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ACOUSTIC VIBRATION PROBLEM FOR DISSIPATIVE FLUIDS

FELIPE LEPE, SALIM MEDDAHI, DAVID MORA, AND RODOLFO RODRÍGUEZ

Abstract. In this paper we analyze a finite element method for solving a
quadratic eigenvalue problem derived from the acoustic vibration problem for
a heterogeneous dissipative fluid. The problem is shown to be equivalent to
the spectral problem for a non-compact operator and a thorough spectral char-
acterization is given. The numerical discretization of the problem is based on
Raviart-Thomas finite elements. The method is proved to be free of spurious
modes and to converge with optimal order. Finally, we report numerical tests
which allow us to assess the performance of the method.

1. Introduction

This paper deals with the numerical approximation of an acoustic dissipative
fluid system. This kind of problem has attracted much interest, since it is frequently
encountered in engineering applications (see, for instance, [5, 20, 32]). One typical
example is to achieve optimal designs that reduce noise and vibrations in fluid-
structure systems like cars, aircraft, or dams.

Although dissipation is usually neglected in standard acoustics, modeling this
phenomenon is essential to study the effect of noise reduction techniques. Indeed,
in most real situations, damping mechanisms that transform mechanical energy into
heat do exist. Sometimes these mechanisms are based on surface damping arising
from viscoelastic materials placed on the boundary of the propagation domain. In
these cases, the dissipative effects are typically included in the model by means of
a surface impedance in the boundary conditions (see, for instance, [4, 6, 7]). The
present paper addresses damping when it arises in the propagation media itself due
to friction and heat conduction. A general approach to this topic can be found in
the books by Landau and Lifshitz [22], Morse [31], and Pierce [37], all of which
include extensive bibliographic references on the subject.

This paper focuses on computing the (complex) vibration frequencies and modes
of an acoustic dissipative fluid system within a rigid cavity. One motivation for
considering this problem is that it constitutes a stepping stone towards the more
challenging goal of devising numerical approximations for coupled systems involving
fluid-structure interaction between viscous fluids and solid structures. The natural
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model for the fluid system should be based on the Stokes equations for compressible
fluids. However, since in real applications the viscosity is typically very small, the
resulting problem turns out to be a singular perturbation of the problem for an
inviscid fluid. This fact leads to a kind of dilemma, since appropriate finite elements
for the Stokes equations introduce spurious modes in the limit case of a vanishing
viscosity, whereas the finite elements that avoid such spectral pollution fail when
applied to the Stokes equation.

To circumvent this drawback, we resort to an alternative model based on a curl-
free displacement formulation (see [8] for the derivation of a similar model in the
time domain from basic mechanical laws). Let us remark that in principle the fluid
displacement does not need to be curl-free. However, since the viscosity term due
to vorticity is typically very small, except perhaps near the walls of the enclosure,
it may be neglected in the interior of the enclosure and eventually modeled as a
wall impedance on its boundary (see [32] for a similar model).

This curl-free displacement formulation for a viscous fluid leads to a quadratic
eigenvalue problem (QEP), as happens in [4]. However, the resulting problem
involves additional challenges related to the fact that the essential spectrum does
not reduce to a single point as in [4]. In fact, in this case, we can only prove that the
essential spectrum is well-separated from the physically relevant eigenvalues when
the viscosity is sufficiently small (as happens in practice). On the other hand, the
associated solution operator is not regularizing. Because of this, we need to split
it into two terms for the numerical analysis. One of them is dealt with from the
techniques in [4], but the spectral approximation analysis for the other is new.

As is shown below (cf. Remark 2.1), the vibration frequencies and modes of a
viscous homogeneous irrotational fluid within a rigid cavity can be obtained without
actually solving a QEP. In fact, these frequencies can be algebraically computed
from those of the analogous inviscid fluid, whose approximation is nowadays a
well-known subject (see, for instance, [5]). However, this is not the case for a
heterogeneous fluid and this is the reason why we choose this as our model problem.
In particular, we consider the QEP arising from the acoustic vibration problem for a
dissipative fluid system that consists of two homogeneous viscous immiscible fluids
contained in a rigid cavity.

QEP has many applications in the study of vibration for solid systems, acoustic
fluids, electrical circuits, etc., where the damping effects are involved. A state of
the art work on the QEP up to the beginning of this century can be found in [39].
However, there are not many works with a rigorous mathematical framework in
the context of the numerical approximation of the eigenvalue problem of a partial
differential operator involving damping. The first article proving this type of results
is [4], where the authors have considered a displacement formulation for a fluid in
a rigid cavity with absorbing walls. The theory of non-compact operators of [16] is
used to obtain error estimates with minor modifications due to non-conformity.

On the other hand, alternative formulations for the absorbing wall problem have
been studied in the engineering literature. For instance, a formulation for the QEP
in terms of the fluid pressure has been proposed in [23]. This type of formulation
leads to a rational eigenvalue problem, for which different algorithms to compute
the vibration frequencies have been introduced. Alternatively, two formulations,
one based on the fluid pressure and the other on the fluid displacement, have been
considered in [14], where an improved Arnoldi algorithm has been proposed to solve
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the discrete problem. On the other hand, an application of the damping effects in
electromechanical-thermoelastic systems is presented in [1]. Moreover, an a pos-
teriori estimator for a QEP contextualized in the photonic crystal applications is
proposed in [17]. Nevertheless, all the previously mentioned studies present differ-
ent numerical technologies to solve the QEP, but without a rigorous mathematical
analysis. Such a rigorous analysis is present instead in the recent paper [27], where
an efficient multiscale technique based on localized orthogonal decompositions to
solve discrete generic damped vibration problems has been proposed (see also [26]).

In the present paper, we consider a displacement-based variational formulation
of the transmission eigenproblem resulting from our physical model. This approach
leads to a QEP, which is transformed into an equivalent double-size linear eigenvalue
problem that fits within the functional framework for non-self-adjoint and non-
compact bounded operators. At the continuous level, we follow [21] to obtain
an appropriate spectral characterization. Next, we propose an H(div)-conforming
mixed finite element approximation of the problem and adapt the abstract spectral
approximation theory for non-compact operators developed in [15,16] to prove that
the spectrum is correctly approximated and to obtain error estimates.

The discrete analysis relies partly on the techniques used in the Raviart-Thomas
mixed approximation of the grad-div eigenvalue problem. This spectral problem
emerged in the study of coupled fluid-solid systems in [3] (see also [28] for a similar
setting in elasticity). The grad-div spectral problem is posed in H(div) and it is
closely related to the Maxwell eigenvalue problem, which is formulated in terms of
the curl-curl operator in H(curl) (see [10,13,30]). Although the two spectral prob-
lems have been initially studied in isolation from each other, a common framework
now becomes clear thanks to the language of differential forms and the approach
based on the finite element exterior calculus provided by [2] (see also [11, Part 4]).

With X representing either H(div) or H(curl), we let K be the kernel of the div
or the curl operator in the corresponding space. If we denote by Xh a conforming
mixed finite element approximation ofX and consider Kh := K∩Xh, then the main
tool in the proof of the correct spectral approximation relies on the construction of
a projector P onto K⊥ such that

(1.1) lim
h→0

‖I − P‖L(K⊥
h ,X) = 0.

Here K⊥ stands for L2-orthogonal complement of K in X and K⊥
h represents the

L2-orthogonal complement of Kh in Xh.
To our knowledge, this tool was first introduced in the H(div)-setting in [3] and

more recently in [28, Lemma 4.2]. The same tool appeared independently in the
context of the Maxwell eigenvalue problem; see for example [18, Lemma 4.5] where
the projector P is named the Hodge mapping. A related abstract approach is
considered in [12] where the so-called GAP property is introduced. It is shown
in [12] that the GAP property is equivalent to (1.1) when Kh ⊂ K (as in the
cases considered here). It is also shown that the GAP property implies the discrete
compactness property which was used in [13] as another tool to study edge element
approximation of the Maxwell eigenproblem. See also the discussion given in [11,
Section 19] regarding this topic in the language of differential forms.

The negative impact that material parameters have on the regularity of the
solution of the boundary value problem complicates the analysis in this common
framework (see [18, Remark 13]). Here, we follow the lines of the methodology
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presented originally in [3] and use the information about interface singularities of
solutions of the Neumann boundary value problem for div(κgrad), with κ piecewise
constant, to obtain (1.1) for the eigenproblem considered in this paper.

The paper is organized as follows: in Section 2, we introduce the spectral problem
and the corresponding variational formulation, which leads to a quadratic eigen-
value problem. We introduce an auxiliary unknown to transform the quadratic
eigenvalue problem into a linear one. Moreover, we introduce the corresponding
solution operator for the spectral problem. In Section 3, we provide a thorough
spectral characterization of the solution operator, based on the theory developed
in [21]. We also consider the limit problem (i.e., the case when the viscosity van-
ishes) and the relation between the solutions of the dissipative and non-dissipative
problems. In Section 4, we introduce a finite element discretization using Raviart-
Thomas elements for both fluids and imposing the continuity of the corresponding
normal components on the interface. We analyze the discrete spectral problem
analogously as in the continuous case and introduce the corresponding discrete so-
lution operator. We use the abstract theory from [15] to prove the convergence.
We also prove error estimates for our problem by adapting the arguments from [4].
Finally, in Section 5, we report some numerical tests which allow us to asses the
performance of the proposed method.

Throughout the paper, Ω is a generic Lipschitz bounded domain of Rd (d = 2, 3),
with outer unit normal vector n. We denote by D(Ω) the space of infinitely smooth
functions compactly supported in Ω. For r ≥ 0, ‖·‖r,Ω stands indistinctly for

the norm of the Hilbertian Sobolev spaces Hr(Ω) or Hr(Ω)d with the convention
H0(Ω) := L2(Ω). We also define the Hilbert space H(div; Ω) := {v ∈ L2(Ω)d :

div v ∈ L2(Ω)}, whose norm is given by ‖v‖2div,Ω := ‖v‖20,Ω + ‖div v‖20,Ω, and its

subspace H0(div; Ω) := {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}.
Finally, C represents a generic constant independent of the discretization pa-

rameters, which may take different values at different places.

2. The model problem

We take as our model problem the case of two immiscible fluids within a rigid
cavity. Let Ωi with i = 1, 2 be the polygonal (in the 2D case) or polyhedral (in
the 3D case) Lipschitz domains occupied by each of the fluids. Let ρi be the
corresponding densities, νi the fluid viscosities, and ci the acoustic speeds, which
we consider all constant, ρi and ci strictly positive, and νi non-negative. We denote
by ni the outward unit normal vectors corresponding to each subdomain. We define
Ω := (Ω1 ∪ Ω2)

◦, Γ := ∂Ω1 ∩ ∂Ω2, and Γi := ∂Ωi ∩ ∂Ω, i = 1, 2. We assume that
each domain Ωi as well as Ω are simply connected (see Figure 1).

We consider small displacements of a compressible viscous fluid at rest neglecting
convective terms. The equation of motion derived from the Navier-Stokes equation
reads

ρiÜ i = 2νiΔU̇ i −∇Pi in Ωi,

where U i denotes the fluid displacement and Pi the pressure fluctuation in the
domain Ωi, i = 1, 2. The dot represents derivation with respect to time. (See [8]
and [37] for a more detailed derivation.) Moreover, since the fluid is compressible,
we consider the isentropic relation

(2.1) Pi + ρic
2
i divU i = 0 in Ωi.
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Figure 1. 2D sketch of the polygonal domains for the fluids.

Since we are considering irrotational fluids, we assume that curlU i = 0. Hence,
considering the identity ΔU̇ i = ∇(div U̇ i) − curl(curl U̇ i), we conclude that

ΔU̇ i = ∇(div U̇ i). Then, the equations of our model problem are the following:

ρ1Ü1 − 2ν1∇(div U̇1) +∇P1 = 0 in Ω1 × (0, T ),(2.2)

P1 + ρ1c
2
1 divU1 = 0 in Ω1 × [0, T ],(2.3)

ρ2Ü2 − 2ν2∇(div U̇2) +∇P2 = 0 in Ω2 × (0, T ),(2.4)

P2 + ρ2c
2
2 divU2 = 0 in Ω2 × [0, T ],(2.5)

U1 · n1 +U2 · n2 = 0 on Γ× [0, T ],(2.6)

(2ν1 div U̇1 + P1)− (2ν2 div U̇2 + P2) = 0 on Γ× (0, T ),(2.7)

U1 · n1 = 0 on Γ1 × (0, T ),(2.8)

U2 · n2 = 0 on Γ2 × (0, T ).(2.9)

Let us remark that a similar argument leads to exactly the same equations in 2D.
Multiplying equations (2.2) and (2.4) by a test function v ∈ H0(div; Ω), integrat-

ing by parts, and using the boundary conditions and the transmission conditions
on Γ, we obtain

(2.10)

∫
Ω

ρÜ · v + 2

∫
Ω

ν div U̇ div v −
∫
Ω

P div v = 0 ∀v ∈ H0(div,Ω),

where

U :=

{
U1 in Ω1,
U2 in Ω2,

P :=

{
P1 in Ω1,
P2 in Ω2,

ν :=

{
ν1 in Ω1,
ν2 in Ω2,

ρ :=

{
ρ1 in Ω1,
ρ2 in Ω2,

and c :=

{
c1 in Ω1,
c2 in Ω2.

Using (2.3) and (2.5) we eliminate P in (2.10) and write

(2.11)

∫
Ω

ρÜ · v+2

∫
Ω

ν div U̇ div v+

∫
Ω

ρc2 divU div v = 0 ∀v ∈ H0(div,Ω).
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The vibration modes of this problem are complex solutions of the form U(x, t) =
eλtu(x) with λ ∈ C. Looking for this kind of solutions leads to the following
quadratic eigenvalue problem.

Problem 1. Find λ ∈ C and 0 
= u ∈ H0(div; Ω) such that

λ2

∫
Ω

ρu · v + 2λ

∫
Ω

ν divu div v +

∫
Ω

ρc2 divudiv v = 0 ∀v ∈ H0(div; Ω).

Let us remark that in the absence of viscosity (i.e., ν = 0) we are left with the free
vibration problem of two inviscid fluids in contact (whose numerical approximation
has not been analyzed either). The eigenvalues λ2 of such a problem are negative
real numbers (as will be proved below), so that λ are purely imaginary, namely,
λ = ±iω with ω being the so-called natural vibration frequencies which correspond
to periodic in time solutions U(x, t) = e−iωtu(x) of the time domain problem. This
is the reason why, for ν = 0, Problem 1 is usually written as follows: Find ω > 0
and 0 
= u ∈ H0(div; Ω) such that

(2.12)

∫
Ω

ρc2 divu div v = ω2

∫
Ω

ρu · v ∀v ∈ H0(div; Ω).

In the applications, ν is typically very small. As we will show below, in such
a case there are eigenvalues λ of Problem 1 that lie close to ±iω with ω being
a natural vibration frequency (i.e., a solution of (2.12)). Actually, we will prove
below that those λ converge to ±iω as ‖ν‖∞,Ω goes to zero. On solving Problem 1,
the aim is to compute the eigenvalues λ close to the smallest natural vibration
frequencies ω > 0, which are the most relevant in the applications.

Remark 2.1. In the case of a homogeneous viscous fluid, ρ, c, and ν are constant
in the whole Ω. Then, Problem 1 can be written as

λ2

∫
Ω

ρu · v +
2λν + ρc2

ρc2

∫
Ω

ρc2 divu div v = 0 ∀v ∈ H0(div,Ω).

Hence, in such a case, (λ,u) is an eigenpair of Problem 1 if and only if − λ2ρc2

2λν+ρc2 =

ω2 with (ω,u) a solution to problem (2.12). Therefore, for a homogeneous viscous
fluid, λ can be algebraically computed from the solution of (2.12) as follows:

λ =
−νω2 ±

√
ν2ω4 − ρ2c4ω2

ρc2
.

We denote H := L2(Ω)d endowed with the weighted inner product

(v,w)H :=

∫
Ω

ρv ·w,

and we denote V := H0(div; Ω) with the inner product

(v,w)V :=

∫
Ω

ρv ·w +

∫
Ω

ρc2 div v divw.

Notice that the inner products in H and V induce norms ‖ ·‖H and ‖ ·‖V on each of
these spaces equivalent to the classical L2(Ω)d and H(div; Ω) norms, respectively.
Therefore, when it might be convenient, we will use these classical norms.

Clearly λ = 0 is an eigenvalue of Problem 1 with associated eigenspace

K = H0(div
0,Ω) := {v ∈ H0(div; Ω) : div v = 0 in Ω} .
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We define
G := K⊥V = {v ∈ V : (v,w)V = 0 ∀w ∈ K}.

Since K is a closed subspace of V , clearly V = G ⊕K. Notice that G and K are also
orthogonal in the H inner product. Hence,

G = {v ∈ V : (v,w)H = 0 ∀w ∈ K}.
The following result brings a characterization of the space G.

Lemma 2.1. There holds

G =
1

ρ
∇(H1(Ω)) ∩ V .

Proof. We will prove this result by checking the double inclusion. Let v ∈ G. Then,
for all ψ ∈ D(Ω)d, since curlψ ∈ K, we have

0 =

∫
Ω

ρ curlψ · v =

∫
Ω

ψ · curl (ρv) .

Thus, curl (ρv) = 0 in Ω. Since Ω is simply connected, this implies that there
exists ϕ ∈ H1(Ω) such that ρv = ∇ϕ. Hence, v ∈ 1

ρ∇(H1(Ω)) ∩ V . Conversely, let

v ∈ 1
ρ∇(H1(Ω)) ∩ V and w ∈ K. Let ϕ ∈ H1(Ω) be such that v = 1

ρ∇ϕ. Then,

(v,w)H =

∫
Ω

ρ

(
1

ρ
∇ϕ

)
·w = −

∫
Ω

ϕ divw +

∫
∂Ω

ϕ(w · n) = 0.

Therefore, v ∈ G. The proof is complete. �

In what follows we prove additional regularity for the functions in G on each
subdomain. From now on, s will denote a positive number such that the following
lemma holds true.

Lemma 2.2. There exists s > 0 (with s depending on ρ, Ω1, and Ω2) such that,
for all v ∈ G, v ∈ Hs(Ω1 ∪ Ω2)

d and

(2.13) ‖v‖s,Ω1
+ ‖v‖s,Ω2

≤ C‖ div v‖0,Ω,
where C is a positive constant independent of v.

Proof. According to Lemma 2.1, there exists ϕ ∈ H1(Ω) such that v = 1
ρ∇ϕ. Con-

sequently, ϕ ∈ H1(Ω)/C is the unique solution of the following well-posed Neumann
problem:

div

(
1

ρ
∇ϕ

)
= div v in Ω,

1

ρ

∂ϕ

∂n
= 0 on ∂Ω.

Hence, in the 3D case, the result follows from [34, Lemma 2.20], while in the 2D
case, it follows by applying [34, Lemma 4.3]. (See [36] for more details.) �

Remark 2.2. The above lemma establishes the existence of a regularity exponent
s > 0 that will play a role in the error estimates of the numerical method proposed
in this paper. In spite of the fact that we refer to [34] in the proof of this lemma,
the value of s that arises from this reference is far from being optimal, since it is
valid for global regularity in Hs(Ω)d and for any arbitrary geometrical setting of the
subdomains Ω1 and Ω2. In most of the applications, the subdomains at which ρ is
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constant are similar to those shown in Figure 1. In such a case, a detailed analysis
of how this exponent depends on the geometry of the domain and on the coefficient
ρ can be found in [25] for the 2D case and in [24] for 3D problems (see also [9,33]).
Let us remark that, although the analysis of these references is for problems with
Dirichlet boundary conditions, similar results hold true for Neumann boundary
conditions as in our case (see [25, Remark III.5.2]). In particular, for instance,
Lemma 2.2 holds true for s = 1 in the example reported as Test 1 in Section 5 (see
Figure 2).

From the physical point of view, the time domain problem (2.11) is dissipative
in the sense that its solution should decay as t increases. The latter happens if and
only if the so-called decay rate, Re(λ), is negative. The following result shows that
this is the case in our formulation.

Lemma 2.3. Let (λ,u) ∈ C × V be a solution of Problem 1. If λ 
= 0, then
Re(λ) < 0.

Proof. The proof is similar to that of Lemma 2.1 of [4]. �
Remark 2.3. Any eigenpair (λ,u) of Problem 1 satisfies

λ2

∫
Ω

ρu · v +

∫
Ω

(2λν + ρc2) divu div v = 0 ∀v ∈ V .

Since the coefficients are constant in each subdomain, if 2λν + ρc2 
= 0 in Ωi, by
testing with v ∈ D(Ωi)

d we obtain that divu|Ωi
∈ H1(Ωi), i = 1, 2. On the other

hand, if 2λν + ρc2 = 0 in Ωi (i = 1 or 2), then, for λ 
= 0, by testing again with
v ∈ D(Ωi)

d, we obtain that u = 0 in Ωi. Thus, in any case, divu|Ωi
∈ H1(Ωi),

i = 1, 2.

For the theoretical analysis it is convenient to transform Problem 1 into a linear
eigenvalue problem. With this aim we introduce the new variable û := λu, as usual

in quadratic problems, and the space Ṽ := V ×H endowed with the corresponding
product norm, which carry us to the following.

Problem 2. Find λ ∈ C and 0 
= (u, û) ∈ Ṽ such that∫
Ω

ρc2 divu div v = λ

(
−2

∫
Ω

ν divu div v −
∫
Ω

ρû · v
)

∀v ∈ V ,(2.14) ∫
Ω

ρû · v̂ = λ

∫
Ω

ρu · v̂ ∀v̂ ∈ H.(2.15)

We observe that λ = 0 is an eigenvalue of Problem 2 and its associated eigenspace

is K̃ := K × {0}. Let G̃ be the orthogonal complement of K̃ in V ×H. Notice that

G̃ = G ×H.
We introduce the sesquilinear continuous form a : V × V → C defined by

a(u,v) :=

∫
Ω

ρc2 divu div v,

and the sesquilinear continuous forms ã, b̃ : Ṽ → Ṽ defined as follows:

ã((u, û), (v, v̂)) :=

∫
Ω

ρc2 divu div v +

∫
Ω

ρû · v̂,

b̃((u, û), (v, v̂)) := −2

∫
Ω

ν divu div v −
∫
Ω

ρû · v +

∫
Ω

ρu · v̂.
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In what follows we prove that a(·, ·) and ã(·, ·) are elliptic in G and G̃, respectively.

Lemma 2.4. The sesquilinear form a : G × G → C is G-elliptic and, consequently,

ã : G̃ × G̃ → C is G̃-elliptic.

Proof. The proof is a direct consequence of Lemma 2.2. �

Let T : Ṽ → Ṽ be the bounded linear operator defined by T (f , g) := (u, û) ∈ G̃,
where (u, û) is the unique solution of the following problem:

ã((u, û), (v, v̂)) = b̃((f , g), (v, v̂)) ∀(v, v̂) ∈ G̃.

It is easy to check that

(2.16) û = f in Ω,

and

(2.17)

∫
Ω

ρc2 divudiv v = −2

∫
Ω

ν div f div v −
∫
Ω

ρg · v ∀v ∈ G.

As a consequence of the above equalities, we have that μ = 0 is an eigenvalue
of T with associated eigenspace {0} × G⊥H , which is non-trivial since G⊥H ⊃ K.
The following lemma shows that the non-zero eigenvalues of T are exactly the
reciprocals of the non-zero eigenvalues of Problem 2 with the same corresponding
eigenfunctions.

Lemma 2.5. There holds that (μ, (u, û)) is an eigenpair of T (i.e., T (u, û) =
μ(u, û)) with μ 
= 0 if and only if (λ, (u, û)) is a solution of Problem 2 with λ =
1/μ 
= 0.

Proof. The proof is similar to that of Lemma 2.3 from [4]. �

3. Spectral characterization

The goal of this section is to characterize the spectrum of the solution operator
T . Since the inclusion H0(div; Ω) ↪→ L2(Ω)d is not compact, it is easy to check
from (2.16) that T is not compact either. However, we will show that the essential
spectrum has to lie in a small region of the complex plane, well-separated from the
isolated eigenvalues which, according to Lemma 2.5, correspond to the solutions
of Problem 2. With this aim, we will resort to the theory described in [21] to
appropriately decompose T . Let T 1,T 2 : G → G be the operators given by

T 1f = u1 ∈ G : a(u1,v) = 2

∫
Ω

ν div f div v ∀v ∈ G,(3.1)

T 2g = u2 ∈ G : a(u2,v) =

∫
Ω

ρg · v ∀v ∈ G.(3.2)

It is easy to check that these operators are self-adjoint with respect to a(·, ·).
Moreover T 1 is non-negative and T 2 is positive with respect to a(·, ·) (namely,
a(T 1v,v) ≥ 0 ∀v ∈ G and a(T 2v,v) > 0 ∀v ∈ G, v 
= 0). Moreover, we have the
following result.

Lemma 3.1. The operator T 2 : G → G is compact.
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Proof. Since a(·, ·) is G-elliptic (cf. Lemma 2.4), applying Lax-Milgram’s Lemma,
we know that problem (3.2) is well-posed and has a unique solution u2 ∈ G.
Moreover, according to Lemma 2.2, we know that there exists s > 0 such that
u2 ∈ Hs(Ω1∪Ω2)

d. On the other hand, notice that (3.2) also holds for v ∈ K, since
in such a case a(u2,v) = 0 =

∫
Ω
ρg · v for g ∈ G. Hence, since V = G ⊕K, we have

that

a(u2,v) =

∫
Ω

ρg · v ∀v ∈ V .

Then, by testing this equation with v ∈ D(Ω)d ⊂ V , we have that −∇(ρc2 divu2) =
ρg in Ω, so that ρc2 divu2 ∈ H1(Ω). Therefore, since ρ and c are positive constants
in each subdomain Ω1 and Ω2, we have that divu2|Ωi

∈ H1(Ωi), i = 1, 2. Since
the inclusions {v ∈ L2(Ω) : v|Ωi

∈ H1(Ωi), i = 1, 2} ⊂ L2(Ω) and Hs(Ω1 ∪ Ω2)
d ⊂

L2(Ω)d are compact, we derive that T 2 is compact too. �

The operator T can be written in terms of the operators T 1 and T 2 given above
as follows:

T =

(
−T 1 −T 2

I 0

)
.

Moreover, by defining as in [21] the operators

S :=

(
I 0

0 T
1/2
2

)
and H :=

(
−T 1 −T

1/2
2

T
1/2
2 0

)
,

we have that ST = HS. We note that the eigenvalues of T and H and their al-
gebraic multiplicities coincide. Moreover the corresponding Jordan chains have the
same length. In fact, let {xk}rk=1 be a Jordan chain associated with the eigenvalue
μ of T . Then, using the identities above, we observe that

HSxk = STxk = S(μxk + xk−1) = μSxk + Sxk−1, k = 1, . . . , r.

This shows that {Sxk}rk=1 is a Jordan chain of H of the same length. Actually,
the whole spectra of T and H coincide as is shown in the following result, which
has been proved in Lemma 3.2 of [4].

Lemma 3.2. There holds

Sp(T ) = Sp(H).

Moreover, Spess(T ) = Spess(H), too.

The operator H can be written as the sum of a self-adjoint operator B and a
compact operator C:

H = B +C with B :=

(
−T 1 0
0 0

)
and C :=

(
0 −T

1/2
2

T
1/2
2 0

)
.

Then, applying the classical Weyl’s Theorem (see [38]), we have that Spess(H) =
Spess(B) and the rest of the spectrum Spdisc(H) := Sp(H)\ Spess(H) consists
of isolated eigenvalues with finite algebraic multiplicity. Moreover, Spess(B) =
Spess(−T 1) ∪ {0}.

Our next goal is to show that the essential spectrum of T 1 must lie in a small
region of the complex plane. Actually, we will localize the whole spectrum of T 1.
With this aim, we analyze separately for which values μ ∈ C the operator (μI−T 1)
is not necessarily one-to-one and for which values it is not necessarily onto.
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• If (μI − T 1) is not one-to-one, then there exists f ∈ G, f 
= 0, such that
T 1f = μf , namely,

μ

∫
Ω

ρc2 div f div v = 2

∫
Ω

ν div f div v ∀v ∈ G.

Then, testing with v = f and using that in each subdomain the coefficients
ρ and c are positive, we deduce that

μ =
2

∫
Ω
ν |div f |2∫

Ω
ρc2 |div f |2

(we recall that for 0 
= f ∈ G,
∫
Ω
| div f |2 > 0 because of Lemma 2.2).

Hence,

μ ∈
[
2minΩ{ν}
maxΩ{ρc2}

,
2maxΩ{ν}
minΩ{ρc2}

]
.

• On the other hand, (μI − T 1) is onto if and only if for any g ∈ G there
exists f ∈ G such that T 1f = μf − g, which from (3.1) reads∫

Ω

ρc2 div g div v =

∫
Ω

(−2ν + μρc2) div f div v ∀v ∈ G.

By writing μ = α+ βi with α, β ∈ R, the equation above reads:∫
Ω

(−2ν + αρc2 + ρc2βi) div f div v =

∫
Ω

ρc2 div g div v ∀v ∈ G.

We observe that for all β 
= 0 the problem above has a solution and hence
the operator (μI −T 1) is onto. On the other hand, if β = 0, then μ has to
be real. In such a case, the operator T 1 will still be onto when (−2ν+μρc2)
has the same sign in the whole domain Ω. This happens at least in two
cases:
(i) when μ > 2maxΩ{ν}

minΩ{ρc2} , in which case −2ν + μρc2 > 0,

(ii) when μ < 2minΩ{ν}
maxΩ{ρc2} , in which case −2ν + μρc2 < 0.

Therefore, if (μI − T 1) is not onto, then μ ∈
[

2minΩ{ν}
maxΩ{ρc2} ,

2maxΩ{ν}
minΩ{ρc2}

]
, too.

Now we are in a position to write the following spectral characterization of the
solution operator T .

Theorem 3.1. The spectrum of T consists of

Spess(T ) = Sp(−T 1) ∪ {0}

with

Sp(T 1) ⊂
[
2minΩ{ν}
maxΩ{ρc2}

,
2maxΩ{ν}
minΩ{ρc2}

]
and Spdisc(T ) := Sp(T ) \ Spess(T ), which is a set of isolated eigenvalues of finite
algebraic multiplicity.

Proof. As a consequence of the classical Weyl’s Theorem (see [38]) and Lemma 3.2,

Spess(T ) = Spess(H) = Spess(B) = Spess(−T 1) ∪ {0},

whereas the inclusion follows from the above analysis. �
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In what follows, we will show that for ν small enough some of the eigenvalues
of T are well-separated from its essential spectrum. To this end, given f ∈ G, by
testing (3.1) with v = u1 ∈ G and using the definition of a(·, ·), we have that

min
Ω

{ρc2}‖u1‖2div,Ω ≤ a(u1,u1) ≤ 2‖ν‖∞,Ω‖ div f‖0,Ω‖u1‖div,Ω.

Therefore ‖T 1‖L(G×G) → 0 as ‖ν‖∞,Ω goes to zero. Consequently, H converges
in norm to the operator

H0 :=

(
0 −T

1/2
2

T
1/2
2 0

)
as ‖ν‖∞,Ω goes to zero. Thus, from the classical spectral approximation theory (see
[19]), the isolated eigenvalues of H converge to those of H0.

Since the isolated eigenvalues of H and T coincide (cf. Lemma 3.2), in order to
localize those of T , we begin by characterizing those of H0. Let μ be an isolated
eigenvalue of H0 and (u, û) ∈ G ×G the corresponding eigenfunction. It is easy to
check that

(3.3) H0

(
u
û

)
= μ

(
u
û

)
⇐⇒ T 2u = −μ2u and T

1/2
2 u = μû.

Since T 2 is compact, self-adjoint, and positive, its spectrum consists of a se-
quence of positive eigenvalues that converge to zero and zero itself. Notice that the
spectrum of T 2 is related with the solution of the eigenvalue problem (2.12). In
fact, this problem has 0 as an eigenvalue with corresponding eigenspace K. The
rest of the eigenvalues ω2 are strictly positive and the corresponding eigenfunctions
u ∈ K⊥V =: G, so that they are also solutions of the following problem: Find ω > 0
and u ∈ G such that

a(u,v) = ω2

∫
Ω

ρu · v ∀v ∈ G.

Clearly (ω2,u) is an eigenpair of the above problem with ω > 0 if and only if
T 2u = 1

ω2 u. Thus, by virtue of (3.3), we have that the eigenvalues of H0 are given
by ±i/ω and hence they are purely imaginary.

Now we are in a position to establish the following result.

Theorem 3.2. For each isolated eigenvalue ±i/ω of H0 of algebraic multiplicity
m, let r > 0 be such that the disc Dr := {z ∈ C : |z ∓ i/ω| < r} intersects
Sp(H0) only in ±i/ω. Then, there exists δ > 0 such that if ‖ν‖∞,Ω < δ, there exist
m eigenvalues of T , μ1, . . . , μm (repeated according to their respective algebraic
multiplicities), lying in the disc Dr. Moreover, μ1, . . . , μm → i

ω as ‖ν‖∞,Ω goes to
zero.

As claimed above, the eigenvalues of T that are relevant in the applications are
those which are close to ±i/ω for the smallest positive vibration frequencies ω of
(2.12). According to the above theorem, these eigenvalues are well-separated from
the real axis and, hence, from the essential spectrum of T (cf. Theorem 3.1).

4. Spectral approximation

In this section, we propose and analyze a finite element method to approximate
the solutions of Problem 1. To this end, we introduce appropriate discrete spaces.
Let {Th(Ω)}h>0 be a family of regular partitions of Ω such that Th(Ωi) := {T ∈
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Th : T ⊂ Ωi} are partitions of Ωi, i = 1, 2. We introduce the lowest-order Raviart-
Thomas finite element space:

Vh := {v ∈ V : v|T (x) = a+ bx, a ∈ Rd, b ∈ R, x ∈ T}.
The discretization of Problem 1 reads as follows.

Problem 3. Find λh ∈ C and 0 
= uh ∈ Vh such that

λ2
h

∫
Ω

ρuh · vh + 2λh

∫
Ω

ν divuh div vh +

∫
Ω

ρc2 divuh div vh = 0 ∀vh ∈ Vh.

We proceed as we did in the continuous case and introduce a new discrete variable
ûh := λhuh to rewrite the problem above in the following equivalent form.

Problem 4. Find λh ∈ C and 0 
= (uh, ûh) ∈ Vh × Vh such that∫
Ω

ρc2 divuh div vh = λh

(
−2

∫
Ω

ν divuh div vh −
∫
Ω

ρûh · vh

)
∀vh ∈ Vh,∫

Ω

ρûh · v̂h = λh

∫
Ω

ρuh · v̂h ∀v̂h ∈ Vh.

We observe that λh = 0 is an eigenvalue of this problem and its associated

eigenspace is K̃h := Kh × {0} with Kh := K ∩ Vh the eigenspace of λh = 0 in
Problem 3. At the beginning of Section 5, we will show that Problem 4 is well-
posed, in the sense that it is equivalent to a generalized matrix eigenvalue problem
with a symmetric positive definite right-hand side matrix.

We introduce the well-known Raviart-Thomas interpolation operator, Πh : V ∩
Hr(Ω1 ∪ Ω2)

d → Vh, r ∈ (0, 1] (see [29]), for which the approximation result

(4.1) ‖v −Πhv‖0,Ω ≤ Chr(‖v‖r,Ω1
+ ‖v‖r,Ω2

+ ‖ div v‖0,Ω)
and the commuting diagram property

(4.2) div(Πhv) = Ph(div v)

hold, where

Ph : L2(Ω) → Uh := {vh ∈ L2(Ω) : vh|T ∈ P0(T ) ∀T ∈ Th}
is the standard L2-orthogonal projector. Then, for any r ∈ (0, 1] we have that

(4.3) ‖q − Phq‖0,Ω ≤ Chr‖q‖r,Ω ∀q ∈ Hr(Ω).

Let Gh be the orthogonal complement of Kh in Vh, and let G̃h := Gh ×Gh ⊂ Ṽ =
V × H be endowed with the corresponding product norm. Note that Gh � G and

hence G̃h � G̃.
The following result provides estimates for the terms in the Helmholtz decom-

position of functions in Gh. Let us recall that, here and thereafter, s > 0 denotes
the optimal regularity exponent such that Lemma 2.2 holds true.

Lemma 4.1. For any vh ∈ Gh, there exist ξ ∈ H1(Ω) and χ ∈ K such that

vh =
1

ρ
∇ξ + χ

with 1
ρ∇ξ ∈ Hs(Ω1 ∪ Ω2)

d, and the following estimates hold:∥∥∥∥1ρ∇ξ

∥∥∥∥
s,Ω1

+

∥∥∥∥1ρ∇ξ

∥∥∥∥
s,Ω2

≤ C‖ div vh‖0,Ω and ‖χ‖0,Ω ≤ Chs‖ div vh‖0,Ω.
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Proof. The proof follows by repeating the arguments of the proof of Lemma 4.1
from [4], taking care of the presence of the discontinuous coefficient ρ. �

Remark 4.1. We notice that Lemma 4.1 provides (1.1) with Pvh = 1
ρ∇ξ. It is

worthwhile to mention that, with the regularity results for ξ at hand (see Lemma
2.2), Lemma 4.1 may also be deduced by considering the case of differential 2-forms
in Lemma 5.10 of [2].

The following result is a direct consequence of Lemma 4.1.

Lemma 4.2. The sesquilinear form a : Gh × Gh → C is Gh-elliptic, with ellipticity

constant not depending on h. Consequently, ã : G̃h×G̃h → C is G̃h-elliptic uniformly
in h.

Now, we are in a position to introduce the discrete version of the operator T .

Let T h : Ṽ → Ṽ be defined by T h(f , g) := (uh, ûh) with (uh, ûh) ∈ G̃h the solution
of

ã((uh, ûh), (vh, v̂h)) = b̃((f , g), (vh, v̂h)) ∀(vh, v̂h) ∈ G̃h.

It is easy to check that (uh, ûh) = T h(f , g) if and only if

(4.4) ûh = PGh
f ,

where PGh
is the H-orthogonal projection onto Gh, and uh ∈ Gh solves

(4.5)

∫
Ω

ρc2 divuh div vh = −2

∫
Ω

ν div f div vh −
∫
Ω

ρg · vh ∀vh ∈ Gh.

Since T h(Ṽ) ⊂ G̃h, Sp(T h) = Sp(T h|˜Gh
)∪ {0} holds (cf. [3, Lemma 4.1]). Thus,

we will restrict our attention to T h|˜Gh
.

As claimed above, at the beginning of Section 5, Problem 4 will be shown to
be equivalent to a well-posed generalized matrix eigenvalue problem. This prob-

lem has λh = 0 as an eigenvalue with corresponding eigenspace K̃h. The rest of
the eigenvalues are related with the spectrum of T h|˜Gh

according to the following
lemma.

Lemma 4.3. There holds that (μh, (uh, ûh)) is an eigenpair of T h|˜Gh
with μh 
= 0

if and only if (λh, (uh, ûh)) is a solution of Problem 4 with λh = 1/μh.

Proof. The proof essentially follows that of Lemma 2.5, by using the fact that

Vh × Vh = G̃h ⊕ (Kh ×Kh). �

Our next goal is to show that any isolated eigenvalue of T with algebraic mul-
tiplicity m is approximated by exactly m eigenvalues of T h (repeated according to
their respective algebraic multiplicities) and that spurious eigenvalues do not arise.
To this end, we will adapt to our problem the theory from [4], which in turn uses
arguments introduced in [15, 16] to deal with non-compact operators. From now
on, let μ ∈ Spdisc(T ), μ 
= 0, be a fixed isolated eigenvalue of finite algebraic multi-
plicity m. Let E be the invariant subspace of T corresponding to μ. Our analysis
will be based on proving the following two properties:

P1. ‖T − T h‖h := sup
0�=(fh,gh)∈˜Gh

‖(T − T h)(fh, gh)‖˜V
‖(fh, gh)‖˜V

→ 0 as h → 0;

P2. ∀(v, v̂) ∈ E , inf
(vh,v̂h)∈˜Gh

‖(v, v̂)− (vh, v̂h)‖˜V → 0 as h → 0.
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Let (fh, gh) ∈ G̃h and (u, û) := T (fh, gh). From (2.17), we can write u =
u1 + u2 with u1,u2 ∈ G satisfying

(4.6) u1 ∈ G :

∫
Ω

ρc2 divu1 div v = −2

∫
Ω

ν div fh div v ∀v ∈ G,

and

(4.7) u2 ∈ G :

∫
Ω

ρc2 divu2 div v = −
∫
Ω

ρgh · v ∀v ∈ G.

The following result states some properties of the solutions of the problems above.

Lemma 4.4. For (fh, gh) ∈ G̃h, let (u, û) := T (fh, gh) and consider the de-
composition u = u1 + u2 as above. Hence, u1,u2 ∈ Hs(Ω1 ∪ Ω2)

d, divu1 ∈ Uh,
divu2 ∈ H1+s(Ω1 ∪ Ω2), and the following estimates hold true:

(4.8) ‖u1‖s,Ω1
+ ‖u1‖s,Ω2

≤ C‖fh‖div,Ω,

(4.9) ‖u2‖s,Ω1
+ ‖u2‖s,Ω2

+ ‖ divu2‖1+s,Ω1
+ ‖ divu2‖1+s,Ω2

≤ C‖gh‖div,Ω.

Proof. Since u1 ∈ G, due to Lemma 2.2 we have that u1 ∈ Hs(Ω1 ∪ Ω2)
d and

‖u1‖s,Ω1
+ ‖u1‖s,Ω2

≤ C‖ div fh‖0,Ω. Moreover, note that (4.6) also holds for
v ∈ K and hence for all v ∈ V . Then, we write∫

Ω

(ρc2 divu1 + 2ν div fh) div v = 0 ∀v ∈ V .

Thus, taking test functions in D(Ω)d ⊂ V we have ∇(ρc2 divu1 + 2ν div fh) = 0.
Since ρ, c, ν, and div fh are piecewise constant, we have that divu1 is piecewise
constant as well; namely, divu1 ∈ Uh.

On the other hand, since u2 ∈ G, by applying Lemma 2.2 again we have that
u2 ∈ Hs(Ω1 ∪ Ω2)

d and ‖u2‖s,Ω1
+ ‖u2‖s,Ω2

≤ C‖gh‖0,Ω. To prove additional
regularity for divu2, we use Lemma 4.1 to write gh = 1

ρ∇ξ + χ with χ ∈ K,
1
ρ∇ξ ∈ Hs(Ω1 ∪ Ω2)

d, and ‖ 1
ρ∇ξ‖s,Ω1

+ ‖ 1
ρ∇ξ‖s,Ω2

≤ C‖ div gh‖0,Ω. Moreover,

since ρ is constant in each subdomain Ωi, also ∇ξ|Ωi
∈ Hs(Ωi)

d, i = 1, 2. Then,
from (4.7) we have that∫

Ω

ρc2 divu2 div v = −
∫
Ω

∇ξ · v ∀v ∈ G.

Since the above equation trivially holds for v ∈ K too, it holds for all v ∈ V . Then,
by testing it with v ∈ D(Ω)d we have that ∇(ρc2 divu2) = −∇ξ ∈ Ω. Therefore,
by restricting to Ωi, i = 1, 2, we have that ∇(ρc2 divu2|Ωi

) = −∇ξ|Ωi
∈ Hs(Ωi)

d.
Since ρ and c are piecewise constant, we conclude that divu2|Ωi

∈ H1+s(Ω1 ∪Ω2),
and

‖ divu2‖1+s,Ω1
+ ‖ divu2‖1+s,Ω2

≤ C‖∇ξ‖0,Ω ≤ C‖ div gh‖0,Ω.
Hence, we conclude the proof. �

We consider a similar decomposition in the discrete case. For (fh, gh) ∈ G̃h, let
(uh, ûh) := T h(fh, gh). We write uh = u1h + u2h with u1h and u2h satisfying

(4.10) u1h ∈ Gh :

∫
Ω

ρc2 divu1h div vh = −2

∫
Ω

ν div fh div vh ∀vh ∈ Gh,

and

(4.11) u2h ∈ Gh :

∫
Ω

ρc2 divu2h div vh = −
∫
Ω

ρgh · vh ∀vh ∈ Gh.
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These are the finite element discretizations of problems (4.6) and (4.7), respec-
tively, and the following error estimates hold true.

Lemma 4.5. Let (fh, gh) ∈ G̃h. Let u1,u2 be the solutions of problems (4.6) and
(4.7), respectively, and u1h,u2h those of problems (4.10) and (4.11), respectively.
Then, the following estimates hold true:

(4.12) ‖u1 − u1h‖div,Ω ≤ Chs‖fh‖V ,

(4.13) ‖u2 − u2h‖div,Ω ≤ Chs‖gh‖H.

Proof. Since Gh � G, we will resort to the second Strang Lemma, which for prob-
lems (4.6) and (4.10) reads as follows:

(4.14) ‖u1 − u1h‖div,Ω ≤ C

[
inf

vh∈Gh

‖u1 − vh‖div,Ω + sup
0 �=vh∈Gh

a(u1 − u1h,vh)

‖vh‖div,Ω

]
.

Because of Lemma 4.4, Πhu1 is well-defined. Since Πhu1 ∈ Vh = Gh ⊕ Kh, there
exist ũ1h ∈ Gh and ŭh ∈ Kh such that Πhu1 = ũ1h + ŭh. Then, since u1 − ũ1h is
orthogonal to ŭh, we observe that

‖u1 − ũ1h‖2V ≤ ‖u1 − ũ1h‖2V + ‖ŭh‖2V
= ‖(ũ1h − u1) + ŭh‖2V = ‖u1 −Πhu1‖2V
≤ C

(
‖u1 −Πhu1‖20,Ω + ‖ divu1 − div(Πhu1)‖20,Ω

)
.

The first term on the right-hand side above is bounded as follows:

‖u1 −Πhu1‖0,Ω ≤ Chs(‖u1‖s,Ω1
+ ‖u1‖s,Ω2

+ ‖ divu1‖0,Ω) ≤ Chs‖fh‖V ,
where we have used (4.1), (4.8), and the fact that ‖ divu1‖0,Ω ≤ C‖ div fh‖0,Ω,
which in turn follows from (4.6) by taking v = fh. On the other hand, the sec-
ond term vanishes because of (4.2) since divu1 ∈ Uh (cf. Lemma 4.4). Hence,
‖u1 − ũ1h‖div,Ω ≤ Chs‖fh‖V , which allows us to control the approximation term
in (4.14).

For the consistency term, it is enough to recall that (4.6) holds for all v ∈ V .
Then, by using (4.10), it is easy to check that a(u1−u1h,vh) = 0 for all vh ∈ Gh ⊂
V . From this, the Strang estimate for ‖u1 − u1h‖div,Ω reads as follows:

‖u1 − u1h‖div,Ω ≤ C inf
vh∈Gh

‖u1 − vh‖div,Ω ≤ Chs‖fh‖V .

Thus (4.12) holds true.
To prove (4.13), we resort again to the second Strang Lemma:

(4.15) ‖u2 − u2h‖div,Ω ≤ C

[
inf

vh∈Gh

‖u2 − vh‖div,Ω + sup
0 �=vh∈Gh

a(u2 − u2h,vh)

‖vh‖div,Ω

]
.

Since u2 ∈ Hs(Ω1 ∪ Ω2)
d (cf. Lemma 4.4), we have that Πhu2 is well-defined.

We proceed as above and write Πhu2 = ũ2h + ǔh with ũ2h ∈ Gh and ǔh ∈ Kh to
obtain

(4.16) ‖u2 − ũ2h‖div,Ω ≤ C [‖u2 −Πhu2‖0,Ω + ‖ divu2 − div(Πhu2)‖0,Ω] .
For the first term on the right-hand side above, (4.1) and Lemma 4.4 yield

‖u2 −Πhu2‖0,Ω ≤ Chs(‖u2‖s,Ω1
+ ‖u2‖s,Ω2

+ ‖ divu2‖0,Ω) ≤ Chs‖gh‖H.
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For the second term, we have from (4.3) and from Lemma 4.4 again

‖ divu2 − div Πhu2‖20,Ω = ‖ divu2 − Ph(divu2)‖20,Ω,
≤ Ch(‖ divu2‖1,Ω1

+ ‖ divu2‖1,Ω2
) ≤ Ch‖gh‖H.

Hence, ‖u2 − ũ2h‖div,Ω ≤ Chs‖gh‖H, which allows us to bound the approximation
term in (4.15).

For the consistency term, given vh ∈ Gh we apply Lemma 4.1 to write vh =
1
ρ∇ξ + χ with 1

ρ∇ξ ∈ Hs(Ω1 ∪ Ω2)
d, χ ∈ K, and ‖χ‖0,Ω ≤ Chs‖ div vh‖0,Ω. Then,

from (4.7) we have

a(u2,vh) =

∫
Ω

ρc2 divu2 div vh =

∫
Ω

ρc2 divu2 div

(
1

ρ
∇ξ

)
=

∫
Ω

gh · ∇ξ.

On the other hand, from (4.11),

a(u2h,vh) =

∫
Ω

ρc2 divu2h div vh =

∫
Ω

ρgh · vh =

∫
Ω

gh · ∇ξ +

∫
Ω

ρgh · χ.

Therefore,

a(u2 − u2h,vh) = −
∫
Ω

ρgh · χ ≤ Chs‖gh‖0,Ω‖vh‖div,Ω

and, hence,

sup
0�=vh∈Gh

a(u2 − u2h,vh)

‖vh‖div,Ω
≤ Chs‖gh‖0,Ω,

which allows us to complete the proof. �

Now, we are in a position to establish the following result.

Lemma 4.6. Property P1 holds true. Moreover,

‖T − T h‖h ≤ Chs.

Proof. For (fh, gh) ∈ G̃h, let (u, û) := T (fh, gh) and (uh, ûh) := T h(fh, gh).
From (2.16) and (4.4) we have that û− ûh = fh − PGh

fh = 0. Hence, by writing
u = u1 + u2 and uh = u1h + u2h as in Lemma 4.5, we have from this lemma

‖T − T h‖h ≤ sup
0 �=(gh,fh)∈˜Gh

‖u1 − u1h‖div,Ω + ‖u2 − u2h‖div,Ω
‖(fh, gh)‖˜V

≤ Chs.

Thus, we conclude the proof. �

Our next goal is to prove property P2. With this aim, first we will prove the
following additional regularity result.

Lemma 4.7. Let (u, û) ∈ E . Then, u, û ∈ G ⊂ Hs(Ω1 ∪ Ω2)
d, divu, div û ∈

H1+s(Ω1 ∪ Ω2), and

‖u‖s,Ω1
+ ‖u‖s,Ω2

+ ‖ divu‖1+s,Ω1
+ ‖ divu‖1+s,Ω2

≤C‖(u, û)‖
˜V ,(4.17)

‖û‖s,Ω1
+ ‖û‖s,Ω2

+ ‖ div û‖1+s,Ω1
+ ‖ div û‖1+s,Ω2

≤C‖(u, û)‖
˜V .(4.18)

Proof. We prove the above inequalities for all the generalized eigenfunctions of T .
Let {(uk, ûk)}pk=1 be a Jordan chain of the operator T associated with μ. Then,
T (uk, ûk) = μ(uk, ûk)+(uk−1, ûk−1), k = 1, . . . , p, with (u0, û0) = 0. We will use
an induction argument on k. Assume that uk−1 and ûk−1 belong to G and satisfy
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(4.17) and (4.18), respectively (which obviously hold for k = 1). First note that,
because of the boundedness of T , we have

(4.19) ‖(uk−1, ûk−1)‖˜V ≤ C‖(uk, ûk)‖˜V .

On the other hand, by using (2.16) and (2.17) we have that

(4.20) μûk + ûk−1 = uk in Ω

and that μuk + uk−1 ∈ G satisfies∫
Ω

ρc2 div(μuk + uk−1) div v = −2

∫
Ω

ν divuk div v −
∫
Ω

ρûk · v ∀v ∈ G.

Hence, uk, ûk ∈ G.
We observe that the equation above also holds for any v ∈ K. Then,∫
Ω

ρc2 div(μuk + uk−1) div v = −2

∫
Ω

ν divuk div v −
∫
Ω

ρûk · v ∀v ∈ V .

Thus, considering test functions in D(Ω)d ⊂ V we obtain

(4.21) ∇((μρc2 + 2ν) divuk) = ρûk −∇(ρc2 divuk−1).

Let us assume that μρc2 + 2ν 
= 0 in both Ω1 and Ω2 (we discuss the other case
at the end of the proof). Hence, since ρ, c, and ν are constant in each Ωi, ρiûk −
∇(ρic

2
i divuk−1) ∈ L2(Ωi)

d, divuk|Ωi
∈ H1(Ωi), and

‖ divuk‖1,Ωi
≤ C

(
‖ divuk−1‖1,Ωi

+ ‖(uk, ûk)‖˜V
)
, i = 1, 2.

Now, since uk ∈ G, due to Lemma 2.2 we have that uk ∈ Hs(Ω1 ∪ Ω2)
d. Then,

from (2.13) and the previous estimate we have
(4.22)

‖uk‖s,Ω1
+ ‖uk‖s,Ω2

≤ C
(
‖ divuk−1‖1,Ω1

+ ‖ divuk−1‖1,Ω2
+ ‖(uk, ûk)‖˜V

)
.

On the other hand, from (4.20) we obtain

(4.23) ‖ûk‖s,Ωi
≤ 1

μ
(‖ûk−1‖s,Ωi

+ ‖uk‖s,Ωi
) , i = 1, 2,

and, from (4.21),

(4.24) ‖ divuk‖1+s,Ωi
≤ C(‖ûk‖s,Ωi

+ ‖ divuk−1‖1+s,Ωi
), i = 1, 2.

Finally, from (4.20) again,

(4.25) ‖ div ûk‖1+s,Ωi
≤ 1

μ
(‖ divuk‖1+s,Ωi

+ ‖ div ûk−1‖1+s,Ωi
), i = 1, 2.

Hence, from inequalities (4.22)–(4.25), the inductive assumption, and (4.19), we
derive (4.17) and (4.18) provided μρc2 + 2ν 
= 0 in both Ω1 and Ω2.

In the case that μρc2 + 2ν vanishes in Ωi, i = 1 or 2, arguing as in Remark 2.3
we obtain that u1|Ωi

= û1|Ωi
= 0 and, once again, an induction argument allows

us to conclude that uk, ûk = 0 in Ωi, k = 1, . . . , p. The proof is complete. �

Now, we are in a position to establish property P2.

Lemma 4.8. Property P2 holds true. Moreover, for any (u, û) ∈ E , there exist

ũh, ˜̂uh ∈ Gh such that

‖u− ũh‖div,Ω + ‖û− ˜̂uh‖div,Ω ≤ Chs‖(u, û)‖
˜V .
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Proof. Let (u, û) ∈ E . According to Lemma 4.7, we have that u, û ∈ Hs(Ω1 ∪Ω2)
d

and divu, div û ∈ H1+s(Ω1∪Ω2). Let Πhu ∈ Vh be the Raviart-Thomas interpolant
of u. Since Vh = Gh⊕Kh, we decompose Πhu = ũh+ŭh with ũh ∈ Gh and ŭh ∈ Kh.
The same arguments from the proof of Lemma 4.5 that lead to (4.13) apply in
this case and combined with Lemma 4.7 allow us to prove that ‖u − ũh‖div,Ω ≤
Chs‖(u, û)‖

˜V . A similar procedure can be used to define ˜̂uh and to prove that

‖û− ˜̂uh‖div,Ω ≤ Chs‖(u, û)‖
˜V . �

We also have the following auxiliary result when the source terms are in E , whose
proof follows the arguments in Case 2 of Lemma 4.7 of [4].

Lemma 4.9. For (f , g) ∈ E , let (u, û) := T (f , g) and (uh, ûh) := T h(f , g).
Then,

‖u− uh‖div,Ω + ‖û− ûh‖0,Ω ≤ Chs‖(f , g)‖
˜V .

The above lemmas are the ingredients to prove spectral convergence and to
obtain error estimates. Our first result is the following theorem which has been
proved in [15] as a consequence of property P1 (cf. Lemma 4.6) and which shows
that the proposed method is free of spurious modes.

Theorem 4.1. Let K ⊂ C be a compact set such that K ∩Sp(T ) = ∅. Then, there
exists h0 > 0 such that, for all h ≤ h0, K ∩ Sp(T h) = ∅.

Let D ⊂ C be a closed disk centered at μ, such that D ∩ Sp(T ) = {μ}. Let
μ1h, . . . , μm(h)h be the eigenvalues of T h contained in D (repeated according to
their algebraic multiplicities). Under assumptions P1 and P2, it is proved in [15]
that m(h) = m for h small enough and that limh→0 μkh = μ for k = 1, . . . ,m.

On the other hand the arguments used in Section 5 of [4] can be readily adapted
to our problem, to obtain error estimates. We recall the definition of the gap

between two closed subspaces W and Y of Ṽ :
δ̂(W ,Y) := max{δ(W ,Y), δ(Y ,W)},

with

δ(W ,Y) := sup
(φ,ψ)∈W

‖(φ,ψ)‖
˜V=1

[
inf

(̂φ,̂ψ)∈Y
‖(φ,ψ)− (φ̂, ψ̂)‖

˜V

]
.

Let Eh be the invariant subspace of T h relative to the eigenvalues μ1h, . . . , μmh

converging to μ. From Lemmas 4.6–4.9, we derive the following results for which
we do not include proofs to avoid repeating step by step those of [4, Section 5].

Theorem 4.2. There exist constants h0 > 0 and C > 0 such that, for all h ≤ h0,

δ̂ (Eh, E) ≤ Chs.

Theorem 4.3. There exist constants h0 > 0 and C > 0 such that, for all h ≤ h0,∣∣∣∣∣μ− 1

m

m∑
k=1

μkh

∣∣∣∣∣ ≤ Ch2s,∣∣∣∣∣ 1μ − 1

m

m∑
k=1

1

μkh

∣∣∣∣∣ ≤ Ch2s,

max
k=1,...,m

|μ− μkh| ≤ Ch2s/p,

where p is the ascent of the eigenvalue μ of T .
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5. Numerical results

We implemented the proposed method in a MATLAB code. We report in this
section the results of some numerical tests, in order to assess its performance. To
this end, first we introduce a convenient matrix form of the discrete problem which
allows us to use standard eigensolvers. As a byproduct, this matrix form also allows
us to prove that Problems 3 and 4 are well-posed.

Let {φj}Nj=1 be a nodal basis of Vh. We define the matrices K1 := (K
(1)
ij ),

K2 := (K
(2)
ij ), and M := (Mij) as follows:

K
(1)
ij := 2

∫
Ω

ν div φi div φj , K
(2)
ij :=

∫
Ω

ρc2 div φi div φj , and Mij :=

∫
Ω

ρφi · φj .

The matrix form of Problem 3 reads

(5.1) (λ2
hM+ λhK1 +K2)�uh = 0,

where we denote by �uh the vector of components of uh in the nodal basis of Vh.
Analogously, the matrix form of Problem 4 reads(

K2 0
0 M

) (
�uh

�̂uh

)
= λh

(
−K1 −M
M 0

) (
�uh

�̂uh

)
,

with �̂uh the vector of components of ûh. However, this problem is not suitable
to be solved with standard eigensolvers, since neither the right-hand side nor the
left-hand side matrix are Hermitian and positive definite.

Alternatively, for λh 
= 0, let μh := 1
λh

. Then, problem (5.1) is equivalent to

(M+ 2μhK1 + μ2
hK2)�uh = 0.

Introducing �wh := μh�uh, the problem above is equivalent to

(
M 0
0 M

) (
�uh

�wh

)
= μh

(
−K1 −K2

M 0

) (
�uh

�wh

)
,

which in turn is equivalent to(
−K1 −K2

M 0

) (
�uh

�wh

)
= λh

(
M 0
0 M

) (
�uh

�wh

)
.

Thus, the last problem is equivalent to Problem 3 except for λh = 0 and the matrix
in its right-hand side is Hermitian and positive definite. Hence, it is well-posed and
can be safely solved by standard eigensolvers.

Test 1. We applied the proposed method to a 2D rectangular rigid cavity filled
with two fluids with different physical parameters as shown in Figure 2. The domain
occupied by the fluids are Ω1 := (0, A) × (0, H) and Ω2 := (0, A) × (H,B). For
such a simple geometry, it is possible to calculate an analytical solution which will
be used to validate our method.
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Figure 2. Test 1. Two fluids in a rectangular rigid cavity.

Let u ∈ H0(div,Ω) be a solution of Problem 1. Testing it with v ∈ D(Ω)2 we have
∇((2λν + ρc2) divu) = −λ2ρu ∈ L2(Ω)2. Then, p̂ := −(2νλ+ ρc2) divu ∈ H1(Ω).

Hence, p̂1|Γ = p̂2|Γ. Moreover, u = − 1
λ2ρ∇p̂, which implies that 1

ρ1

∂p̂1

∂ν = 1
ρ2

∂p̂2

∂ν on

Γ. Then, we write problem (2.2)–(2.9) in terms of p̂i as follows:

Δp̂i =
λ2ρi

ρic2i + 2νiλ
p̂i in Ωi, i = 1, 2,

∂p̂i
∂ni

= 0 on Γi, i = 1, 2,

p̂1 = p̂2 on Γ,

1

ρ1

∂p̂1
∂n

=
1

ρ2

∂p̂2
∂n

on Γ.

We proceed by separation of variables. Assuming that p̂i(x, y) = Xi(x)Yi(y), we
are left with the following problem:

X ′′
i (x)

Xi(x)
+

Y ′′
i (y)

Yi(y)
=

λ2ρi
ρic2i + 2νiλ

in Ωi,(5.2)

X ′
i(0) = X ′

i(A) = 0, i = 1, 2,(5.3)

Y ′
1(0) = Y ′

2(B) = 0,(5.4)

1

ρ1
X1(x)Y

′
1(H) =

1

ρ2
X2(x)Y

′
2(H), 0 < x < A,(5.5)

X1(x)Y1(H) = X2(x)Y2(H), 0 < x < A.(5.6)

From (5.2) we have that Xi(x)
′′/Xi(x) and Yi(y)

′′/Yi(y) are constant. Moreover,
from (5.5) and (5.6), it is easy to check that Yi(H) and Y ′

i (H) cannot vanish
simultaneously and X1(x) = X2(x) (actually, it is derived that X1(x) = CX2(x),
but the constant C can be chosen equal to one without loss of generality).

From the fact that Xi(x)
′′/Xi(x) is constant and (5.3), we have that

X1(x) = X2(x) = cos
(mπx

A

)
, m = 0, 1, 2, . . . .
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On the other hand, from the fact that Yi(y)
′′/Yi(y) is also constant and (5.4) we

derive

(5.7) Y1(y) = C1 cosh(r
(1)
m (λ)y) and Y2(y) = C2 cosh(r

(2)
m (λ)(y −B)),

where C1 and C2 are constants and

r(i)m :=

√
λ2ρi

ρic2i + 2νiλ
+

m2π2

A2
, m = 0, 1, 2, . . . , i = 1, 2.

Since Yi(H) and Y ′
i (H) cannot vanish simultaneously, (5.5) and (5.6) lead to

1

ρ1
Y ′
1(H) =

1

ρ2
Y ′
2(H) and Y1(H) = Y2(H),

respectively. Thus, substituting (5.7) into these equations yields the following linear
system for the coefficients C1 and C2:

C1 cosh(r
(1)
m (λ)H) = C2 cosh(r

(2)
m (λ)(H −B)),

C1r
(1)
m (λ)

ρ1
sinh(r(1)m (λ)H) =

C2r
(2)
m (λ)

ρ2
sinh(r(2)m (λ)(H −B)).

For this system to have non-trivial solutions, its determinant must vanish, which
yields the following non-linear equation in λ for m = 0, 1, 2, . . . whose roots are the
eigenvalues of Problem 1:

fm(λ) :=
r
(1)
m (λ)

ρ1
sinh(r(1)m (λ)H) cosh(r(2)m (λ)(H −B))

− r
(2)
m (λ)

ρ2
sinh(r(2)m (λ)(H −B)) cosh(r(1)m (λ)H) = 0.

We have computed some roots of the above equation and used these roots as
exact eigenvalues to compare those obtained with the method proposed in this
paper. For the geometrical parameters, we have taken A = 1m, B = 2m, and
H = 1.25m.

We have used physical parameters of water and air for the density and acoustic

speed of the fluids in Ω1 and Ω2, respectively: c1 = 1430 m/s, ρ1 = 1000 kg/m
3
,

c2 = 340 m/s, and ρ2 = 1 kg/m3. We have used uniform meshes as those shown in
Figure 3. The refinement parameter N refers to the number of elements per width
of the rectangle.

Figure 3. Test 1. Meshes for N = 4 (left) and N = 8 (right).
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In the presence of dissipation (ν 
= 0), the eigenvalues λ are complex numbers
λ = η+ iω, with η < 0 the decay rate and ω the vibration frequency. In the absence
of dissipation (ν = 0), the eigenvalues λ are purely imaginary (η = 0). The same
holds for the computed eigenvalues λh.

In our first test, we neglected the viscosity damping effects by taking ν1 = ν2 =
0. In this case, the eigenvalues λ are actually purely imaginary. Table 1 shows
the four smallest eigenvalues computed with the proposed method on successively
refined meshes. Accurate values of the zeros of fm(λ) obtained with the MATLAB
command fminsearch applied to |fm(λ)| are also reported on the last line of the
table as exact eigenvalues.

Table 1. Test 1. Computed and exact eigenvalues for dissipative
fluids in a rigid cavity.

m 1 0 1 0

N = 8 1066.07 i 1418.42 i 1784.37 i 1796.61 i
N = 16 1067.78 i 1422.52 i 1781.49 i 1797.09 i
N = 32 1068.21 i 1423.54 i 1780.73 i 1797.21 i
N = 64 1068.33 i 1423.79 i 1780.55 i 1797.23 i
Order 2.00 2.00 1.99 2.00
Exact 1068.36 i 1423.87 i 1780.49 i 1797.24 i

As predicted by the theory, these eigenvalues are purely imaginary. The high
accuracy of the computed eigenvalues can be observed from Table 1 even for the
coarsest mesh. We have used a least squares fitting to estimate the convergence
rate for each eigenvalue, which are also reported in Table 1. A clear order O(h2)
can be seen in all cases.

Secondly, we have used the same physical parameters as above for both fluids, but
considering now non-vanishing viscosities. In order to make the dissipation effects
more visible, we have used unrealistically large viscosity values: ν1 = 9N/ms2 and
ν2 = 1N/ms2. We have repeated the scheme used above. We report in Table 2 the
computed and “exact” eigenvalues and the estimated convergence rates, which are
in accordance with the theory once again. Notice that now all λ have negative real
parts (decay rate) as predicted by the theory.

Table 2. Test 1. Computed and exact eigenvalues for dissipative
fluids in a rigid cavity.

m 1 0 1 0

N = 8 −9.83127 + 1066.03 i −17.38526 + 1418.31 i −27.54238 + 1784.16 i −0.04746 + 1796.61 i
N = 16 −9.86298 + 1067.74 i −17.48513 + 1422.41 i −27.45337 + 1781.27 i −0.04875 + 1797.08 i
N = 32 −9.87090 + 1068.17 i −17.50995 + 1423.43 i −27.43029 + 1780.53 i −0.04908 + 1797.20 i
N = 64 −9.87288 + 1068.38 i −17.51614 + 1423.78 i −27.42447 + 1780.34 i −0.04916 + 1797.23 i
Order 2.00 2.00 1.99 2.00
Exact −9.87354 + 1068.32 i −17.51817 + 1423.76 i −27.42236 + 1780.27 i −0.04919 + 1797.24 i

It can be seen from Table 2 that even in the coarsest mesh the vibration frequen-
cies are computed with at least three correct significant digits. In turn, the decay
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rates are computed with at least two correct significant digits, in spite of the fact
that they are much smaller than the vibration frequencies. Moreover, a least square
fitting of the computed decay rates shows that they also converge quadratically. As
a consequence, the decay rates computed with the finest mesh attain three or four
significant correct digits.

Finally, Figure 4 shows the real and imaginary parts of the computed pressure
as defined in (2.1) for the smallest eigenvalue.

Figure 4. Test 1. Real (left) and imaginary (right) parts of the
computed pressure for the first eigenvalue.

Test 2. As a second test, we have applied our code to solve a problem with a curved
interface. In spite of the fact that such a problem does not lie in our theoretical
framework, we will report experimental results which will allow us to assess the
performance of the method in this case.

The whole domain Ω is the same as in the previous experiment, but with a curved
interface Γ. In particular, we have taken as Γ an arc of a circle with center at the
point (0.5, 2.0) and endpoints (0.0, 1.25) and (1.0, 1.25). We report in Table 3
the computed eigenvalues. In this case, there is no analytical solution available.
Therefore, we have obtained more accurate approximations of the exact eigenvalues
by means of a least square fitting. These more accurate values are reported on the
last line of Table 3 as “Exact”. We also report in this table the estimated order of
convergence, which once more is clearly quadratic.

Table 3. Test 2. Computed and “Exact” eigenvalues for dissipa-
tive fluids in a rigid cavity with a curved interface.

ωi
h ω1

h ω2
h ω3

h ω4
h

N = 8 −10.40320+1096.60 i −10.45430+1099.28 i −10.46725+1099.96 i −10.47051+1100.13 i
N = 16 −13.49718+1249.28 i −13.42914+1246.13 i −13.41172+1245.32 i −13.40737+1245.12 i
N = 32 −26.06756+1735.74 i −25.88822+1729.76 i −25.84076+1728.18 i −25.82875+1727.78 i
N = 64 −0.05457+1969.38 i −0.05782+1974.72 i −0.05890+1976.45 i −0.05918+1976.93 i

Order 1.98 1.97 1.93 1.67
“Exact” −10.47163+1100.19 i −13.40581+1245.04 i −25.82423+1727.63 i −0.05934+1977.19 i

Finally, Figure 5 shows the real and imaginary parts of the computed pressure
as defined in (2.1) for the smallest eigenvalue. The curved interface can be clearly
appreciated in the imaginary part of the pressure.
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Figure 5. Test 2. Real (left) and imaginary (right) parts of the
pressure for the first eigenvalue.
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