

λν =

∫ b

a

lν (x)w (x) dx, lν (x) =
pn (x)

(x− xν) p′
n (xν)

, ν = 1, 2, . . . , n,

is the unique quadrature formula which is exact on the space P2n−1 of all poly-
nomials of degree at most 2n − 1. These coefficients λν are called the Christoffel
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Table 2. Constant items of barycentric weights γν , γν,0, γν,1 and
σν (Theorems 2.1, 2.2 and 2.3), Christoffel numbers λν (Theorem
3.1), and of explicit representations for the barycentric weights of
Fejér, Hermite and Lagrange interpolation operators in terms of
Christoffel numbers λν (Theorem 3.2), dependent only on n and
classical weight functions. Here i =

√
−1, ζ is as in (1.4), and

(v)k = v (v + 1) · · · (v + k − 1) denotes the Pochhammer symbol.
In addition, it is supposed that (v)0 = 1 and ρ1 = 4 (1 + α) (1 + β),
whenever n = − (α+ β) = 1 in the third row; cf. Remark 2.1.

Constants ρn (n � 1) Constants hn−1 (n � 2)

1 n (n−1)!
√
π

2n−1

2 n (n+ α) (n− 1)!Γ (n+ α)

3 4n(n+α)(n+β)(n+α+β)

(2n−1+α+β)(2n+α+β)2
22n−1+α+β(n−1)!Γ(n+α)Γ(n+β)

(n+α+β)n−1Γ(2n+α+β)

4 n(n−2+α)β2

(2n−3+α)(2n−2+α)2
(−1)n−1(n−1)!(α)n−2β

2n−3+αΓ(1−α)

(2n−3+α)(α)22n−3

5 −n(n−α)(n+β)(n−α−β)

(2n−1−α)(2n−α)2
(n−1)!(2−α)n−2(1−α−β)n−1Γ(α−1)Γ(n+β)

(2−α)22n−3(2n−1−α)Γ(α+β)

6
n(n−2α)[(2n−2α)2+β2]
(2n−1−2α)(2n−2α)2ζ2

(−1)n−1π(n−1)!(2−2α)n−2Γ(2α−1)
∏n−1

j=1 [4(j−α)2+β2]
4α−1(2n−1−2α)(2−2α)22n−3|Γ(α+iβ

2 )|2ζ2α−2n+1

numbers. They have the following representation, which is a consequence of the
Christoffel-Darboux identity [45].

Lemma 3.1. The Christoffel numbers have the representation

λν =
hn−1

p′
n (xν) pn−1 (xν)

, ν = 1, 2, . . . , n,

where constant factors hn−1 are defined as in (1.1)–(1.2).

Although the last representation of Christoffel numbers is valid for an arbitrary
positive weight function w (x) on (a, b), the next representations are characteristic
for the classical weight functions. These representations and their proofs seem to be
new at least in the case of generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi
classical weight functions.

Theorem 3.1. Let (xν)
n
1 be the zeros of a classical orthogonal monic polynomial

pn (x). Then the Christoffel numbers λν satisfy

(3.1) λν =
ρnhn−1

A (xν) [p′
n (xν)]

2 =
hn−1A (xν)

ρn [pn−1 (xν)]
2 .

Here the constants ρn and hn−1 are as in Table 2, for all six basic classical weights.

Proof. In view of Al-Salam and Chihara identity (1.5) we have

pn−1 (xν) =
A (xν) p

′
n (xν)

ρn
.
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Hence one can substitute this expression into Lemma 3.1 to obtain the first part
of representation (3.1). Similarly, the second part follows from Lemma 3.1 and
formula (2.4). Thus it remains to compute the constants hn−1. For this purpose
we note first that the integrals

h0 =

∫ b

a

w (x) dx

are equal [8, 20, 45] to

√
π, Γ (α+ 1) , 2α+β+1Γ (α+ 1)Γ (β + 1)

Γ (α+ β + 2)
,

(3.2)

βα−1Γ (1− α) ,
Γ (α− 1) Γ (β + 1)

Γ (α+ β)
,

πΓ (2α− 1)

4α−1
∣∣∣Γ(

α+ iβ2

)∣∣∣2 ζ2α−1

for classical basic weight functions w (x) of Hermite, Laguerre, Jacobi, generalized
Bessel, Jacobi on (0,+∞) and pseudo-Jacobi, respectively. Further, multiplying
the three-term recurrence formula (1.7) by pn−1 (x)w (x) dx, and then integrating,
we obtain, according to (1.2) and the orthogonality,

0 =

∫ b

a

pn (x) [(x− cn) pn−1 (x)]w (x) dx− dnhn−1 = hn − dnhn−1.

This establishes the formulae hn = dnhn−1 and

(3.3) hn = d1d2 · · · dnh0 = mnh0 (n � 1) .

Thus the formulae (3.1) follow directly from (3.2) combined with representations
of mn, computed in the proof of Theorem 2.1 and presented in Table 3. �

Now we are ready to establish a theorem which includes the main result of Wang
et al. [46] on barycentric weights of Lagrange interpolation at roots (xν)

n
1 of infinite

classical orthogonal polynomials of Hermite, Laguerre and Jacobi. It connects the
barycentric weights of Fejér, Hermite and Lagrange interpolation at the roots (xν)

n
1

of classical orthogonal polynomials of Hermite, Laguerre, Jacobi, generalized Bessel,
Jacobi on (0,+∞) and pseudo-Jacobi with associated Christoffel numbers. Despite
the generality, our proof is simpler, due to resigning from the lowering operator
technique in the form proposed by Nikiforov and Uvarov [34].

Theorem 3.2. Let the roots (xν)
n
1 of the classical orthogonal polynomial pn (x),

associated to any classical basic distribution w (x) dx, be ordered in such a way that
x1 > x2 > . . . > xn. Then the barycentric weights of Fejér γν , Hermite γν,0 and
γν,1, and Lagrange σν have the following representations:

γν =
λν

ρnhn−1w (xν)
, γν,0 =

A (xν)λν

ρnhn−1
,

(3.4)

γν,1 =
B (xν)λν

ρnhn−1
, σν = (−1)ν−1

√
A (xν)λν

ρnhn−1
.

Additionally, the constant factors ρn and hn−1 are as in Table 2.
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Proof. From Theorem 3.1 we obtain

(3.5) [p′
n (xν)]

2
=

ρnhn−1

A (xν)λν
.

By inserting this formula into Theorems 2.1 and 2.2 we establish the first three
identities in (3.4). To get the fourth identity, we apply the hypotheses x1 > x2 >
. . . > xn and pn = (x− x1) (x− x2) · · · (x− xn) to show that

sgn p′
n (xν) = (−1)ν−1 .

Since all terms on both sides of (3.5), perhaps except ρn, are evidently positive, it
follows that ρn > 0. Hence, one can set the square root of (3.5) in Theorem 2.3 to
complete the proof of (3.4). �

According to Wang et al. [46], the computation of barycentric weights σν , associ-
ated with the Hermite, Laguerre and Jacobi orthogonal polynomials, is extremally
effective (i.e., is of order O (n)), whenever Christoffel numbers are first precomputed
by one of the known superfast algorithms of order O (n). However, we should ob-
serve that in general this approach has a slight disadvantage. For example, by
Theorems 3.1 and 3.2 we should first perform, during computation of λν , the mul-
tiplication by ρnhn−1 in the formula (3.1), and then by (ρnhn−1)

−1 in the formulae
(3.4) for barycentric weights of Fejér, Hermite and Lagrange type. Clearly, this has
to be avoided, e.g., in the way proposed in [46]. An alternative way is proposed in
the next section for arbitrary classical distributions.

4. Barycentric weights, Christoffel numbers and tridiagonal

symmetric eigenvalue problems

In Theorems 2.1, 2.2, 2.3 and 3.1 we have presented explicit representations
of barycentric weights of Fejér, Hermite and Lagrange types, and of Christoffel
numbers, in terms of roots (xν)

n
1 of the classical orthogonal polynomials pn (x) and

of the last coordinates pn−1 (x) of vectors

p (x) = (p0 (x) , p1 (x) , . . . , pn−1 (x))
T ∈ R

n

at the points x = xν , ν = 1, 2, . . . , n. By the three-term recurrence formulae (1.7),
the simultaneous determination of (xν)

n
1 and pn−1 (xν) is equivalent to the partial

solving of the eigenvalue problem

(4.1) Gy = xy, y = (y0, y1, . . . , yn−1)
T ∈ R

n,

with the tridiagonal matrix G of the form

G =

⎡
⎢⎢⎢⎢⎢⎣

c0 1 ∅
d1 c1 1

. . .
. . .

. . .

dn−2 cn−2 1
∅ dn−1 cn−1

⎤
⎥⎥⎥⎥⎥⎦ .

Its solutions are eigenvalues x = xν and corresponding orthogonal eigenvectors
y = p (xν), up to a constant multiple; see [11], [13] and [42].
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Theorem 4.1. Let M = diag
(√

m0,
√
m1, . . . ,

√
mn−1

)
be the diagonal matrix,

and let H = [hν,k]
n−1
ν,k=0 be the tridiagonal symmetric matrix with elements defined

by m0 = 1, h0,0 = c0 and

mν = d1d2 · · · dν , hν,ν−1 =
√
dν , hν,ν = cν (ν = 1, 2, . . . , n− 1) ,

where (cν)
n−1
0 , (dν)

n−1
1 and (mν)

n−1
1 are as in Table 3 for any classical weight.

Then the barycentric weights of Fejér γν , Hermite γν,0 and γν,1, and Lagrange σν

have the explicit representations in terms of the solution

x = xν , z = (pk (xν) /
√
mk)

n−1
k=0 (ν = 1, 2, . . . , n)

of the symmetric tridiagonal eigenvalue problem of the form

(4.2) Hz = xz, z = M−1y.

Additionally, these representations are identical with the second representations
given in formulae (2.3), (2.7), (2.10) and (3.1).

Proof. We note that the matrix G of the eigenvalue problem (4.1) is similar to the
following symmetric tridiagonal matrix

H = M−1GM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
√
d1 ∅√

d1 c1
√
d2

. . .
. . .

. . .√
dn−2 cn−2

√
dn−1

∅
√
dn−1 cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus the eigenvalue problems (4.1) and (4.2) are equivalent. Hence we apply The-
orems 2.1, 2.2, 2.3 and 3.1 to complete the proof. �

To solve numerically the eigenvalue problem (4.2) with a tolerance ε > 0, we
can use one of the classical, efficient and stable algorithms having complexity of
order O

(
n2

)
[12, 13, 35, 41], e.g., the divide-and-conquer algorithm due to Gu and

Eisenstat [13]. It is clear that the computations of barycentric weights and Christof-
fel numbers from formulae (2.3), (2.7), (2.10) and (3.1) do not increase this order
for any classical weight function. This complexity can be improved to O (n) if we
extend the remarkable numerical method of Glaser, Liu and Rokhlin [10] of com-
puting the roots xν and Christoffel numbers λν by means of the Runge-Kutta and
Newton methods applied to the generic Sturm-Liouville differential problem (1.3)
for all classical orthogonal polynomials. In view of Koekoek et al. [20] and Ta-
ble 1 we note that the extension of the Glaser, Liu and Rokhlin O (n)-algorithm
to generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi classical orthogonal
polynomials does not require any new ideas. However, we do not know if the im-
proved O (n)-algorithm of Hale and Townsend [15] can be also extended to these
polynomials.

It is important that the eigenvalue problem (4.1) has explicit solution for the
following four special interesting weights w (x) of Jacobi type:

(4.3) w (x) = (1− x)
α
(1 + x)

β
, α = ±1

2
, β = ±1

2
.
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Table 3. The items cν , dν and mν of tridiagonal symmetric eigen-
value problem (4.2), dependent only on classical weight functions
and n. Here ζ and a1 are as in (1.4), and (v)k denotes the Pochham-
mer symbol. Furthermore, we should put c0 = (β − α) /2 and
d1 = 2 (1 + α) (1 + β) in the third row, whenever α and β are as
in Remark 2.1.

cν (ν � 0) dν (ν � 1) mν (ν � 1)

1 0 ν
2

ν!
2ν

2 2ν + α+ 1 ν (ν + α) ν! (1 + α)ν

3 β2−α2

(2ν+α+β)(2ν+2+α+β)
4ν(ν+α)(ν+β)(ν+α+β)

[(2ν+α+β)2−1](2ν+α+β)2

4νν!(1+α)ν(1+β)ν(2+α+β)ν−1

(2ν+1+α+β)(2+α+β)22ν−1

4 β(2−α)
(2ν−2+α)(2ν+α)

−ν(ν−2+α)β2

(2ν−3+α)(2ν−2+α)2(2ν−1+α)

(−1)νν!β2ν(α)ν−1

(2ν−1+α)(α)22ν−1

5 α(β+1)−2ν(ν+1−α)
(2ν−α)(2ν+2−α)

ν(ν−α)(ν+β)(ν−α−β)

(2ν−α)2[(2ν−α)2−1]
ν!(2−α)ν−1(1+β)ν(1−α−β)ν

(2ν+1−α)(2−α)22ν−1

6 αβζ
2(ν−α)(ν+1−α)

− a1
2

−ν(ν−2α)[4(ν−α)2+β2]
4(ν−α)2[4(ν−α)2−1]ζ−2

ν!(2−2α)ν−1

∏ν
j=1[4(j−α)2+β2]

(−1)ν (2ν+1−2α)(2−2α)22ν−1ζ
−2ν

The associated classical orthogonal monic polynomials pn (x), for n � 1 and

(4.4) α = β = −1

2
, α = β =

1

2
, α = −β = −1

2
, and α = −β =

1

2
,

have the representations

tn (x) =
1

2n−1
cosnθ, un (x) =

1

2n
sin (n+ 1) θ

sin θ
,

(4.5)

cn (x) =
1

2n
cos

(
n+ 1

2

)
θ

cos θ
2

, sn (x) =
1

2n
sin

(
n+ 1

2

)
θ

sin θ
2

,

where x = cos θ and −1 < x < 1. These weights and polynomials are called the
Chebyshev and Szegő weights/polynomials of the first and second kind, respectively.

Corollary 4.1. Let w (x) =
(
1− x2

)− 1
2 and tn (x) = 1

2n−1 cosnθ (x = cos θ) be
the Chebyshev weight and monic polynomial of the first kind. Then we have

γν =
4n−1 sin θν

n2
=

4n−1 sin θν
πn

λν ,

γν,0 =
4n−1 sin2 θν

n2
=

4n−1 sin2 θν
πn

λν ,

γν,1 = −4n−1xν

n2
= −4n−1xν

πn
λν ,

σν =
(−1)ν−1 2n−1 sin θν

n
=

(−1)ν−1 2n−1 sin θν
π

λν ,

λν =
π

n
, xν = cos θν , θν =

2ν − 1

2n
π.
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Additionally, if we denote Tn (x) = 2n−1tn (x), n � 1, then we obtain the explicit
barycentric operator representations

(Fnf) (x) =

√
1− x2T 2

n (x)

n2

n∑
ν=1

f (xν)
sin θν

(x− xν)
2 ,

(Hnf) (x) =
T 2
n (x)

n2

n∑
ν=1

{
f (xν)

[
sin2 θν

(x− xν)
2 − xν

x− xν

]
+ f ′ (xν)

sin2 θν
x− xν

}
,

(Lnf) (x) =
Tn (x)

n

n∑
ν=1

f (xν)
(−1)ν−1 sin θν

x− xν

for the Fejér, Hermite and Lagrange interpolating operators at the zeros (xν)
n
1 of

tn (x).

Proof. Since α = β = − 1
2 , it follows from Table 1 and (4.5) that

A (x) = sin2 θ, B (x) = − cos θ, w (x) =
1

sin θ
, w1 (x) = sin θ,

t′n (xν) =
(−1)

ν−1
n

2n−1 sin θν
, t0 (xν) = 1, tn−1 (xν) =

(−1)
ν−1

sin θν
2n−2

.

Next, setting α = β = − 1
2 in the third row of Tables 2 and 3, and then simplifying,

we obtain ρ1 = 1 and d1 = 1
2 , by Remark 2.1, and otherwise

ρn =
n

2
, dn =

1

4
, mn =

1

22n−1
,

h0 = Γ2

(
1

2

)
= π, hn =

π

22n−1
.

Hence we apply Theorems 2.1, 2.2, 2.3, 3.1 and 3.2 to complete the proof. �

We note that the last barycentric formulae in Corollaries 4.1 and 4.2 have been
obtained recently by Wang et al. in [46]. Moreover, the representations of Christof-
fel numbers λν , presented in all our corollaries for completeness, are well known
[45].

Corollary 4.2. Let w (x) =
√
1− x2 and un (x) =

1
2n

sin(n+1)θ
sin θ (x = cos θ) be the

Chebyshev weight and monic polynomial of the second kind. Then we have

γν =
4n sin θν

(n+ 1)2
=

4n

π (n+ 1) sin θν
λν ,

γν,0 =
4n sin4 θν

(n+ 1)2
=

4n sin2 θν
π (n+ 1)

λν ,

γν,1 = −3 · 4nxν sin
2 θν

(n+ 1)
2 = − 3 · 4nxν

π (n+ 1)
λν ,

σν =
(−1)

ν−1
2n sin2 θν

n+ 1
=

(−1)
ν−1

2n

π
λν ,

λν =
π sin2 θν
n+ 1

, xν = cos θν , θν =
ν

n+ 1
π.
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Furthermore, if Un (x) = 2nun (x), then

(Fnf) (x) =

(
1− x2

) 3
2 U2

n (x)

(n+ 1)2

n∑
ν=1

f (xν)
sin θν

(x− xν)
2 ,

(Hnf) (x) =
U2
n (x)

(n+ 1)
2

n∑
ν=1

{
f (xν)

[
sin2 θν

(x− xν)
2 − 3xν

x− xν

]

+ f ′ (xν)
sin2 θν
x− xν

}
sin2 θν ,

(Lnf) (x) =
Un (x)

n+ 1

n∑
ν=1

f (xν)
(−1)

ν−1
sin2 θν

x− xν
.

Proof. In view of Table 1 and (4.5) we get

A (x) = sin2 θ, B (x) = −3 cos θ, w (x) = sin θ, w1 (x) = sin3 θ,

u′
n (xν) =

(−1)
ν−1

(n+ 1)

2n sin2 θν
, un−1 (xν) =

(−1)
ν−1

2n−1
.

Next, for α = β = 1
2 we obtain from Tables 2 and 3

ρn =
n+ 1

2
, dn =

1

4
, mn =

1

4n
,

h0 =
4Γ2

(
3
2

)
Γ (3)

=
π

2
and hn−1 =

π

22n−1
.

Hence one can apply Theorems 2.1, 2.2, 2.3, 3.1 and 3.2 to finish the proof. �

In the next corollaries we consider two special cases α = −β = − 1
2 and α =

−β = 1
2 of the Jacobi weight functions. It should be mentioned that these weights

are of interest in the analytical and numerical solving of singular integral equations
with the Cauchy kernel [33].

Corollary 4.3. Let w (x) =
√

1+x
1−x be the Szegő weight function of the first kind,

and let

cn (x) =
1

2n
cos

(
n+ 1

2

)
θ

cos θ
2

, x = cos θ, −1 < x < 1,
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be the associated orthogonal monic polynomial. Then we have

γν =
22n−1 sin θν(

n+ 1
2

)2 =
22n−1 tan θν

2

π
(
n+ 1

2

) λν ,

γν,0 =
4n sin2 θν cos

2 θν
2(

n+ 1
2

)2 =
22n−1 sin2 θν

π
(
n+ 1

2

) λν ,

γν,1 =
4n (1− 2 cos θν) cos

2 θν
2(

n+ 1
2

)2 =
22n−1 (1− 2 cos θν)

π
(
n+ 1

2

) λν ,

σν =
(−1)

ν−1
2n sin θν cos

θν
2

n+ 1
2

=
(−1)

ν−1
2n sin θν

2

π
λν ,

λν =
2π cos2 θν

2

n+ 1
2

, xν = cos θν , θν =
2ν − 1

2n+ 1
π.

Additionally, if we denote Cn (x) = 2ncn (x), then the Fejér, Hermite and Lagrange
interpolating operators at the zeros (xν)

n
1 of cn (x) have the barycentric representa-

tions

(Fnf) (x) =
(1 + x)

√
1− x2C2

n (x)

2
(
n+ 1

2

)2
n∑

ν=1

f (xν)
sin θν

(x− xν)
2 ,

(Hnf) (x) =
C2

n (x)(
n+ 1

2

)2
n∑

ν=1

{
f (xν)

[
sin2 θν

(x− xν)
2 +

1− 2 cos θν
x− xν

]

+ f ′ (xν)
sin2 θν
x− xν

}
cos2

θν
2
,

(Lnf) (x) =
Cn (x)

n+ 1
2

n∑
ν=1

f (xν)
(−1)ν−1 sin θν cos

θν
2

x− xν
.

Proof. Writing α = − 1
2 and β = 1

2 in Tables 2 and 3, and then simplifying, we
obtain

ρn =
1

2

(
n+

1

2

)
, dn =

1

4
, mn =

1

4n
,

h0 =
2Γ

(
1
2

)
Γ
(
3
2

)
Γ (2)

= π, hn−1 =
π

4n−1
,

cn = 0

(
n � 1; c0 =

1

2
by Remark 2.1

)
.

Since we also have

A (x) = sin2 θ, B (x) = −2 cos θ + 1, w (x) = cot
θ

2
,

w1 (x) = 2 sin θ cos2
θ

2
, c′

n (xν) =
(−1)

ν−1 (
n+ 1

2

)
2n sin θν cos

θν
2

,

cn−1 (xν) =
(−1)ν−1 sin θν

2

2n−2
,

the proof follows directly from Theorems 2.1, 2.2, 2.3, 3.1 and 3.2. �
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The final explicit barycentric representations are connected with the Szegő poly-
nomials of the second kind. To prove them we proceed similarly as in the proof of
Corollary 4.3.

Corollary 4.4. Let w (x) =
√

1−x
1+x be the Szegő weight of the second kind, and let

sn (x) =
1

2n
sin

(
n+ 1

2

)
θ

sin θ
2

, x = cos θ, −1 < x < 1,

be the Szegő orthogonal monic polynomial of the second kind. Then the barycentric
weights and Christoffel numbers satisfy the formulae

γν =
22n−1 sin θν(

n+ 1
2

)2 =
22n−1 cot θν

2

π
(
n+ 1

2

) λν ,

γν,0 =
4n sin2 θν sin

2 θν
2(

n+ 1
2

)2 =
22n−1 sin2 θν

π
(
n+ 1

2

) λν ,

γν,1 = −
4n (1 + 2 cos θν) sin

2 θν
2(

n+ 1
2

)2 = −22n−1 (1 + 2 cos θν)

π
(
n+ 1

2

) λν ,

σν =
(−1)ν−1 2n sin θν sin

θν
2

n+ 1
2

=
(−1)ν−1 2n cos θν

2

π
λν ,

λν =
2π sin2 θν

2

n+ 1
2

, xν = cos θν , θν =
2ν

2n+ 1
π.

Moreover, if Sn (x) = 2nsn (x), then we have the barycentric operator representa-
tions

(Fnf) (x) =
(1− x)

√
1− x2S2

n (x)

2
(
n+ 1

2

)2
n∑

ν=1

f (xν)
sin θν

(x− xν)
2 ,

(Hnf) (x) =
S2
n (x)(

n+ 1
2

)2
n∑

ν=1

{
f (xν)

[
sin2 θν

(x− xν)
2 − 1 + 2 cos θν

x− xν

]

+ f ′ (xν)
sin2 θν
x− xν

}
sin2

θν
2
,

(Lnf) (x) =
Sn (x)

n+ 1
2

n∑
ν=1

f (xν)
(−1)

ν−1
sin θν sin

θν
2

x− xν
.

Proof. Since α = −β = 1
2 it follows from Tables 2 and 3 that all constant factors ρn,

dn, mn and hn−1 are identical with those in the proof of Corollary 4.3. Moreover,
we obtain, by using Table 1 and (4.5),

A (x) = sin2 θ, B (x) = −2 cos θ − 1, w (x) = tan
θ

2
,

w1 (x) = 2 sin θ sin2
θ

2
, s′

n (xν) =
(−1)ν−1 (n+ 1

2

)
2n sin θν sin

θν
2

,

sn−1 (xν) =
(−1)

ν−1
cos θν

2

2n−2
.

Hence we apply Theorems 2.1, 2.2, 2.3, 3.1 and 3.2 to establish the corollary. �
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