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MULTILEVEL QUASI-MONTE CARLO METHODS

FOR LOGNORMAL DIFFUSION PROBLEMS

FRANCES Y. KUO, ROBERT SCHEICHL, CHRISTOPH SCHWAB, IAN H. SLOAN,
AND ELISABETH ULLMANN

Abstract. In this paper we present a rigorous cost and error analysis of a
multilevel estimator based on randomly shifted Quasi-Monte Carlo (QMC)
lattice rules for lognormal diffusion problems. These problems are motivated

by uncertainty quantification problems in subsurface flow. We extend the con-
vergence analysis in [Graham et al., Numer. Math. 2014] to multilevel Quasi-
Monte Carlo finite element discretisations and give a constructive proof of
the dimension-independent convergence of the QMC rules. More precisely, we
provide suitable parameters for the construction of such rules that yield the
required variance reduction for the multilevel scheme to achieve an ε-error with
a cost of O(ε−θ) with θ < 2, and in practice even θ ≈ 1, for sufficiently fast
decaying covariance kernels of the underlying Gaussian random field inputs.
This confirms that the computational gains due to the application of multilevel
sampling methods and the gains due to the application of QMC methods, both
demonstrated in earlier works for the same model problem, are complemen-
tary. A series of numerical experiments confirms these gains. The results show
that in practice the multilevel QMC method consistently outperforms both
the multilevel MC method and the single-level variants even for nonsmooth
problems.

1. Introduction

This paper gives a rigorous error analysis, together with numerical experiments,
for a multilevel Quasi-Monte Carlo scheme applied to linear functionals of the so-
lution of a typical model elliptic problem of steady-state flow in random porous
media. This problem is of central importance in the development of efficient un-
certainty quantification tools for subsurface flow problems. The random elliptic
partial differential equation (PDE) reads

(1.1) −∇ ·
(
a(�x, ω)∇u(�x, ω)

)
= f(�x), for �x ∈ D, ω ∈ Ω,

where D is a bounded domain in R
d for d = 1, 2 or 3, and Ω is the sample space of

a probability space (Ω,A, P ), with σ-algebra A and probability measure P . A key
feature is the coefficient a(·, ω), which is a lognormal random field on the domain
D.

In the context of flow through a porous medium, u is the hydrostatic pressure,
a is the permeability and �q := −a∇u is the Darcy flux. This empirical relation
between pressure and flux is known as Darcy’s law. When complemented by the
conservation condition ∇ · �q = f , where f(�x) is a deterministic source term, this
leads to (1.1).
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In this paper, the uncertain permeability is assumed to take the form
(1.2)

a(�x, ω) = a∗(�x) + a0(�x) exp

( ∞∑
j=1

√
μj ξj(�x)Yj(ω)

)
, with Yj ∼ N (0, 1) i.i.d.,

where a∗ and a0 are given deterministic functions on D, satisfying a∗(�x) ≥ 0 and
a0(�x) > 0. The sequence {μj} of nonnegative values is assumed to be enumer-
ated in nonincreasing order, accumulating only at zero, and the sequence {ξj} is
L2(D)-orthonormal. If they correspond to the eigenvalues and eigenfunctions of the
covariance operator of a correlated Gaussian random field, then the infinite sum
under the bracket in (1.2) is known as the Karhunen-Loève (KL) expansion of this
Gaussian random field (see e.g. [27]).

For simplicity, we only study this problem subject to deterministic boundary
conditions. In general, we may have mixed Dirichlet/Neumann conditions. Let the
boundary Γ = ∂D be partitioned into two open, disjoint parts ΓD and ΓN , and let
�n(�x) denote the exterior unit normal vector to D at �x ∈ ΓN . Then we set

u(�x, ·) = φD(�x) for �x ∈ ΓD,(1.3)

�n(�x) ·
(
a(�x, ·)∇u(�x, ·)

)
= φN (�x) for �x ∈ ΓN .(1.4)

For d = 2, 3, we assume D to be Lipschitz polygonal/polyhedral and each of ΓD
and ΓN to consist of the union of a finite number of edges/faces.

Our goal is to obtain statistical information on certain linear functionals G of
the solution u to (1.1); we write F := G(u). In particular, we are interested in
the expected value E[F ] = E[G(u)] (with respect to the probability measure P ).
We need to perform several discretisation/truncation steps to obtain computable
approximations to E[F ]:

(a) For a sample ω, we employ a standard Galerkin finite element (FE) method
with continuous, piecewise linear elements to discretise the solution to the
PDE (1.1) on a family of simplicial meshes Th parametrised by their mesh
size h. We approximate entries of the element stiffness matrices by a one-
point Gauss rule, that is, we evaluate the coefficient at the midpoint of each
mesh element. We denote the FE approximation on Th by uh.

(b) We truncate the KL expansion of log(a− a∗) in (1.2) after a finite number
of s terms; we denote the s-term truncated diffusion coefficient by as and
the corresponding PDE solution by us. The FE approximation to (1.1) on
Th with a replaced by as then reduces to a function uh,s of s i.i.d. standard
Gaussian random variables Yj , j = 1, . . . , s. Denoting the approximation
of F by Fh,s := G(uh,s), the expected value E[F ] is then approximated by

(1.5) E[Fh,s] =

∫
Rs

G(uh,s(·,y))
s∏

j=1

φ(yj) dy,

where φ(y) denotes the standard Gaussian probability density function. In
porous media flow applications, the truncation dimension s is often very
large.

(c) The s-dimensional Gaussian integral in (1.5) is then approximated by an
N -point quadrature rule, for example, a Monte Carlo, sparse grid or Quasi-
Monte Carlo rule, or by a multilevel variant (see below).
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In this paper the quadrature rules are derived from suitable Quasi-Monte Carlo
(QMC) rules (i.e., equal weight rules on the s-dimensional unit cube), as we ex-
plain in the next section. The single-level variants of these rules, as estimators for
(1.5), were analysed for the same model problem in the paper [14] (see also the
earlier paper [23] for the uniform case). Much emphasis was placed there on the
design of QMC rules that achieve dimension-independent error bounds with good
convergence rates and under weak assumptions.

Multilevel methods were introduced by [12,19]. In the present context multilevel
Monte Carlo (MLMC ) estimators for (1.5) (multilevel methods based on Monte
Carlo integration) have attracted attention because of their capacity to reduce the
cost without loss of accuracy. The idea of using such multilevel estimators for the
approximation of E[F ] was established in [2,6] and, for the lognormal case, analysed
subsequently in [5, 34].

The multilevel method is based on a sequence of L+ 1 FE approximations of
increasing accuracy as � runs from 0 to L, with mesh diameters h� satisfying h0 >
h1 > · · · > hL. At level � we also truncate the KL expansion after s� terms, with
s0 ≤ s1 ≤ · · · ≤ sL. With the level � approximation of our output functional F
denoted by F� := Fh�,s� , we can write FL as the telescoping sum

(1.6) FL = F0 +
L∑

�=1

(F� − F�−1).

Then by linearity of the expectation operator we have

(1.7) E[FL] = E[F0] +
L∑

�=1

E[F� − F�−1].

In the MLMC scheme each term is approximated by an independent Monte Carlo
calculation, with a resulting gain in efficiency arising from the fact that the differ-
ences F� − F�−1 on the higher levels, although more expensive to compute, have
smaller variance and so require fewer Monte Carlo samples.

In this paper, each of the L + 1 terms in (1.7) is instead approximated by a
different QMC rule, where the number of quadrature points can again be chosen
to decrease with �. For sufficiently smooth integrands, QMC quadrature rules offer
the prospect of a higher accuracy for the same computational cost compared to
standard Monte Carlo quadrature, or a lower cost for the same accuracy. Hence, the
goal of this paper is to explore the combination of multilevel estimators and QMC
methods by constructing and analysing a multilevel Quasi-Monte Carlo (MLQMC )
estimator for the approximation of (1.5). It was first observed in the context of
stochastic differential equations in [13] that the two gains can be complementary.

In the context of (1.1), single- and multilevel QMC FE approximations were
analysed also in the recent papers [9, 24], but for the simpler case of uniform and
affine parameter dependence: in those papers the random variables Yj appeared
linearly in the differential operator, and their values were assumed to be uniformly
distributed on a bounded interval. The lognormal case considered here is techni-
cally more involved and the error bounds for the QMC rules developed here differ
essentially from those for the uniform case. They require, for example, so-called
“mixed regularity” of the solution of (1.5). As shown here, this mandates stronger
assumptions on the data than those required for MLMC or single-level QMC. The
importance of this mixed regularity has already been recognised in [17]. In the
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present paper, we establish for the first time s-independent quadrature error bounds
for MLQMC estimators and present detailed numerical experiments indicating that
MLQMC methods can outperform single-level QMC and MLMC methods in terms
of accuracy versus computational cost. Some numerical experiments have also been
reported in [30].

The structure of this paper is as follows. Section 2 explains the mechanics of
QMC methods, without entering into the question of approximation quality. Sec-
tion 3 introduces the multilevel QMC method (MLQMC), establishes an abstract
convergence theorem, compares the complexity of MLQMC to other estimators, and
discusses practical aspects and a practical implementation. Section 4 presents nu-
merical results which confirm the theoretical results. All technical parts related to
the necessary QMC convergence and construction theory are relegated to Section 5.

2. Quasi-Monte Carlo quadrature

Quasi-Monte Carlo quadrature rules are equal weight quadrature rules for in-
tegrals over the s-dimensional unit cube [0, 1]s. For this reason we introduce a
change of variables y = Φ−1

s (ζ), where Φ−1
s (ζ) := [Φ−1(ζ1),Φ

−1(ζ2), . . . ,Φ
−1(ζs)]

T

denotes the inverse cumulative normal distribution applied to each component of
ζ ∈ [0, 1]s. We then obtain from (1.5) the expression

(2.1) E[Fh,s] =

∫
[0,1]s

Fh,s(Φ
−1
s (ζ)) dζ.

For the approximation of E[Fh,s] in a single-level scheme, we employ a specific kind
of QMC quadrature rule, namely, the shifted rank-1 lattice rule given by

(2.2) Qs,N (Fh,s;Δ) :=
1

N

N∑
i=1

Fh,s

(
Φ−1

s

(
frac

(
i z

N
+Δ

)))
, i = 1, . . . , N,

where z ∈ N
s is the associated generating vector and Δ ∈ [0, 1]s is the shift.

The symbol frac(·) denotes the fractional part function, which is to be applied to
every component of the s-dimensional input vector. For the general theory and fast
construction of QMC lattice rules for the s-dimensional cube, see e.g., [10] as well
as [7, 11, 29]. For the particular case of integrals defined initially over Rs, see e.g.,
[25, 28].

The purely deterministic estimator (2.2) for E[Fh,s] is biased. To remove this
statistical bias we construct the associated randomly shifted lattice rule where the
random shiftΔ is uniformly distributed over [0, 1]s. We then use the sample average
of Qs,N (Fh,s;Δ) over a fixed, finite number R of shift realisations as an estimator
for E[Fh,s]. We arrive at

(2.3) Qs,N,R(Fh,s) :=
1

R

R∑
k=1

Qs,N (Fh,s;Δk),

where Qs,N (Fh,s;Δk) is defined in (2.2), k = 1, . . . , R. Now, let EΔ[·] denote the
expected value with respect to one or more random shifts. Since

EΔ[Qs,N (Fh,s; Δ)] =

∫
[0,1]s

1

N

N∑
i=1

Fh,s

(
Φ−1

s

(
frac

(
i z

N
+Δ

)))
dΔ

=
1

N

N∑
i=1

∫
[0,1]s

Fh,s(Φ
−1
s (Δ)) dΔ = E[Fh,s],

(2.4)
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the quantity in (2.3) is an unbiased estimator for E[Fh,s]. However, (2.3) is not
an unbiased estimator for E[F ], because the error arising from FE approximation
and from truncation of the KL expansion of log(a − a∗) cannot be removed by
randomisation of (2.2). Specifically, the error analysis for randomly shifted lattice
rules is carried out in terms of the root mean square error (RMSE)

(2.5) e
(
Qs,N,R(Fh,s)

)
:=

√
EΔ

[(
Qs,N,R(Fh,s)− E[F ]

)2]
.

Since the random diffusion coefficient a in (1.1) is statistically independent of the
random shift in the QMC quadrature rule, it is easy to see that in the single-level
scheme we can split the RMSE as follows:

(2.6) e
(
Qs,N,R(Fh,s)

)2
= EΔ

[(
Qs,N,R(Fh,s)− E[Fh,s]

)2]
+
(
E[Fh,s − F ]

)2
.

The second term in (2.6) is usually referred to as bias and can be decreased
by choosing a fine enough FE mesh width h and by including a sufficiently large
number s of terms in the KL expansion of log(a − a∗), as discussed in [14]. The
first term in (2.6) is the (shift-averaged) QMC quadrature error; it was analysed
in detail in [14] where the crucial question of choosing the integer vector z in (2.2)
was fully addressed.

3. Multilevel Quasi-Monte Carlo scheme

Following the MLMC scheme (see [2,6]) and the subsequent MLQMC scheme for
the uniform case (see [24]), we construct a multilevel Quasi-Monte Carlo estimator
for E[F ] by combining estimators of the form (2.3) on a hierarchy of levels.

To define our multilevel method, let us assume that we have a nested sequence
of FE spaces Vh0

, Vh1
, . . . , VhL

of increasing dimension and let Th0
, Th1

, . . . , ThL
be

the corresponding sequence of shape-regular, conforming, simplicial meshes (i.e.,
simplicial partitions of the domain D for which intersections of any two d-simplices
are either empty, an entire side, or an entire face). We assume that the mesh
diameters are strictly decreasing, i.e., h� > h�+1. Furthermore, we include only the
leading s� terms in the KL expansion of log a on level �, subject to the condition
s� ≤ s�+1. The approximation of our output functional F that we obtain on level �
is denoted by F� := Fh�,s� as in (1.6) and for convenience we set F−1 := 0. We can
then write (1.7) as

E[FL] =

L∑
�=0

E[F� − F�−1].

That is, the expected value of the output quantity of interest on the finest mesh is
equal to the expectation on the coarsest mesh, plus a series of corrections, namely
the expected value of the difference of quantities computed on consecutive FE
meshes. We estimate the expected value E[F� − F�−1] on level � by means of the
randomly shifted lattice rule estimator Q� := Qs�,N�,R�

defined in (2.3) and (2.2),
with N� quadrature points and R� random shifts from a uniform distribution on
[0, 1]s� . The MLQMC estimator for E[F ] then reads
(3.1)

QML
L (F ) :=

L∑
�=0

Q�(F� − F�−1) =
L∑

�=0

1

R�

R�∑
k=1

1

N�

N�∑
i=1

(
F�(y

(i,k)
� )− F�−1(y

(i,k)
� )

)
,
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where y
(i,k)
� := Φ−1

s�

(
frac
(
iz�N

−1
� +Δ�,k

))
and z� is the generating vector on level

� (that will in general be different from level to level).
Let us define the variance with respect to the shifts Δ�,k by

VΔ[Q�(F� − F�−1)] = EΔ

[(
Q�(F� − F�−1)− E[F� − F�−1]

)2]
.

Then, since each correction E[F�−F�−1], � = 0, . . . , L, is estimated using statistically
independent random shifts, the RMSE of the MLQMC estimator satisfies
(3.2)

e
(
QML

L (F )
)2

:= EΔ

[(
QML

L (F )−E[F ]
)2]

=

L∑
�=0

VΔ[Q�(F�−F�−1)] +
(
E[FL−F ]

)2
.

The second term in (3.2) is the bias introduced by KL truncation and by FE
approximation. It coincides with the second term of the single-level error in (2.6)
for h = hL and s = sL.

3.1. Error versus cost analysis. We now extend the cost analysis in [6, Thm. 1]
to the MLQMC estimator QML

L (F ) defined in (3.1). We aim at estimating the
computational cost, denoted below by cost

(
QML

L (F )
)
, necessary to ensure that

the RMSE in (3.2) satisfies1 e
(
QML

L (F )
)

� ε, as ε ↓ 0. A similar extension of
this abstract result has recently been proved in the context of multilevel stochastic
collocation methods in [33]. However, our result here is tailored to MLQMC and
includes the truncation error which was ignored in [33].

We assume the number of degrees of freedom M� := dim(Vh�
), associated with

the FE approximation F� := Fh�,s� on level � = 0, . . . , L, satisfies

(3.3) M� � h−d
� .

The assumption (3.3) includes quasi-uniform families of meshes and meshes with
local refinement near corners or edges of the domain.

Apart from the negligible post-processing cost to compute the quantity of in-

terest, the cost of computing one sample Fh�,s�(y
(i,k)
� ) on level � is Cperm

� + Csolve
� ,

where Cperm
� denotes the cost of evaluating the s�-term truncation as� of the per-

meability field (1.2) at all quadrature points for each of the O(h−d
� ) elements of

the FE mesh, and Csolve
� denotes the cost of solving a sparse linear equation system

with M� unknowns. We assume that

Cperm
� � s� h

−d
� and Csolve

� � h−γ
� , with γ ≥ d.

In the case of a robust (algebraic) multigrid solver, we have γ = d+δ, for arbitrarily
small δ > 0. In fact, the number of iterations for a robust multigrid solver typically
grows only logarithmically with M� and the cost per iteration is O(M�) (cf. [35]
and the references therein).

We will first state an abstract complexity theorem in which we make only very
limited assumptions. To avoid having to treat the case � = 0 separately, in the
ensuing assumptions M1–M3 we adopt the convention h−1 := 1, s−1 := 1, and
recall that F−1 := 0.

1Throughout the paper, the notation A � B indicates that there exists a constant c > 0 such
that A ≤ cB. The notation A � B indicates that A � B and B � A.
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Theorem 1. Suppose that EΔ[Q�(F� − F�−1)] = E(F� − F�−1) and that there are
nonnegative constants α, α′, β, β′, γ, λ such that

M1.
∣∣E[FL − F ]

∣∣ � hα
L + s−α′

L ,

M2. VΔ[Q�(F� − F�−1)] � R−1
� N

−1/λ
�

(
hβ
�−1 + (1− δs�,s�−1

)s−β′

�−1

)
,

M3. cost(Q�(F� − F�−1)) � R� N�

(
s�h

−d
� + h−γ

�

)
,

for all 0 ≤ � ≤ L, and where δ·,· denotes the Kronecker delta. Then

e
(
QML

L (F )
)2 � h2α

L + s−2α′

L +

L∑
�=0

R−1
� N

−1/λ
�

(
hβ
�−1 + (1− δs�,s�−1

)s−β′

�−1

)
and

cost
(
QML

L (F )
)

�
L∑

�=0

R� N�

(
s� h

−d
� + h−γ

�

)
.

Proof. The proof follows immediately from (3.2) and the definition of
cost
(
QML

L (F )
)
. �

We will now focus on a specific application of this theorem, with a fixed number
of terms in the KL expansion. We assume that the sampling cost is the dominant
part, which ultimately is the case with an optimal multigrid solver in the limit as
the error tolerance goes to zero. We are not considering the case where the number
of KL terms on the coarser levels is decreased, even though this may in some cases
reduce the overall asymptotic cost of the multilevel algorithm, because it would
lead to a very complicated complexity theorem and the analysis of Assumption M2
in Section 5 would become significantly more involved.

Corollary 2. Let γ ≤ d + α/α′ and let the assumptions of Theorem 1 hold. If

we choose h� � 2−�, R� = R and s� = sL � h
−α/α′

L for some R ∈ N and for
� = 0, . . . , L, then for any ε > 0, there exists a choice of L and of N0, . . . , NL such
that

e
(
QML

L (F )
)2 �ε2 and cost

(
QML

L (F )
)

�

⎧⎪⎨⎪⎩
ε−2λ−1/α′

when βλ > d,

ε−2λ−1/α′
(log2 ε

−1)λ+1 when βλ = d,

ε−2λ−1/α′−(d−βλ)/α when βλ < d.

(3.4)

Proof. Using the particular choices for h�, s� and R� and the assumption that
γ ≤ d+ α/α′, we obtain
(3.5)

e
(
QML

L (F )
)2 � h2α

L +
L∑

�=0

N
−1/λ
� hβ

� and cost
(
QML

L (F )
)

� h
−α/α′

L

L∑
�=0

N� h
−d
� .

Thus, a sufficient condition for the MSE to be bounded by a constant times ε2

is that each of the two terms in the above error bound is O(ε2), which in particular
leads to the choice 2−L � hL � ε1/α to bound the bias error, and thus

(3.6) L =

⌈
1

α
log2(ε

−1) + c1

⌉
for some constant c1 ∈ R that is independent of ε.
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We now equate sampling and bias error to within a constant factor c2 > 0, again
independent of ε and of �. To minimize the cost subject to this constraint, we
consider the functional

g(N0, . . . , NL, μ) := h
−α/α′

L

L∑
�=0

N� h
−d
� + μ

(
L∑

�=0

N
−1/λ
� hβ

� − c2h
2α
L

)
,

where μ is a Lagrange multiplier and where we treat N0, . . . , NL as continuous
variables. We look for its stationary point. This leads to the first-order, necessary
optimality conditions

∂g

∂N�
= h

−α/α′

L h−d
� − μ

λ
N

−1/λ−1
� hβ

� = 0 for � = 0, . . . , L.(3.7)

∂g

∂μ
=

L∑
�=0

N
−1/λ
� hβ

� − c2h
2α
L = 0.(3.8)

Rearranging (3.7), we see that N
1/λ+1
� h

−(d+β)
� is independent of �. Therefore, the

numbers of QMC points should be chosen according to

(3.9) N� =

⌈
N0

(
h�

h0

)(d+β)λ/(λ+1)
⌉

for � = 1, . . . , L.

A suitable choice for N0 can then be deduced from (3.8). Substituting (3.9) into

(3.8) and using the fact that h0�20 = 1, we obtainN
1/λ
0 �22αL

∑L
�=0 h

(βλ−d)/(λ+1)
� .

Since h� � 2−�, it follows from properties of geometric series that

L∑
�=0

h
(βλ−d)/(λ+1)
� �

L∑
�=0

2�(d−βλ)/(λ+1)
� EL :=

⎧⎪⎨⎪⎩
1 when βλ > d,

L when βλ = d,

2L(d−βλ)/(λ+1) when βλ < d.

(3.10)

and hence

(3.11) N0 � 2L(2αλ) Eλ
L.

Finally, we substitute (3.9) and (3.11) into (3.5) and use (3.10) to bound that cost
asymptotically, as L → ∞, by

cost(QML
L (F )) � h

−α/α′

L N0

L∑
�=0

h
(βλ−d)/(λ+1)
� �

⎧⎪⎨⎪⎩
2L(2αλ+α/α′) when βλ>d,

2L(2αλ+α/α′)Lλ+1 when βλ=d,

2L(2αλ+α/α′+d−βλ) when βλ<d.

The bound in (3.4) then follows from (3.6), i.e., using the relation 2L � ε−1/α. �

3.2. Discussion and comparison with other estimators. First, let us check
the assumptions in Theorem 1 for the lognormal model problem (1.1).

• We observe that Assumption M1 relates only to the FE error and the KL
truncation error, and is not specific to MLQMC. It has been studied ex-
tensively in [5, 14, 32, 34]. The assumptions on the data in Section 5, in
particular on the regularity of the input random field a(·, ω) and of the
functional G, imply α = 2. For nonconvex domains D, this requires special
sequences of meshes and an analysis in weighted spaces (see Proposition 4
in Section 5.1 which can also be used to bound the FE bias error). The
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value for α′ depends on the rate of decay of the KL eigenvalues. Under
suitable regularity assumptions on the data, it was shown in [4] that, for
Gaussian fields with Matérn covariance and smoothness parameter ν (for a
precise definition see Section 4), any α′ < 2ν/d can be chosen.

• As shown in Section 2, the assumption that EΔ[Q�(F� − F�−1)] =
E(F� − F�−1) is satisfied for our randomised QMC rules.

• The main theoretical result of this paper, postponed to Section 5, is to
provide a proof of Assumption M2 for appropriate QMC rules. We will see
there that this assumption can usually be satisfied for linear functionals,
with β = 2α and with λ ∈ (1/2, 1), for the case where s� = s�−1. The
value of λ, for a sufficiently good choice of the QMC rules, depends on the
parametric regularity of a(·, ω). In particular, λ can be chosen arbitrarily
close to 1/2 in the case of lognormal fields with Matérn covariance and large
enough smoothness parameter ν (as we discuss below).

• Finally, if we use an optimal deterministic PDE solver, such as multigrid,
Assumption M3 is also satisfied with γ = d+δ, for some δ > 0, but typically
δ � α/α′ and thus γ ≤ d+ α/α′, as in Corollary 2.

In practice, however, for the choices of parameters in Corollary 2 and assuming
γ ≈ d, there is typically a critical tolerance ε∗ > 0 such that Cperm

� ≤ Csolve
� for

all ε ≥ ε∗. In that situation, we can drop the exponent −1/α′ in (3.4) for ε ≥ ε∗.
Especially for d > 1, most practical choices for the tolerance ε in applications lie
above this critical tolerance ε∗ > 0. We shall call the quantity obtained by dropping
the −1/α′ exponent the pre-asymptotic cost. Note however, that as seen in [14], the
QMC quadrature error also exhibits a pre-asymptotic behaviour. To obtain sharp
bounds, the λ in the pre-asymptotic cost should be replaced by the numerically
observed effective rates 1/λeff ≤ 1/λ of the employed QMC rules. Note that the

same is true for the single-level QMC estimator. There the cost is O(ε−2λ−1/α′−d/α)
as ε → 0, and O(ε−2λeff−d/α) for ε ≥ ε∗.

The analysis in [6,34] of standard multilevel Monte Carlo (MLMC) methods for
the lognormal case does not rely on the use of truncated KL-expansions. Isotropic
input random fields a(·, ω), such as those studied in Section 4, can be sampled in
O(h−d log(h−d)) operations via circulant embedding techniques (see, e.g., [15]). In
that case, Cperm

� � Csolve
� and so, with an optimal multigrid solver, the total cost

on level � is O(N�h
−γ
� ), for any γ > d (for more details see Section 4). Hence,

assuming β = γ, the cost of an optimal implementation of MLMC grows with
O(ε−2−max(0,(γ−β)/α)) and γ > d arbitrarily close to d.

Nevertheless, for sufficiently large values of α′—typical for lognormal fields with
Matérn covariance and sufficiently large smoothness parameter ν—we see that the
presently proposed MLQMC estimator has significantly lower cost than, for exam-
ple, MLMC estimators when λ < 1. We will see in Section 4 that this holds in
practice, even for values of the Matérn parameter ν below the minimum required
in the present convergence analysis.

3.3. Practical aspects. The formula (3.6) for L requires knowledge of the con-
stant c1. When the error estimates are sharp, this can be computed a priori, as we
do in our numerical experiments below. However, the FE discretisation error, and
thus the value of L, can also be estimated dynamically (i.e., without computing
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additional samples) from the estimates Q�(F� −F�−1), as for standard MLMC (see
[6, 12]).

Like standard Monte Carlo estimators, randomised lattice rules also come with a
simple variance estimator, namely the sample variance with respect to the random
shifts, i.e.,
(3.12)

VΔ[Q�(F�−F�−1)] ≈
1

R�(R� − 1)

R�∑
k=1

[Qs�,N�(F� − F�−1;Δ�,k)−Qs�,N�,R�(F� − F�−1)]
2 .

However, (on-the-fly) estimates for the rate of convergence 1/λ of the lattice rule
(or for its effective rate 1/λeff) are very unreliable, and thus the formulae (3.9) and
(3.11) for the optimal values of N� and N0 in the proof of Corollary 2 are of limited
practical use.

From a computational point of view, extensible lattice sequences or embedded
lattice rules are useful, as they allow the results already calculated to be “recycled”
when adaptively choosing the number of samples; see e.g., [7, 11, 20]. To explore
this “nestedness” property in practice, it is most convenient for the number of
points N� to be only powers of 2 (since then we always obtain complete lattice
rules and do not need to be concerned about how the individual lattice points are
ordered). A simple and effective algorithm that ensures this and does not require
knowledge of λ is presented in [13]. For completeness, let us recall the algorithm.
To simplify notation, we define for � = 0, . . . , L, V� := VΔ(Q�(F� − F�−1)) and
C� := cost(Q�(F� − F�−1)).

Algorithm 1. Let L = 0.

(1) Set NL = 1 and estimate VL using (3.12).

(2) While
∑L

�=0 V� > ε2, double N� on the level � for which the ratio V�/C� is
largest.

(3) If the bias estimate is greater than ε or L < 2, set L → L + 1 and go to
Step 1.

Note that this is a greedy algorithm that strives to equilibrate the profit, that is,
the ratio of variance and cost, across levels. Thus, in the limit as ε → 0, the numbers
of samples N� on the levels will be such that V0/C0 ≈ V1/C1 ≈ · · · ≈ VL/CL. To
show that this choice of N� leads to the same overall cost for MLQMC as the

theoretical algorithm in the proof of Corollary 2, let us assume that V� = v� N
−1/λ
�

(+ higher order terms), for some λ > 0 and for some 0 < v� � hβ
� that is independent

of N�. This is a stronger assumption than M2, but asymptotically it is satisfied for
our QMC rules. Crucially, we do not require values of λ, v� or β in the algorithm.

We may also assume C� = κ�N� (+ lower order terms), where, at leading or-

der, the “cost-per-sample” κ� � h
−α/α′

L h−d
� is independent of N�. With these

assumptions, we may set up a constrained optimisation problem, as in the proof
of Corollary 2, minimising the total cost subject to the constraint in Step 2 of the
algorithm on the total variance being less than ε2. However, here we write more
abstractly

g̃(N0, . . . , NL, μ̃) :=

L∑
�=0

C� + μ̃

(
L∑

�=0

V� − ε2

)
.

We ignore the higher and lower order terms in V� and in C�, respectively, treat the
N0, . . . , NL as continuous variables again and differentiate g̃ with respect to N� and
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μ̃ to get

∂g̃

∂N�
= κ� −

μ̃

λ
v� N

−1/λ−1
� =

(
C� −

μ̃

λ
V�

)
N−1

� = 0 for � = 0, . . . , L,(3.13)

∂g̃

∂μ̃
=

L∑
�=0

V� − ε2 = 0.(3.14)

It follows from (3.13) that V�/C� = λ/μ̃, which is independent of �, and so the
profit is indeed equilibrated across the levels for the optimal values of N�. The fact
that the asymptotic cost scales as in (3.4) can then be deduced as in the proof of
Corollary 2, choosing

N� =

⌈
N0

(
κ0 v�
v0 κ�

)λ/(λ+1)
⌉
2

, where �x�2 := 2�log2(x)�,

that is, we round N� up to the nearest power of 2. Substituting this into (3.14),
using (3.6) and the assumptions on v� and κ�, we can deduce that the expression
for the optimal value for N0 is as in (3.11) (but rounded to the nearest power of
2). The bound on the cost follows as before.

For standard multilevel Monte Carlo it is possible to compare this algorithm with
the original algorithm in [12] that adaptively approximates the optimal choices of
samples N�, and we will see in Section 4 that Algorithm 1 achieves almost the same
cost effectiveness as the original algorithm, even for fairly large ε.

4. Numerical results

For all our numerical experiments we assume that the log-permeability log a(x, ω)
in (1.2) is a mean-zero Gaussian field with Matérn covariance, that is, a∗ ≡ 0, a0 ≡ 1
and (μj , ξj) are the eigenpairs of the integral operator

∫
D
ρν(|�x−�x′|) v(�x′) d�x′, with

(4.1) ρν(r) := σ2 2
1−ν

Γ(ν)

(
2
√
ν
r

λC

)ν

Kν

(
2
√
ν
r

λC

)
,

where Γ is the gamma function and Kν is the modified Bessel function of the second
kind. The parameter ν is a smoothness parameter, σ2 is the variance and λC is the
correlation length scale. In practice, we will always truncate the sum in (1.2) after
a finite number of s terms.

To compute the eigenpairs (μj , ξj), 1 ≤ j ≤ s, we discretise the integral operator
above using the Nyström method based on Gauss-Legendre quadrature on [0, 1]d

and then solve the resulting algebraic eigenvalue problem.
The numerical results were obtained on a 2.4GHz Intel Core i7 processor in

Matlab R2014b.

4.1. Results in space dimension one. We first consider problem (1.1) in one
dimension onD = (0, 1) with homogeneous Dirichlet boundary conditions u(0, ω) =
u(1, ω) = 0 and source term f ≡ 1. This problem is identical to the one studied
in [14, Sect. 6]. For the discretisation of the associated variational formulation on
level � = 0, . . . , L we use piecewise linear, continuous FEs on a uniform simplicial
mesh of width h� = h02

−�, where h0 = 2−�0 for some �0 ∈ N, such that M� =
2�+�0 − 1. We generate samples of log a (and thus of a) at the midpoints of the
intervals constituting the FE mesh using the KL expansion of log a with s terms,
and approximate the entries of the stiffness matrix via the midpoint quadrature
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Figure 1. Estimates of the FE bias error |E[Fh,s∗ − F ∗]| (solid
lines, left) and of the truncation error |E[Fh∗,s − F ∗]| (solid lines,
right), as well as the bounds in (4.3) for each case (dashed lines),
for ν = 1 and σ2 = 1.

rule. The output quantity of interest is chosen to be F := u(1/3, ω), i.e., the
solution evaluated at x = 1/3.

In order to have a nondimensional error measure for QML
L (F ), our MLQMC

estimator for E[F ] with randomly shifted lattice rules, we define what is usually
called the relative standard error in the statistical literature, that is,

(4.2) erel
(
QML

L (F )
)
:=

∣∣∣∣∣e
(
QML

L (F )
)

E[F ]

∣∣∣∣∣ .
We then study, for different tolerances ε > 0, the computational cost to achieve
a relative standard error erel

(
QML

L (F )
)
≤ ε and compare it to the cost to achieve

the same relative standard error with standard MLMC, as well as with the single-
level versions of both algorithms. In all the QMC estimators, for simplicity we
use R = 16 random shifts and an embedded lattice rule with generating vector
taken from the file [22, lattice-39102-1024-1048576.3600.txt]. (We remark
that there is no theoretical justification to use this lattice rule for our problem
here, however, numerical experiments from [14] indicated that such generic lattice
rules do perform just as well as those specifically tuned to the problem.)

We restrict ourselves to smoothness parameters ν ≥ 1, where the numerically
observed FE error is O(h2) (independent of ν).2 To estimate the bias error on the
finest level L, we then assume the following upper bound (with uniform constants
CFE and Ctrunc):

(4.3) |E[Fh,s−F ∗]| ≤ |E[Fh,s−Fh∗,s]|+|E[Fh∗,s−F ∗]| ≤ CFE h2 + Ctrunc s
−2ν/d,

where F ∗ is a reference solution computed with h∗ � h and s∗ � s (see [14,
Sect. 2.4] for a justification). In Figure 1 we plot estimates of |E[Fh,s∗ −F ∗]| and of
|E[Fh∗,s−F ∗]|, for the case of d = 1, ν = 1, σ2 = 1 and for two different values of λC .
We also show bounds over the plotted range of h and s, for each of the two terms
in (4.3) with the smallest possible values of CFE and of Ctrunc. The expectations

2Note that theoretically the FE error for point evaluations in one space dimension is
O(h2 log |h|) (cf. [32]), but we do not observe the log-factor in practice.
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of these constants were estimated with 105 MC samples and with h∗ = 1/1024 and
s∗ = 500. We see that the rates of α = 2 = α′ (for ν = 1) in (4.3) are sharp.

In our experiments, we then choose a particular sequence εL := 2
√
2CFEh

2
L,

where L ≥ 1 and CFE is the constant in (4.3) which we estimate as shown above
for each problem. We choose a corresponding truncation dimension sL such that

Ctruncs
−2ν/d
L ≤ CFEh

2
L, which implies

(4.4) sL :=
⌈
Cbal h

−d/ν
L

⌉
with Cbal := (Ctrunc/CFE)

d/(2ν),

and ensures that the total bound on the bias error in (4.3) is less than εL/
√
2.

We then run each of the estimators until the variance error is less than ε2L/2, thus
ensuring a MSE (as defined in (3.2)) of less than ε2L and a relative standard error
(as defined in (4.2)) of less than εL/|E[F ]|.

The numbers N� of lattice points for the MLQMC estimator on each of the levels
are chosen adaptively using the algorithm by Giles and Waterhouse [13], given in
Algorithm 1 in Section 3.3. To estimate the variance V� := VΔ(Q�(F� − F�−1)) on
each level, we use (3.12). As in Corollary 2, we choose s� = sL on all coarser levels.
For the cost on level �, we assume

(4.5) C� := cost(Q�(F� − F�−1)) ≈ (2sL + 13)h−1
� N� R.

This estimate is based on the facts (i) that the evaluation at the midpoints of the
mesh intervals of the coefficient in (1.2), with a∗ ≡ 0, a0 ≡ 1 and with the sum
truncated after sL terms, requires about Cperm

� = (2sL+1)h−1
� operations; and (ii)

that there are direct solvers for diagonally dominant tridiagonal systems (e.g., the
Thomas algorithm) that achieve a complexity of 8 operations per unknown, leading
to the cost estimate Csolve

� = 8(h−1
� + h−1

�−1) = 12h−1
� .

For the standard MLMC estimator we choose the same mesh and truncation
parameters, h� and s�, as for our new MLQMC estimator. The optimal numbers
of samples NMC

� are chosen according to the formula in the original paper [12].
This requires variance estimates for the differences F� −F�−1 on each of the levels,
which are obtained via the usual sample variance estimate with 102 initial samples,
updating the estimates as NMC

� → ∞ on each level. The one-level variants are
defined accordingly.

In Figures 2 and 3, we plot the cost to achieve a relative standard error less
than ε with MLQMC and MLMC, as well as with the one-level variants QMC and
MC, for σ2 = 1, ν = 1, 2, and λC = 1, 0.1. Red lines with circles correspond to
the MC-based variants, while blue lines with diamonds correspond to the QMC-
based estimators. The points on each graph correspond to the choices �0 = 3 and
L = 1, . . . , 4. The values of sL are chosen according to (4.4) in each case. The
exception is the hardest test case (ν = 1, λC = 0.1), where we used L = 2, . . . , 5
and a variable number s� = �Cbalh

−1
� � of KL terms on level � in MLQMC and in

MLMC. The maximum number of KL terms included in that case is s5 = 456. In
all test cases, we consistently see substantial gains for the MLQMC estimator, with
respect to MLMC and QMC, even though the value of ν is substantially smaller
than our theory supports (see Remark 10 ahead).

For comparison, we show in Figures 2 and 3 also cost estimates for MLMC us-
ing circulant embedding which makes use of the Fast Fourier Transform (FFT)
(magenta line, labelled ‘MLMC(FFT)’). Circulant embedding allows for efficient
sampling at the quadrature points from isotropic random fields, such as the one
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Figure 2. Cost to obtain a relative standard error less than ε in
the 1D example. The covariance parameters are ν = 2 and σ2 = 1,
as well as λC = 1.0 (left) and λC = 0.1 (right), respectively. The
estimates for Cbal are 0.76 (left) and 2.38 (right), respectively.
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Figure 3. Cost to obtain a relative standard error less than ε in
the 1D example. The covariance parameters are ν = 1 and σ2 = 1,
as well as λC = 1.0 (left) and λC = 0.1 (right), respectively. The
estimates for Cbal are 0.38 (left) and 1.78 (right), respectively.

studied here, without any truncation error (see e.g. [15]) and with a cost indepen-
dent of sL. We assume that for the MLMC estimator with circulant embedding,
the cost on level � is
(4.6)

CFFT
� ≈

(
5(�+ �0) + 2

)
h−1
� NMC

� < (68/9(�+ �0)− 248/27 + 12) (
√
2h�)

−1 NMC
� .

The factor
√
2 in front of h� appears because there is no truncation error and

thus the FE bias error can be increased by a factor 2 to still achieve a MSE of
ε2L for the MLMC estimator. For the sampling of the coefficient we then assume
the use of circulant embedding without padding [15]—which doubles the number
of unknowns in 1D—and a split-radix FFT algorithm that requires 34

9 n log2(n)−
124
27 n+O

(
log2(n)

)
operations for vectors of length n [21]. This is almost certainly

underestimating the cost for circulant embedding, but, as we can see in Figures 2
and 3, the cost is still higher than that of our MLQMC estimator asymptotically.
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Figure 4. Left: MSE of the QMC/MC estimators for F� − F�−1

as functions of the total number of sample points, i.e., RN� for
QMC (solid blue lines) and NMC

� for MC (dashed red lines), for
ν = σ2 = λC = 1. Right: Total number of samples on each level to
achieve a relative standard error less than ε = 1.8 × 10−4 for the
same example.

In Figure 4, we look at the particular case ν = σ2 = λC = 1, hL = 1/128 and
sL = 49, and plot in the left figure the MSE of the QMC and the MC estimators
for the expected values of the differences F� − F�−1 as the total number of sample
points is increased (i.e., RN� and NMC

� , respectively). We clearly see the faster rate
of convergence with N� → ∞ for the QMC estimators, which is almost optimal (i.e.,
the MSE is nearly O(N−2

� )) even though ν = 1 is not sufficiently big for our theory
in Section 5 to apply and even though in the construction of the QMC rules we did
not use the weights derived there. We also clearly see the variance reduction from
level to level (i.e., the offset between the lines), which does behave as theoretically
shown in Section 5 (i.e., roughly like O(h4

�)).
In Figure 4 (right) we plot for the same example the numbers of sample points on

each of the levels. For MLQMC they were produced by Algorithm 1, showing RN�,
i.e., number of lattice points times number of shifts. For standard MLMC we show
two sequences of numbers: those produced by the formula in the original MLMC
paper [12], labelled ‘MLMC(G)’, and those produced by Algorithm 1 with standard
MC estimators on each level, labelled ‘MLMC(GW)’. We note that there are only
very small differences in these final two sequences, confirming our discussion in
Section 3.3 that Algorithm 1 proposed in [13] can be used instead of the original
algorithm to find the optimal sample distributions over the levels. The behaviour
is the same for all other parameter values.

4.2. Results in space dimension two. We consider the problem (1.1), (1.2)
with Matérn covariance ρν in (4.1) on D = (0, 1)2 ⊂ R

2. At first we use again
homogeneous Dirichlet conditions, i.e., Γ = ΓD and u(·, ω)|Γ ≡ 0, and the source
term f ≡ 1. The output quantity of interest is the average of the solution u over
the region D∗ =

(
3
4 ,

7
8

)
×
(
7
8 , 1
)
, i.e.,

F (ω) :=
1

|D∗|

∫
D∗

u(�x, ω) d�x.
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�0 = 3, L = 3 and sL = 27.

We discretise the associated variational formulation (spatially) using standard
piecewise linear, continuous FEs on a sequence of triangular meshes obtained by
taking a tensor product of each of the meshes in Section 4.1 with itself and by
subdividing each of the squares of the resulting mesh into two triangles, thus leading
to 22(�+�0)+1 triangular elements of size h� := h02

−� with h0 := 2−�0+1/2 and
M� = (2�+�0 − 1)2 degrees of freedom on level � = 0, . . . , L.

The finite element bias error and the truncation error are estimated as in 1D.
The choice of domain and functional guarantee that u(·, ω) ∈ H2(D) (almost surely)
and the FE and truncation errors converge as stated in (4.3), for ν > 1. Then, the
number of KL terms sL is again chosen according to (4.4) and s� = sL on the coarser
levels of the multilevel methods in all cases. For the average cost to compute one
sample on each level, we use actual CPU-timings here (instead of FLOP counts).
These were obtained using FreeFEM++ [18] and the sparse direct solver UMFPACK [8].
The measured times to evaluate the KL expansion (with s terms) at the quadrature
points (Cperm

� ) and to assemble and solve the sparse linear equation system (Csolve
� )

are shown in Figure 5 (left) together with the total time to compute one sample,
for the case �0 = 3, � = 4 and s = 50. Finite element methods for (1.1) in two
space dimensions allow, in the practical range of M� considered here, for superior
performance of sparse direct solvers as compared to, e.g., multigrid methods. Since
we do not exploit the uniform grid structure in FreeFEM++ the cost in Figure 5
(left) is actually dominated by the FE system assembly, which scales like O(h−2

� ).
We also note that Cperm

� � Csolve
� for all our choices of sL below.

In Figure 5 (right), we plot the MSE of the QMC and of the MC estimators for
E[F� − F�−1] as a function of the total number of sample points for the covariance
parameters ν = 1.5, σ2 = 1, λC = 1, and for �0 = 3, L = 3 and sL = 27. Again,
we see the significantly faster and almost optimal convergence rate for the QMC
estimators as N� → ∞.

In Figure 6, we plot again the cost to achieve a relative standard error less than
ε with all four estimators for two sets of covariance parameters. The points on
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Figure 6. Cost to obtain a relative standard error less than
ε in the 2D example with homogeneous Dirichlet conditions, for
ν = 2.5, σ2 = 0.25, λC = 1 and �0 = 3 (left), as well as for ν = 1.5,
σ2 = 1, λC = 0.1 and �0 = 4 (right). The estimates for Cbal are
0.55 (left) and 0.68 (right), leading to a maximum of s5 = 47 and
s4 = 1106 KL terms on the finest mesh, respectively.

each of the graphs correspond to the choices L = 1, . . . , 5 with �0 = 3 (left) and
L = 1, . . . , 4 with �0 = 4 (right). We see similarly impressive gains with respect to
MLMC and QMC in two dimensions, but we also see more clearly the influence of
the smoothness parameter ν. For the test case in the left figure, the numerically
observed growth of the MLQMC cost is about O(ε−1.25) over the range L = 1 to
4. For comparison, the costs for MLMC and QMC both show growths of O(ε−2.2)
over the same range, while MC shows the expected O(ε−3) growth.

As a final example, we consider the practically more interesting case of a 2D “flow
cell”, that is, we solve the PDE (1.1) in D = (0, 1)2 with mixed Dirichlet–Neumann
conditions. The horizontal boundaries are assumed to be impermeable, that is,
(a∇u) · �n = 0 for x2 = 0 and x2 = 1. Along the vertical boundaries we specify
Dirichlet boundary conditions and set u ≡ 1, for x1 = 0, and u ≡ 0, for x1 = 1.
We discretise this problem using the same sequence of meshes as above. Due to
the Neumann conditions on the horizontal boundaries, the number of degrees of
freedom in this problem is M� = 22(�+�0) − 1 on level � = 0, . . . , L.

Here, the quantity of interest is the outflow through the right vertical boundary,
i.e.,

F (ω) := −
∫ 1

0

a(�x, ω)
∂u(�x, ω)

∂x1

∣∣∣∣
x1=1

dx2.

As an approximation of this functional we use

Fh,s(ω) := −
∫
D

as(�x, ω)∇uh,s(�x, ω) · ∇ϕ(�x) d�x,

where ϕ denotes the FE function which is equal to one at all of the vertices of the
right vertical boundary and is equal to zero at all other vertices (see [34, section
3.4] for details).

The numerical results for this problem are shown in Figure 7. In the left figure,
we choose ν = 2.5, σ2 = 1, λC = 1. In the right figure, we choose a set of parameters
closer to the ones used in actual subsurface flow studies, namely ν = 1, σ2 = 3 and
λC = 0.3. In both cases �0 = 2. The points on the graphs correspond to the choices
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Figure 7. Cost to obtain a relative standard error less than ε in
the 2D flow cell example. The covariance parameters are ν = 2.5,
σ2 = 1, λC = 1 (left) and ν = 1, σ2 = 3, λC = 0.3 (right). The
estimates for Cbal are 0.61 (left) and 0.0097 (right), respectively.
The problem on the right is significantly more challenging. Please
note the different range for ε in the two figures.

L = 1, . . . , 5 (left) and L = 2, . . . , 5 (right), respectively. The gains are again of the
same order as above in both cases. In the smoother test case (left), the growth of
the MLQMC cost is as low as O(ε−1.15) between L = 3 and 5.

5. Mathematical analysis and construction of suitable QMC rules

In the remainder of the paper, we present sufficient conditions on the data and on
the FE spaces to verify Assumption M2 in the general MLQMC convergence result
in Theorem 1, as well as constructible QMC rules that achieve this. We will start
in Section 5.1 by addressing the spatial regularity and approximation orders for the
FE function uh,s(·,y) in (1.5), making explicit the dependence on the parameter
y in any constants that appear. Then we turn to the key estimates required for
the MLQMC theory: bounds on the derivatives of the FE error with respect to
the stochastic variables in certain weighted function spaces Ws which appear in the
QMC convergence theory (see [14] and the references there) with constants that are
independent of the truncation dimension s. These bounds correspond to “mixed
derivative bounds”, appearing also in hyperbolic cross and other high-dimensional
approximation methods [3,17,31], in that they require joint regularity of the random
solution u(�x, ω) with respect to the spatial as well as with respect to the stochastic
argument. These estimates are proved in Section 5.2, and are used in Section 5.3
to establish the MLQMC convergence rate estimates.

5.1. Parametric formulation, spatial regularity and FE approximation.
As in [14], we assume that, for d = 2, 3, D is a bounded, Lipschitz polygo-
nal/polyhedral domain. For simplicity, we restrict ourselves to homogeneous Dirich-
let data φD = 0 and to deterministic Neumann data φN ∈ H1/2(ΓN ) in (1.1).
Then, the stochastic PDE (1.1) is (upon a measure-zero modification of the log-
normal random field a in (1.1)), equivalent to the infinite-dimensional, parametric,
deterministic PDE
(5.1)

−∇ · (a(·,y)∇u(·,y)) = f in D, u|ΓD = 0, �n · a(·,y)∇u(·,y)|ΓN = φN ,
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with parametric, deterministic coefficient

(5.2) a(�x,y) = a∗(�x) + a0(�x) exp

(∑
j≥1

√
μj ξj(�x) yj

)
,

where �x ∈ D ⊂ R
d and where the parameter sequence y = (yj)j≥1 ∈ R

N is
distributed according to the product Gaussian measure μG =

⊗∞
j=1N (0, 1). Here,

and throughout the following, the functions a0, a∗ and ξj are all assumed to lie in
L∞(D).

If y belongs to the set

(5.3) Ub :=

{
y ∈ R

N :
∑
j≥1

bj |yj | < ∞
}

⊂ R
N,

where the sequence b = (bj)j≥1 is defined by bj :=
√
μj ‖ξj‖L∞(D) and is assumed

to be in �2(N), then the equivalence of (5.1)–(5.2) and (1.1)–(1.2) holds up to
μG-measure zero modifications of the input random field. Due to the continuous
dependence on the input random field, the parametric, deterministic coefficient
a(·,y) in (5.2) and the parametric, deterministic solution u(·,y) of (5.1) will also
differ only on a μG-nullset. If, moreover, b ∈ �1(N), then the series (5.2) converges
in L∞(D) for every y ∈ Ub, which we assume in what follows.

To simplify the presentation, we assume a∗ = 0 and |ΓD| > 0. We need the weak
form of (5.1) on the Hilbert space V = H1

ΓD
(D) := {v ∈ H1(D) : v|ΓD = 0}, with

norm

‖v‖V := ‖∇v‖L2(D).

As in [14], we define for y ∈ Ub the parametric, deterministic bilinear form in V by

(5.4) A (y;w, v) :=

∫
D

a(�x,y)∇w(�x) · ∇v(�x) d�x, for all w, v ∈ V.

We list properties of the parametric bilinear form A (y; ·, ·) and of the weak solution
u(·,y), as well as its FE approximation uh(·,y), from [14]. For a proof see [14,
Thm. 13].

Proposition 3. Assume that b ∈ �1(N).

(a) The expressions

(5.5) â(y) := max
�x∈D

a(�x,y) and ǎ(y) := min
�x∈D

a(�x,y)

are well defined, μG-measurable mappings from Ub to R which satisfy

(5.6) 0 < ǎ(y) ≤ â(y) < ∞ for all y ∈ Ub.

(b) For every y ∈ Ub, the parametric bilinear form A (y; ·, ·) : V × V → R

defined in (5.4) is continuous and coercive in the following sense:

A (y;w,w) ≥ ǎ(y)‖w‖2V for all w ∈ V, and(5.7)

A (y; v, w) ≤ â(y)‖v‖V ‖w‖V for all v, w ∈ V.(5.8)

(c) For every f ∈L2(D) and every φN ∈H1/2(ΓN ) and with the (y-independent)
linear functional

L (v) :=

∫
D

f(�x) v(�x) d�x+

∫
ΓN

φN (�x) v(�x) ds,
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the parametric, deterministic variational problem, to find u(·,y) ∈ V such
that

(5.9) A (y;u(·,y), v) = L (v) for all v ∈ V,

admits a unique solution u(·,y) ∈ V , for every y ∈ Ub.
(d) This parametric solution Ub � y �→ u(·,y) ∈ V is a strongly measurable

mapping (with respect to a suitable σ-algebra, cf. [14]) which satisfies the
bound

(5.10) ‖u(·,y)‖V � 1

ǎ(y)

(
‖f‖L2(D) + ‖φN ‖H1/2(ΓN )

)
for all y ∈ Ub

(pointwise with respect to y). The implied constant depends on D, ΓD and
ΓN , but is independent of y. In particular, for any s ∈ N, u(·, (y{1:s};0)) ∈
V is well defined,3 measurable, and satisfies the above bounds uniformly with
respect to s.

(e) Restricting in (5.9) to functions in the FE space Vh ⊂ V , there exists
a unique, parametric FE solution uh(·,y) ∈ Vh, for every y ∈ Ub and
0 < h < 1, that also satisfies the bound (5.10). Replacing, in addition, the
coefficient a(�x,y) in (5.9) by the s-term truncated KL expansion as(�x,y),
the corresponding s-parametric FE solutions uh,s(·, (y{1:s};0)) ∈ Vh are

uniquely defined for any y{1:s} ∈ Rs, and satisfy, for (y{1:s};0) ∈ Ub, the

bound (5.10) uniformly with respect to h and to s.

For the derivation of FE convergence rate bounds, we require additional spatial
regularity: we assume in (5.2)

(5.11) a∗ ≡ 0, a0 ∈ W 1,∞(D) and ξj ∈ W 1,∞(D).

With (5.11), we may define the sequence

(5.12) bj :=
√
μj max(‖ξj‖L∞(D), ‖|∇ξj |‖L∞(D)), j = 1, 2, . . . .

Evidently, bj ≥ bj so that Ub ⊂ Ub ⊂ RN. We assume in what follows that

(5.13) b = (bj)j≥1 ∈ �1(N).

These conditions are satisfied under the provision of appropriate regularity of the
covariance function of the Gaussian random field log(a−a∗) in (1.1) (we refer to the
discussion in [14, Rem. 4]). Also, for any b ∈ �1(N) ⊂ �2(N) we have μG(Ub) = 1.

Proposition 4. Let us assume (5.11) and (5.13), and suppose we are given de-
terministic functions f ∈ L2(D) and φN ∈ H1/2(ΓN ). Then the following results
hold.

(a) For every y ∈ Ub, the series (5.2) converges in W 1,∞(D) and

(5.14) a(·,y) ∈ W 1,∞(D).

(b) The parametric solution map y �→ u(·,y) is strongly μG–measurable as a
map from Ub to the space

(5.15) W := {v ∈ V : Δu ∈ L2(D)},

3As in [14], for any finite subset u ⊂ N, we denote by (yu;0) the vector y ∈ Ub with the

constraint that yj = 0 if j �∈ u, and we use the shorthand notation {1 : s} for {1, 2, . . . , s}.
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and we have the a priori estimate

(5.16) ‖Δu(·,y)‖L2(D) � T1(y)
(
‖f‖L2(D) + ‖φN ‖H1/2(ΓN )

)
,

where

(5.17) T1(y) :=
1

ǎ(y)
+

‖∇a(·,y)‖L∞(D)

ǎ(y)2
< ∞ for all y ∈ Ub.

(c) There exists a sequence {Vh�
}�≥0 of nested FE spaces of continuous, piece-

wise linear functions on conforming, simplicial meshes {Th�
}�≥0 that satis-

fies the assumptions of Section 3; in particular, M� = dim(Vh�
) � h−d

� and
h� � 2−�. The solutions uh�

(·,y) ∈ Vh�
defined in Proposition 3 (e) satisfy

the asymptotic error bound

(5.18) ‖a1/2(·,y)∇(u− uh�
)(·,y)‖L2(D) � h� T2(y) ‖Δu(·,y)‖L2(D),

where

(5.19) T2(y) := â(y)1/2 for all y ∈ Ub.

The result holds verbatim for the FE solution uh�,s�(·, (y{1:s�},0)) ∈ Vh�
of

the s�-term truncated problem.

Proof. (a) This is a consequence of (5.13) and μG(Ub)=1 (see, e.g., [31, Lem. 2.28]).
(b) Since a(·,y) ∈ W 1,∞(D), u|ΓD = 0 and (5.6) holds, for every y ∈ Ub, the

solution u(·,y) of (5.1) also satisfies the following Poisson problem

(5.20) −Δu(·,y) = f̃(·,y) := 1

a(·,y) [f +∇a(·,y) · ∇u(·,y)] in L2(D).

The bound (5.16) with T1(y) defined in (5.17) then follows from (5.10).
(c) The bound on ‖Δu(·,y)‖L2(D) in (b) together with the classical regularity

theory for the Laplace operator on Lipschitz polygonal/polyhedral domains (see,
e.g., [16]) implies weighted H2(D)-regularity of u(·,y) (with suitable weights near
reentrant corners and edges) for nonconvex D and full H2(D)-regularity for convex
D. The existence of a sequence {Vh�

}�≥0 that satisfies the assumptions of Section 3,
together with

(5.21) inf
v∈Vh�

‖w − v‖V � h� ‖Δw‖L2(D) for all w ∈ W,

then follows from classical FE results (for convergence bounds in weighted spaces
see, e.g., [1]) and from the norm equivalence ‖Δw‖L2(D) � ‖w‖W , for all w ∈ W .
The error bound in (5.18) follows from an application of Cea’s Lemma [16] (in the
energy norm) together with (5.8) and (5.21). �

Note that, for convex D and for homogeneous Dirichlet boundary conditions on
all of ∂D, W = H2(D) and the family {Th�

}�≥0 can be constructed by uniform
mesh refinement of an arbitrary conforming triangulation Th0

of D.

5.2. Parametric regularity. As first observed in [24], in the uniform case, the
analysis of MLQMC methods for FE discretisations of PDEs requires estimates of
the parametric solution map y �→ u(·,y) in the regularity space W in (5.15). Here,
we establish corresponding results for the lognormal parametric problem (5.1), (5.2).
In order to be able to draw upon our results in [14], we restrict the analysis to the
particular case

(5.22) ΓN = ∅, ΓD = Γ, V = H1
0 (D), and V ∗ = H−1(D).
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We denote by F := {ν ∈ NN
0 : |ν| < ∞}, where |ν| :=

∑
j=1 νj , the (countable)

set of all “finitely supported” multi-indices (i.e., sequences of nonnegative integers
for which only finitely many entries are nonzero). For m,ν ∈ F, we write m ≤ ν if
mj ≤ νj for all j, we denote by ν−m a multi-index with the elements νj−mj , and
we define

(
ν
m

)
:=
∏

j≥1

(
νj

mj

)
. For a sequence of nonnegative real numbers (βj)j∈N

we write βν :=
∏

j≥1 β
νj

j . The following result is abstracted from the proof of

[14, Thm. 14].

Lemma 5. Given nonnegative numbers (βj)j∈N, let (Aν)ν∈F and (Bν)ν∈F be non-
negative numbers satisfying the inequality

Aν ≤
∑
m≤ν
m 
=ν

(
ν

m

)
βν−m

Am + Bν , for any ν ∈ F (including ν = 0).

Then

Aν ≤
∑
k≤ν

(
ν

k

)
Λ|k| β

k
Bν−k, for all ν ∈ F,

where the sequence (Λn)n≥0 is defined recursively by

Λ0 := 1 and Λn :=

n−1∑
i=0

(
n

i

)
Λi, for all n ≥ 1.(5.23)

The result holds also when both inequalities are replaced by equalities. Moreover,
we have

Λn ≤ n!

(log 2)n
, for all n ≥ 0.(5.24)

Proof. We prove this result by induction. The case ν = 0 holds trivially. Suppose
that the result holds for all |ν| < n with some n ≥ 1. Then for |ν| = n, we
substitute m′ = ν −m in the recursion and use the induction hypothesis to write

Aν ≤
∑

0
=m′≤ν

(
ν

ν −m′

)
βm′

Aν−m′ + Bν

≤
∑

0
=m′≤ν

(
ν

ν −m′

)
βm′ ∑

k≤ν−m′

(
ν −m′

k

)
Λ|k| β

k
Bν−m′−k + Bν .

Substituting k′ = k+m′, exchanging the order of summation, and regrouping the
binomial coefficients, we obtain

Aν ≤
∑

0
=m′≤ν

(
ν

ν −m′

) ∑
m′≤k′≤ν

(
ν −m′

k′ −m′

)
Λ|k′−m′| β

k′
Bν−k′ + Bν

=
∑

0
=k′≤ν

(
ν

k′

) ∑
0
=m′≤k′

(
k′

k′ −m′

)
Λ|k′−m′| β

k′
Bν−k′ + Bν ,

where

∑
0�=m≤k′

(
k′

k′ −m

)
Λ|k′−m| =

∑
m≤k′

m�=k′

(
k′

m

)
Λ|m| =

|k′|−1∑
i=0

∑
m≤k′
|m|=i

(
k′

m

)
Λi =

|k′|−1∑
i=0

(
|k′|
i

)
Λi,
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which is equal to Λ|k′| as required. In the last step we used a simple counting
identity (consider the number of ways to select i distinct balls from some baskets
containing a total number of |k′| distinct balls)

(5.25)
∑

m≤k′

|m|=i

(
k′

m

)
=

(
|k′|
i

)
.

The proof of (5.24) then follows as in the proof of [14, Thm. 14]. �

Theorem 6. For every f ∈ L2(D), ν ∈ F and y ∈ Ub, with T1(y) as in (5.17), we
have

‖Δ(∂νu(·,y))‖L2(D) � ‖f‖L2(D) T1(y) b
ν
2|ν| (|ν|+ 1)!.

Proof. Throughout this proof, all estimates are for arbitrary y ∈ Ub̄ ⊂ Ub with the
understanding that constants implied in � and � do not depend on y. For any
multi-index ν ∈ F, we define (formally, at this stage) the expression

gν(·,y) := ∇ · (a(·,y)∇(∂νu(·,y))).
Differentiation of order |ν| > 0 of the parametric, deterministic variational for-

mulation (5.9) with respect to y reveals that

0 = ∂ν A (y;u(·,y), v) =
∫
D

∇v(�x) · ∂ν
(
a(�x,y)∇u(�x,y)

)
d�x for all v ∈ V.

The Leibniz rule ∂ν(PQ) =
∑

m≤ν

(
ν
m

)
(∂ν−mP )(∂mQ) and integration by parts

imply

∇ · ∂ν(a∇u) = ∇ ·
( ∑

m≤ν

(
ν

m

)
(∂ν−ma)∇(∂mu)

)
= 0 in V ∗.

Separating out the m = ν term yields the following identity in V ∗:

∇ · (a∇(∂νu))︸ ︷︷ ︸
=gν

= −∇ ·
( ∑

m≤ν
m 
=ν

(
ν

m

)
(∂ν−ma)∇(∂mu)

)

= −
∑
m≤ν
m 
=ν

(
ν

m

)
∇ ·
(
∂ν−ma

a
(a∇(∂mu))

)

= −
∑
m≤ν
m 
=ν

(
ν

m

)(
∂ν−ma

a
gm + ∇

(
∂ν−ma

a

)
· (a∇(∂mu))

)
.

In the last step we used the identity ∇ · (p q) = p∇ · q +∇p · q. Due to (5.6) we
may multiply gν by a−1/2 and obtain, for any |ν| > 0, the recursive bound

‖a−1/2 gν‖L2(D) ≤
∑
m≤ν
m 
=ν

(
ν

m

)( ∥∥∥∥∂ν−ma

a

∥∥∥∥
L∞(D)

‖a−1/2gm‖L2(D)

+

∥∥∥∥∇(∂ν−ma

a

)∥∥∥∥
L∞(D)

‖a1/2∇(∂mu)‖L2(D)

)
.(5.26)

By assumption, g0 = ∇ · (a(·,y)∇u(·,y)) = −f ∈ L2(D), so that we obtain
(by induction with respect to |ν| and using (5.11) and (5.13)) from (5.26) that
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a−1/2(·,y)gν(·,y) ∈ L2(D), and hence from Proposition 3(a) that gν(·,y) ∈ L2(D)
for every ν ∈ F. Thus, the above formal identities indeed hold in L2(D).

To obtain a bound on (5.26), we observe that it follows from the particular form
of a in (5.2) that

(5.27) ∂ν−ma = (a− a∗)
∏
j≥1

(
√
μj ξj)

νj−mj for all ν = m.

Since we assumed a∗ = 0 in (5.11), we then have
(5.28)∥∥∥∥∂ν−ma

a

∥∥∥∥
L∞(D)

=

∥∥∥∥∏
j≥1

(
√
μj ξj)

νj−mj

∥∥∥∥
L∞(D)

≤
∏
j≥1

(√
μj ‖ξj‖L∞(D)

)νj−mj

= bν−m.

Moreover, using the product rule, we have

∇
(
∂ν−ma

a

)
=
∑
k≥1

(νk −mk)(
√
μk ξk)

νk−mk−1(
√
μk ∇ξk)

∏
j≥1
j 
=k

(
√
μj ξj)

νj−mj .

Due to the definition of bj in (5.12), this implies, in a similar manner to (5.28), that

(5.29)

∥∥∥∥∇(∂ν−ma

a

)∥∥∥∥
L∞(D)

≤ |ν −m| bν−m
.

Substituting (5.28) and (5.29) into (5.26), we conclude that

‖a−1/2gν‖L2(D)︸ ︷︷ ︸
Aν

≤
∑
m≤ν
m 
=ν

(
ν

m

)
bν−m ‖a−1/2gm‖L2(D)︸ ︷︷ ︸

Am

+Bν ,

where

Bν :=
∑
m≤ν
m 
=ν

(
ν

m

)
|ν −m| bν−m ‖a1/2∇(∂mu)‖L2(D)

≤
∑
m≤ν
m 
=ν

(
ν

m

)
|ν −m| bν−m

Λ|m| b
m ‖f‖V ∗√

ǎ(y)
≤ Λ|ν| b

ν ‖f‖V ∗√
ǎ(y)

.(5.30)

In the first inequality in (5.30) we used

(5.31) ‖a1/2∇(∂mu)‖L2(D) ≤ Λ|m| b
m ‖f‖V ∗√

ǎ(y)
,

which was established in the proof of [14, Thm. 14]. In the second inequality in
(5.30) we used the bound bj ≤ bj , for all j ≥ 1, and the identity (5.25) to write,
with n = |ν|,∑
m≤ν
m 
=ν

(
ν

m

)
|ν −m|Λ|m| =

n−1∑
i=0

∑
m≤ν
|m|=i

(
ν

m

)
(n− i) Λi =

n−1∑
i=0

(
n

i

)
(n− i) Λi =: Λn.

Since A0 = ‖a−1/2f‖L2(D) ≤ ‖f‖L2(D)/
√
ǎ(y), we now define

Bν := Cemb Λ|ν| b
ν ‖f‖L2(D)√

ǎ(y)
, where Cemb := sup

f∈L2(D)

‖f‖V ∗

‖f‖L2(D)
.
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Then A0 ≤ B0 and Bν ≤ Bν for all ν. We may now apply Lemma 5 to obtain

‖a−1/2gν‖L2(D) ≤
∑
k≤ν

(
ν

k

)
Λ|k| b

k Cemb Λ|ν−k| b
ν−k ‖f‖L2(D)√

ǎ(y)
.(5.32)

Note the extra factor n− i in the definition of Λn compared to Λn in (5.23) so that
Λn ≤ Λn. Using the bound in (5.24), we have for all α ≤ log 2 = 0.69 . . . ,

Λn ≤
n−1∑
i=0

(
n

i

)
(n− i)

i!

αi
=

n!

αn
α

n−1∑
i=0

αn−i−1

(n− i− 1)!
=

n!

αn
α

n−1∑
k=0

αk

k!
≤ n!

αn
α eα ≤ n!

αn
,

where the final step is valid provided that α eα ≤ 1. Thus it suffices to choose
α ≤ 0.567 . . . . For convenience we take α = 0.5 to bound (5.32). Using again the
identity (5.25), we obtain
(5.33)∑
k≤ν

(
ν

k

)
|k|! |ν−k|! =

|ν|∑
i=0

i! (|ν|− i)!
∑
k≤ν
|k|=i

(
ν

k

)
=

|ν|∑
i=0

i! (|ν|− i)!

(
|ν|
i

)
= (|ν|+1)!.

Applying these estimates to (5.32) gives

(5.34) ‖a−1/2gν‖L2(D) ≤ Cemb

‖f‖L2(D)√
ǎ(y)

b
ν
2|ν| (|ν|+ 1)!.

Since a−1/2gν = a−1/2∇· (a∇(∂νu)) = a1/2Δ(∂νu)+a−1/2 (∇a ·∇(∂νu)), we have

‖a1/2Δ(∂νu)‖L2(D) ≤ ‖a−1/2gν‖L2(D) + ‖a−1/2 (∇a · ∇(∂νu))‖L2(D),

which yields√
ǎ(y) ‖Δ(∂νu)‖L2(D) ≤ ‖a−1/2gν‖L2(D) +

‖∇a(·,y)‖L∞(D)

ǎ(y)
‖a1/2∇(∂νu)‖L2(D)

and in turn

‖Δ(∂νu)‖L2(D) ≤
‖a−1/2gν‖L2(D)√

ǎ(y)
+

‖∇a(·,y)‖L∞(D)

ǎ(y)

‖a1/2∇(∂νu)‖L2(D)√
ǎ(y)

.

(5.35)

Substituting (5.34) and (5.31) into (5.35), and using Λ|ν| ≤ 2|ν||ν|!, as well as

bν ≤ b
ν
, we arrive at

‖Δ(∂νu)‖L2(D) ≤ Cemb ‖f‖L2(D)

(
1

ǎ(y)
+

‖∇a(·,y)‖L∞

ǎ(y)2

)
b
ν
2|ν| (|ν|+ 1)!.

This completes the proof. �

5.3. QMC convergence and design. We first review the quasi-Monte Carlo
theory that is essential for the QMC convergence rate estimates. We follow the
setting and analysis in [14, Section 4] which, in turn, uses results from [28]; see also
the earlier references [25, 26, 36, 37].

In our multilevel algorithm (3.1), for every level we apply a randomly shifted
lattice rule Q� to the integrand F� − F�−1 which is multiplied by the product of
univariate normal densities. Replacing F� − F�−1 by a general function F in s
variables, we have the general integration problem

∫
Rs F(y)

∏s
j=1 φ(yj) dy, with
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φ(y) = exp(−y2/2)/
√
2π. The strategy in [14] is to consider a weighted function

space with norm defined by

‖F‖2Ws

(5.36)

:=
∑

u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|F
∂yu

(yu;y{1:s}\u)
∏

j∈{1:s}\u

φ(yj) dy{1:s}\u

)2 ∏
j∈u

ψ2
j (yj) dyu,

where {1 : s} is shorthand notation for the set of indices {1, 2, . . . , s}, and ∂|u|F
∂yu

denotes the mixed first derivative with respect to the “active” variables yu = (yj)j∈u

while y{1:s}\u = (yj)j∈{1:s}\u denotes the “inactive” variables. To ensure that the

norm is finite for our particular integrand F = F�−F�−1, we follow [14] and choose
the weight functions

(5.37) ψ2
j (yj) = exp(−2αj |y|) , with 0 < αmin ≤ αj ≤ αmax < ∞.

In Corollary 8 below, we will further impose the condition that αj > 9bj , with bj
defined by (5.12).

A key ingredient in the analysis of [14] (see also [23, 24]) is to choose weight
parameters γu > 0, for every set u ⊂ N of finite cardinality |u| < ∞, such that
the overall error bound does not grow with increasing dimension s. Such analysis
makes use of the fact that the generating vector z for a randomly shifted lattice
rule (see (2.2)) can be constructed using a component-by-component algorithm to
achieve a certain error bound; see [14, Thm. 15] or more generally [28, Thm. 8]. In
particular, for F = F� − F�−1 the result is that the variance (or the mean square
error) of Q� is bounded by
(5.38)

VΔ[Q�(F� − F�−1)] ≤ R−1
�

( ∑
∅⊆u⊆{1:s�}

γλ
u

∏
j∈u

�j(λ)

)1/λ

[ϕtot(N�)]
−1/λ ‖F� − F�−1‖2Ws�

for all λ ∈ (1/2, 1], with

(5.39) �j(λ) := 2

( √
2π exp(α2

j/η∗)

π2−2η∗(1− η∗)η∗

)λ

ζ
(
λ+ 1

2

)
, and η∗ :=

2λ− 1

4λ
,

where ϕtot(N) := |{1 ≤ z ≤ N − 1 : gcd(z,N) = 1}| denotes the Euler totient
function, and ζ(x) :=

∑∞
k=1 k

−x denotes the Riemann zeta function. Note that
ϕtot(N) = N − 1 for N prime and it has been verified that 1/ϕtot(N) < 9/N for
all N ≤ 1030. Hence, from a practical point of view we can use

(5.40) ϕtot(N) � N.

The best rate of convergence clearly comes from choosing λ close to 1/2, but the
advantage is offset by the fact that ζ

(
λ+ 1

2 ) → ∞ as λ → 1
2+

.

To verify Assumption M2 in Theorem 1, it remains to bound ‖F� −F�−1‖Ws�
in

(5.38). Due to the triangle inequality,

‖F� − F�−1‖Ws�
≤ ‖G(uh�,s� − us�)‖Ws�

+ ‖G(us� − uh�−1,s�−1
)‖Ws�

,

it follows from the next theorem and the subsequent corollary that M2 holds with
β = 4, in the case s� = s�−1. The remainder of the paper is then devoted to giving a
choice of weights γu that guarantees that the implied constant in M2 is independent
of s�.
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Theorem 7. Let s ∈ N, h > 0 and a∗ = 0, and let ν ∈ F be a general multi-index.
Assume (5.11) and (5.13). Then, for every f ∈ L2(D) and for every G ∈ L2(D)∗

with representer g ∈ L2(D), we have for all y ∈ Ub,

|∂νG(u(·,y)− uh(·,y))| � h2 ‖f‖L2(D) ‖g‖L2(D)H(y) b
ν
2|ν|(|ν|+ 5)!,

with an implied constant that is independent of h, f and g, as well as of y ∈ Ub,
and with

(5.41) H(y) := T 2
1 (y)T

2
2 (y) < ∞,

where T1(y) and T2(y) are as defined in (5.17) and (5.19), respectively.

Proof. Let y ∈ Ub. We define vG(·,y) ∈ V and vGh (·,y) ∈ Vh via the adjoint
problems

A (y;w, vG(·,y)) = G(w) for all w ∈ V,(5.42)

A (y;wh, v
G
h (·,y)) = G(wh) for all wh ∈ Vh.(5.43)

Due to Galerkin orthogonality for the original problem, i.e.,

(5.44) A (y;u(·,y)− uh(·,y), zh) = 0 for all zh ∈ Vh,

on choosing the test function w = u(·,y)− uh(·,y) in (5.42), we obtain

G(u(·,y)− uh(·,y)) = A (y;u(·,y)− uh(·,y), vG(·,y)− vGh (·,y)).
From the Leibniz rule we have

∂νG(u− uh) =

∫
D

∂ν
(
a∇(u− uh) · ∇(vG − vGh )

)
d�x

=

∫
D

∑
m≤ν

(
ν

m

)
(∂ν−ma) ∂m

(
∇(u− uh) · ∇(vG − vGh )

)
d�x

=

∫
D

∑
m≤ν

(
ν

m

)
(∂ν−ma)

∑
k≤m

(
m

k

)
∇∂k(u− uh) · ∇∂m−k(vG − vGh ) d�x

=

∫
D

∑
m≤ν

(
ν

m

)
∂ν−ma

a

∑
k≤m

(
m

k

)(
a1/2∇∂k(u− uh)

)
·
(
a1/2∇∂m−k(vG − vGh )

)
d�x.

Using the Cauchy-Schwarz inequality and (5.28), we obtain

|∂νG(u− uh)| ≤
∑
m≤ν

(
ν

m

)∥∥∥∥∂ν−ma

a

∥∥∥∥
L∞(D)

∑
k≤m

(
m

k

)(∫
D

a |∇∂k(u− uh)|2 d�x
)1/2

×
(∫

D

a |∇∂m−k(vG − vGh )|2 d�x
)1/2

≤
∑
m≤ν

(
ν

m

)
bν−m

∑
k≤m

(
m

k

)
‖a1/2∇∂k(u− uh)‖L2(D)(5.45)

× ‖a1/2∇∂m−k(vG − vGh )‖L2(D).

To continue, we need to obtain an estimate for ‖a1/2∇∂k(u − uh)‖L2(D). Let
I : V → V denote the identity operator and let Ph = Ph(y) : V → Vh denote the
parametric FE projection onto Vh which is defined, for arbitrary w ∈ V , by

(5.46) A (y;Ph(y)w − w, zh) = 0 for all zh ∈ Vh.
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In particular, we have uh = Phu ∈ Vh and

(5.47) P2
h(y) ≡ Ph(y) on Vh.

Moreover, since ∂kuh ∈ Vh for every k ∈ F, it follows from (5.47) that

(5.48) (I − Ph(y))(∂
kuh(y)) ≡ 0.

Thus

‖a1/2∇∂k(u− uh)‖L2(D)

= ‖a1/2∇Ph∂
k(u− uh) + a1/2∇(I − Ph)∂

k(u− uh)‖L2(D)

≤ ‖a1/2∇Ph∂
k(u− uh)‖L2(D) + ‖a1/2∇(I − Ph)∂

ku‖L2(D).

(5.49)

Now, applying ∂k to (5.44) and separating out the � = k term, we get for all
zh ∈ Vh,∫

D

a∇∂k(u− uh) · ∇zh d�x = −
∑
�≤k
�
=k

(
k

�

)∫
D

(∂k−�a)∇∂�(u− uh) · ∇zh d�x.(5.50)

Choosing zh = Ph∂
k(u − uh) and using the definition (5.46) of Ph, the left-hand

side of (5.50) is equal to
∫
D
a |∇Ph∂

k(u − uh)|2 d�x. Dividing and multiplying the
right-hand side of (5.50) by a, and using the Cauchy-Schwarz inequality, then leads
to the bound

∫
D

a |∇Ph∂
k(u− uh)|2 d�x

≤
∑
�≤k
��=k

(
k

�

)∥∥∥∥∂k−�a

a

∥∥∥∥
L∞(D)

(∫
D

a |∇∂�(u−uh)|2 d�x
) 1

2
(∫

D

a |∇Ph∂
k(u−uh)|2 d�x

) 1
2

.

Canceling one common factor from both sides and using (5.28), we arrive at

‖a1/2∇Ph∂
k(u− uh)‖L2(D) ≤

∑
�≤k
�
=k

(
k

�

)
bk−� ‖a1/2∇∂�(u− uh)‖L2(D).(5.51)

Substituting (5.51) into (5.49), we then obtain

‖a1/2∇∂k(u− uh)‖L2(D)

≤
∑
�≤k
�
=k

(
k

�

)
bk−� ‖a1/2∇∂�(u− uh)‖L2(D)︸ ︷︷ ︸

A�

+ ‖a1/2∇(I − Ph)∂
ku‖L2(D)︸ ︷︷ ︸

Bk

.
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Note that we have A0 = B0. Now applying Lemma 5 with α = 0.5, Proposition 4(c)
and Theorem 6, we conclude that

‖a1/2∇∂k(u− uh)‖L2(D) ≤
∑
�≤k

(
k

�

)
Λ|�| b

� ‖a1/2∇(I − Ph)∂
k−�u‖L2(D).

� hT2(y)
∑
�≤k

(
k

�

)
Λ|�| b

� ‖Δ(∂k−�u)‖L2(D)

� h ‖f‖L2(D)T1(y)T2(y)
∑
�≤k

(
k

�

)
2|�||�|! b� bk−�

2|k−�| (|k − �|+ 1)!

= h ‖f‖L2(D)T1(y)T2(y) b
k
2|k|

(|k|+ 2)!

2
,(5.52)

where T1(y) and T2(y) are defined in (5.17) and (5.19), respectively, and where in
the last step we used the identity∑

�≤k

(
k

�

)
|�|! (|k − �|+ 1)! =

(|k|+ 2)!

2
,

which can be derived in the same way as (5.33).
Since the bilinear form A (y; ·, ·) is symmetric and since the representer g for

the linear functional G(·) is in L2(D), all the results in Section 5.1 hold verbatim
also for the adjoint problem (5.42) and for its FE discretisation (5.43). Hence, as
in (5.52), we obtain

‖a1/2∇∂m−k(vG − vGh )‖L2(D) � h ‖g‖L2(D)T1(y)T2(y) b
m−k

2|m−k| (|m− k|+ 2)!

2
.

(5.53)

Substituting (5.52) and (5.53) into (5.45) yields

|∂νG(u− uh)| � h2 ‖f‖L2(D) ‖g‖L2(D) T
2
1 (y)T

2
2 (y)

×
∑
m≤ν

(
ν

m

)
bν−m

∑
k≤m

(
m

k

)
b
k
2|k|

(|k|+ 2)!

2
b
m−k

2|m−k| (|m−k|+ 2)!

2
.

Using (5.25) we can obtain a similar identity to (5.33),∑
k≤m

(
m

k

)
(|k|+ 2)!

2

(|m− k|+ 2)!

2
=

(|m|+ 5)!

120
.

Using again (5.25), with n = |ν| we have∑
m≤ν

(
ν

m

)
2|m| (|m|+ 5)!

120

=

n∑
i=0

(
n

i

)
2i

(i+ 5)!

120
= n!

n∑
i=0

(i+ 1)(i+ 2)(i+ 3)(i+ 4)(i+ 5)2i

120(n− i)!
≤ (n+ 5)!

120
2ne.

These, together with bj ≤ bj for all j ≥ 1, yield the required bound in the theorem.
�

Now, to estimate the Ws-norm of G(u − uh), we need to bound its mixed first
partial derivatives with respect to y = (y1, . . . , ys, 0, 0, . . .). The result in Theorem 7
was more general. In the following, we will only consider multi-indices ν where each



2856 F. Y. KUO, R. SCHEICHL, CH. SCHWAB, I. H. SLOAN, AND E. ULLMANN

νj ≤ 1. As in the definition of the norm on Ws, we will use subsets u ⊆ {1 : s} of
active indices instead of multi-indices.

Corollary 8. Let â0 := max�x∈D a0(�x) and ǎ0 := min�x∈D a0(�x). For the weight

functions ψj defined by (5.37) with parameters αj > 9bj, we have

‖G(us − uh,s)‖2Ws
� K2 h4

∑
u⊆{1:s}

[(|u|+ 5)!]2

γu

∏
j∈u

b̃2j ,

with b̃j :=
bj

exp(81b
2

j/2)Φ(9bj)
√
αj − 9bj

and

K := ‖f‖L2(D) ‖g‖L2(D)

(
1 +

‖∇a0‖L∞(D)

ǎ0

)2
â30
ǎ40

exp

(
81

2

∑
j≥1

b
2

j +
18√
2π

∑
j≥1

bj

)
.

Proof. We begin by estimating H(y) defined in (5.41). It follows from (5.2) with
a∗ = 0 that

∇a(�x,y) = a(�x,y)

(
∇a0(�x)

a0(�x)
+
∑
j≥1

√
μj ∇ξj(�x) yj

)
,

leading to

‖∇a(·,y)‖L∞(D) ≤ â(y)

(‖∇a0‖L∞(D)

ǎ0
+
∑
j≥1

bj |yj |
)
.

Since 1 + x ≤ exp(x) for x ≥ 0, we have

H(y) ≤
(
1 +

‖∇a0‖L∞(D)

ǎ0
+
∑
j≥1

bj |yj |
)2

â(y)3

ǎ(y)4

≤
(
1 +

‖∇a0‖L∞(D)

ǎ0

)2

exp

(
2
∑
j≥1

bj |yj |
)
â30
ǎ40

exp

(
7
∑
j≥1

bj |yj |
)

≤
(
1 +

‖∇a0‖L∞(D)

ǎ0

)2
â30
ǎ40

∏
j≥1

exp(9bj |yj |).

Therefore, with K∗ := ‖f‖L2(D) ‖g‖L2(D) (1 +
‖∇a0‖L∞(D)

ǎ0
)2â30/ǎ

4
0, it follows from

Theorem 7 and the definition of the Ws-norm in (5.36) that

‖G(us − uh,s)‖2Ws
� h4 K2

∗
∑

u⊆{1:s}

[
[(|u|+ 5)!]2

∏
j∈u

(4b̄2j)

γu

(5.54)

×
∫
R|u|

⎛
⎝∫

Rs−|u|

∏
j∈{1:s}\u

exp(9bj |yj |)φ(yj) dy{1:s}\u

⎞
⎠

2∏
j∈u

exp(18bj |yj |)ψ2
j (yj) dyu

]
,

leading to the univariate integrals

1 ≤
∫ ∞

−∞
exp(9bj |y|)φ(y) dy = 2 exp

(
81

2
b
2

j

)
Φ
(
9bj
)
≤ exp

(
81

2
b
2

j +
18√
2π

bj

)
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and

(5.55)

∫ ∞

−∞
exp(18 bj |y|)ψ2

j (y) dy =
1

αj − 9bj
.

These, together with (5.54), then yield the estimate on the Ws-norm of
G(u− uh). �

Theorem 9. For every f ∈ L2(D) and for every G ∈ L2(D)∗ with representer
g ∈ L2(D), consider the multilevel QMC algorithm defined by (3.1) with s� = s and
R� = R for all � = 0, . . . , L. Suppose that the sequence bj defined by (5.12) satisfies∑

j≥1

b
q

j < ∞ for some 0 < q < 1.

For each � = 1, . . . , L, let the generating vector for the randomly shifted lattice
rule Q� be constructed using a component-by-component algorithm [28], with weight
parameters

γu :=

(
(|u|+ 5)!

120

∏
j∈u

b̃j√
�j(λ)

)2/(1+λ)

and αj :=
1

2

(
9bj +

√
81b

2

j + 1− 1

2λ

)

in the weight functions (5.37), where b̃j is as defined in Corollary 8 and

(5.56) λ :=

{
1

2−2δ for some δ ∈ (0, 1/2) when q ∈ (0, 2/3),
q

2−q when q ∈ (2/3, 1).

Let the generating vector for the randomly shifted lattice rule Q0 be constructed as
in [14] with λ as defined in (5.56). Then

(5.57) VΔ[Q�(F�−F�−1)] � Dγ(λ)R
−1 [ϕtot(N�)]

−1/λ h4
� , for all � = 0, . . . , L,

where Dγ(λ) < ∞ is independent of s and �.

Proof. First, let � ≥ 1. Using (5.38) and the triangle inequality, we obtain

VΔ[Q�(F� − F�−1)] ≤ 2R−1

( ∑
∅
=u⊆{1:s}

γλ
u

∏
j∈u

�j(λ)

)1/λ

[ϕtot(N�)]
−1/λ

(
‖G(us − uh�,s)‖2Ws

+ ‖G(us − uh�−1,s)‖2Ws

)
.

The bound in (5.57) now follows from Corollary 8 with

Dγ(λ) :=

( ∑
|u|<∞

γλ
u

∏
j∈u

�j(λ)

)1/λ(
[(|u|+ 5)!]2

γu

∏
j∈u

b̃2j

)
.

The fact that Dγ(λ) is finite can be verified following the same arguments as in the
proofs of [14, Thm. 20 and Cor. 21].

Since by definition bj ≤ bj and thus b ∈ �q(N) implies b ∈ �q(N), the result for � =
0 follows from [14, Thm. 20] with Dγ(λ) = Cγ(λ), defined in [14, Eqn. (4.19)]. �

Together with (5.40), Theorem 9 shows that Assumption M2 of Theorem 1 holds
with β = 4 and λ defined in (5.56).
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Remark 10. As an example, let us consider the case where the KL expansion in (1.2)
arises from a Gaussian field with Matérn covariance with smoothness parameter ν,
as defined in Section 4. We have from [14, Corollary 5] that μj � j−(1+2ν/d).

Moreover, we see from the proof of [14, Prop. 9] that ‖∇ξj‖L∞(D) � μ
−r̃/r
j for all

d/2 + 1 < r̃ < r < d + 2ν, allowing us to infer that bj � μ
1/2−r̃/r
j . To ensure that

the assumption
∑

j≥1 b
q

j < ∞ in Theorem 9 holds, we need

q

(
1 +

2ν

d

)(
1

2
− d/2 + 1

d+ 2ν

)
= q

ν − 1

d
> 1.

Therefore, a sufficient condition for the asumption to hold with q < 1 is ν > d+ 1.
A sufficient condition for q < 2/3 (and thus λ = 1/(2− 2δ)) is ν > 3d/2+ 1. As we
saw in Section 4, these sufficient conditions do not seem to be necessary ones and
we observe λ ≈ 1/2 even for much smaller values of ν.

Remark 11. Corollary 8 could be compared with [14, Thm. 16]. Unfortunately,
there is a small, inconsequential error in [14, Eq. (4.17)]. The factors under the
first product in [14, Eq. (4.17)] should be squared, and as a result, the denominator
in [14, Eq. (4.11)] should also be squared. However, since this only amounts to the
omission of a factor ≥ 1 in the denominator, the estimate [14, Eq. (4.10)] is valid
as stated. We have checked numerically that the weights [14, Eq. (4.23)] with the
adjusted formula for [14, Eq. (4.11)] lead, in all numerical experiments reported
in [14], to qualitatively the same results and therefore do not affect any of the
conclusions drawn in [14].
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[37] G. W. Wasilkowski and H. Woźniakowski, Tractability of approximation and integration for
weighted tensor product problems over unbounded domains, Monte Carlo and quasi-Monte
Carlo methods, 2000 (Hong Kong), Springer, Berlin, 2002, pp. 497–522. MR1958877

School of Mathematics and Statistics, University of New South Wales, Sydney, New

South Wales 2052, Australia

E-mail address: f.kuo@unsw.edu.au

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United

Kingdom

E-mail address: R.Scheichl@bath.ac.uk

Seminar für Angewandte Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich,
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