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THE EXPONENT OF DISCREPANCY IS AT MOST 1.4778 . . .

GRZEGORZ W. WASILKOWSKI AND HENRYK WOŹNIAKOWSKI

Abstract. We study discrepancy with arbitrary weights in the L2 norm over
the d-dimensional unit cube. The exponent p∗ of discrepancy is defined as the
smallest p for which there exists a positive number K such that for all d and
all ε ≤ 1 there exist Kε−p points with discrepancy at most ε. It is well known
that p∗ ∈ (1, 2]. We improve the upper bound by showing that

p∗ ≤ 1.4778842.

This is done by using relations between discrepancy and integration in the
average case setting with the Wiener sheet measure. Our proof is not con-
structive. The known constructive bound on the exponent p∗ is 2.454.

1. Introduction

We study discrepancy with arbitrary weights in the L2 norm over the d-dimen-
sional unit cube [0, 1]d. This problem is defined as finding n points from [0, 1]d

which approximate the volumes of rectangles (starting from zero) with minimal
error, see [8, 9] for the precise definition, history and basic properties. Discrepancy
has been extensively studied in number theory and numerical analysis, see e.g.,
[1, 8, 9, 10, 11, 12]. Fast algorithms for computing discrepancy of n given points
are given in [6]. Discrepancy has been recently applied in computer science, see
[3, 4, 7] and the references given there.

Discrepancy is related to multivariate integration in the worst case and average
case settings. Indeed, discrepancy is an upper bound on the worst case integration
error of functions whose variation in the sense of Hardy and Krause is at most
one, see e.g., [2, 8, 9, 13]. It is also known, see [15], that discrepancy for points

x1, x2, . . . , xn is equal to the average case integration error for the points ~1−x1,~1−
x2, . . . ,~1 − xn, where ~1 = [1, 1, . . . , 1] ∈ Rd. The average error is defined for the
class of continuous functions defined over [0, 1]d and equipped with the Wiener
sheet measure. Hence, bounds on discrepancy have immediate applications for
multivariate integration.

Let n(ε, d) be the minimal number of points from [0, 1]d for which discrepancy
is at most ε. It is well known that

n(ε, 1) = d(1/(ε
√

3)− 1)/2e,(1)
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n(ε, d) = 0 for 3−d/2 ≤ ε,(2)

n(ε, d) ≤ 2−dε−2.(3)

The proof of the last inequality is not constructive, i.e., the construction of points
satisfying (3) is unknown. The asymptotic behavior of n(ε, d) for a fixed d and ε
tending to zero is known,

n(ε, d) = Θ(ε−1(log 1/ε)(d−1)/2),(4)

see [10] for the proof of a lower bound, and [5, 11] for the proof of an upper bound.
However, the multiplicative factor in the Θ-notation is an unknown function of d.
A constructive bound on n(ε, d) with explicit dependence on d is given in Section
8.3 of [14],

n(ε, d) ≤ 3.304

(
1.77959 + 2.714

−1.12167 + ln 1/ε

d− 1

)1.5(d−1)
1

ε
,(5)

and this is achieved by hyperbolic cross points.
We define the exponent p∗ of discrepancy as the smallest (or the infimum of) p

for which there exists a positive number K such that

n(ε, d) ≤ Kε−p, ∀ε ≤ 1, ∀d = 1, 2, . . . .(6)

Obviously, (3) and (4) yield

p∗ ∈ (1, 2].(7)

Since the bound in (3) is not constructive, so is the bound p∗ ≤ 2. From (2) and
(5) it follows, see Section 8.3 of [14], that

n(ε, d) ≤ 7.26ε−2.454.

Hence, the known constructive bound1 on p∗ is

p∗ ≤ 2.454.(8)

In this paper, we improve the upper bound by showing the following estimate.

Theorem 1. The exponent p∗ of discrepancy is bounded by

p∗ ≤ q∗ ≈ 1.47788417318605565480,(9)

where

q∗ = max
x≥4/3

ln(4x−1xx/(x− 1)x−1)

ln(4x/
√

6)
.

We explain the idea behind the proof of (9); the complete proof is in Section 3.
First, we switch to the equivalent problem of integration in the average case setting
with the Wiener sheet measure. Let I(f) denote the integral of a continuous func-
tion f defined over [0, 1]d. Then, instead of integrating f directly, we approximate
f by a special function fn whose computation requires n values of f . Obviously,

1In Section 8.2 of [14] we mentioned that the exponent p = 2.454 can be lowered by choosing
different parameters of the basic algorithm. We tried a number of such parameters but we always
obtained exponents greater than two.
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I(f) = I(fn)+ I(f − fn). The next step is to apply the classical Monte Carlo algo-
rithm to approximate I(f − fn) using function values at n+ 1 random points. The
application of the Monte Carlo to the function f − fn may be regarded as variance
reduction. The randomized error of the Monte Carlo is obviously bounded by the
variance of f − fn divided by

√
n. We now take the expectation with respect to f .

The expected variance of f − fn is equal to the average case error of approximation
between f and fn. The explicit formula for this is derived in Section 8.4 of [14].
Finally, we use a well-known fact that randomization does not help in the average
case setting to conclude the existence of 2n + 1 points with the needed bound on
discrepancy.

Since we use the Monte Carlo algorithm in one step, the proof of (9) is not
constructive. Hence, the constructive bound (8) remains unimproved.

We regard the problem of finding the exact value of the exponent p∗ as a very
challenging and difficult one. Further improvements of the bounds (8) and (9) do
not seem to be easy. From a practical point of view, the most challenging problem
is to find n points for which discrepancy is at most ε and such that n ≤ Kε−p with
the exponent p less than two. Due to (9), such points exist.

We finally remark that the proof of (9) can be applied for integration of different
classes of functions in the average case setting. For example, applying this proof
for the class of periodic continuous functions equipped with the Brownian bridge,
we obtain that the exponent of this integration problem is bounded from above by
1.29.

2. Discrepancy

In this section we recall the definition of discrepancy in the L2 norm and briefly
review bounds on discrepancy. A thorough discussion on discrepancy may be found
in [8, 9].

Consider n points z1, z2, . . . , zn from [0, 1]d. For a vector t = [t1, t2, . . . , td] ∈
[0, 1]d, define the rectangle [0, t) = [0, t1)× [0, t2)× · · ·× [0, td). We wish to approx-
imate the volume of the rectangle [0, t), which is obviously t1t2 · · · td, by a weighted
number of points zi which lie in [0, t). The error of such an approximation is called
discrepancy. More precisely, let

DISCn,d(t; {zi}, {ci}) = t1t2 · · · td −
n∑

i=1

ciχ[0,t)(zi)

for some weights ci ∈ R. Here χ[0,t) is the characteristic (indicator) function of
[0, t);

χ[0,t)(z) = 1, if z ∈ [0, t), and χ[0,t)(z) = 0 if z /∈ [0, t).

The most popular choice of the weights ci is to take ci = 1/n.
The discrepancy of the n points zi and weights ci is given by

‖DISCn,d(·; {zi}, {ci})‖ =

(∫
[0,1]d

DISC2
n,d(t; {zi}, {ci}) dt

)1/2

.

The discrepancy problem is to find the points {zi} and the weights {ci} that
minimize the discrepancy,

DISCn,d = inf{‖DISCn(·; {zi}, {ci})‖ : zi ∈ [0, 1]d, ci ∈ R, i = 1, 2, . . . , n}.(10)
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Let n(ε, d) be the minimal number of points for which the discrepancy is at most
ε,

n(ε, d) = min{n : DISCn,d ≤ ε}.(11)

The exponent p∗ of the discrepancy is defined as

p∗ = inf{p : ∃K ≥ 0, ∀ε ≤ 1, ∀d, n(ε, d) ≤ Kε−p}.(12)

We now briefly indicate how the bounds (1), (2) and (3) are obtained. For
d = 1, it is relatively easy to solve (10) and to get (1). Taking n = 0, we get
DISC0,d = 3−d/2 which yields (2). To show (3) it is enough to set ci = 1/n and
integrate the function ‖DISCn,d(·; {zi}, {1/n})‖2 with respect to zi. Then this
integral is (2−d − 3−d)/n. Applying the mean value theorem we get (3).

We will use a relation between discrepancy and integration in the average case
setting, see [15]. This relation is given by the identity

‖DISCn,d(·; {zi}, {ci})‖2 =

∫
F

(∫
[0,1]d

f(t) dt−
n∑
i=1

cif(xi)

)2

w(df),(13)

where F = C([0, 1]d) is the class of continuous functions defined over [0, 1]d, w is

the classical Wiener sheet measure, and xi = ~1− zi.

3. Proof

In this section we prove the bound (9) on the exponent p∗. Due to (1) and (2),
we need only to consider d ≥ 2 and ε < 3−d/2. The proof is heavily based on a
number of results from [14].

The first step of the proof is to consider the average case error en of a special
algorithm An(·) for approximating f ∈ F = C([0, 1]d);

e2n =

∫
F

(∫
[0,1]d

(f(t)−An(f)(t))2 dt

)
w(df).

The approximating function fn = An(f) is constructed as in Section 8.4 and Lemma

8 of [14] with the parameters F0 = 1/3, F = 4, D = 1/2, and C = B = 1/
√

2. It is
a linear combination of

n = bgd−1
c (x)b(d)c

values of f , and its error satisfies

en ≤ gd−1
e (x)a(d),

where

ge(x) =

(
1

2

)x
√

3xx

2(x− 1)x−1
, gc(x) =

4x−1xx

(x − 1)x−1

and

a(d) =
1√
2

max

{(
d2

8π(d− 1)

)1/4

, 1

}
, b(d) =

128

3
√

2π(d− 1)
.

Here x is a parameter from [4/3,∞), to be chosen later.
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We proceed to the next step of the proof. We wish to approximate

I(f) =

∫
[0,1]d

f(t) dt.

Let

m = dgd−1
c (x)b(d)e

and consider the following randomized (Monte Carlo) quadrature Qm,

Qm(f, {ti}) = I(fn) +
1

m

m∑
i=1

(f(ti)− fn(ti))

with independently and uniformly distributed points t1, . . . , tm ∈ [0, 1]d. Obviously,
the quadrature Qm uses n +m ≤ 2n+ 1 function values.

It is well known that the expected error with respect to ti of this quadrature is
bounded as∫

[0,1]dm
(I(f)−Qm(f, {ti}))2 dt1 dt2 · · · dtm ≤ 1

m

∫
[0,1]d

(f(t)− fn(t))2 dt.

We now integrate this with respect to f ’s that are distributed according to the
Wiener sheet measure w. Let

E2
m =

∫
F

∫
[0,1]dm

(I(f)−Qm(f, {ti}))2 dt1 dt2 · · · dtmw(df).

Then

Em ≤ en/
√
m.(14)

It is known that randomization does not help in the average case setting. This sim-
ply follows from the mean value theorem since there exist points t∗i , i = 1, 2, . . . ,m,
such that ∫

F

(I(f)−Qm(f, {t∗i }))2w(df) ≤ E2
m.

From (13) and (14) we thus conclude

DISC2n+1,d ≤ en/
√
m.

From the definition of n and the bound on en, we get

DISC2n+1,d ≤ c(d)h(x)d−1

with

c(d) =
a(d)√
b(d)

and h(x) =

√
6

4x
.

To guarantee that DISC2n+1,d ≤ ε, we define x as the smallest x ∈ [4/3,∞) for
which

c(d)h(x)d−1 ≤ ε.

Note that such an x exists. Let

q∗ = max
x≥4/3

ln(gc(x))

ln(1/h(x))
.
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Then

(gc(x))d−1 ≤ (1/h(x))q
∗(d−1) ≤ (c(d)/ε)q

∗
,

and, therefore,

2n ≤ 2b(d)

(
c(d)

ε

)q∗

.(15)

Observe that b(d)cq
∗
(d) = Θ(d(q∗−1)/2) and, as we shall see, q∗ is greater than 1.

Since ε < 3−d/2, we have that b(d)cq
∗
(d)εη is uniformly bounded for any positive

η. Therefore, from (15) we get that, for any positive η,

n(ε, d) ≤ 2n+ 1 ≤ Kηε
−q∗−η with Kη = sup

d≥2
(2b(d)cq

∗
(d)3−dη/2 + 3−(q∗+η)d/2).

This proves that p∗ ≤ q∗, as claimed.
To complete the proof of the theorem, we need to estimate q∗. By differentiating

the function

ρ(x) =
ln gc(x)

ln 1/h(x)
=

(x− 1) ln(4) + x ln(x)− (x − 1) ln(x − 1)

ln(
√

1/6) + x ln(4)

we get

ρ′(x) =
z(x)

(ln(4x/
√

6))2

with

z(x) = ln

(
4x

x− 1

)
ln(
√

8/3)− ln(4) ln(x).

Hence, to find the extreme points of ρ we need to find the roots of z. To this end,
observe that

z′(x) = −(x(x − 1))−1 ln(
√

8/3)− x−1 ln(4),

so that z′ is negative. Since z(2.0) ≈ 0.0588 . . . and z(2.5) ≈ −0.3398 . . . , the
unique root x∗ is in (2, 2.5). Since z′′(x) is positive, the root can efficiently be
approximated by Newton’s method starting with x0 = 2. After a few Newton steps
we obtained

x∗ ≈ x̃ = 2.06426868257207727735.

The value of z at that point is less than 10−20, and x̃ equals x∗ to within at least
18 most significant digits.

Finally, by computing ρ(x̃), we get

q∗ = ρ(x∗) ≈ ρ(x̃) ≈ 1.47788417318605565480,

which is correct to at least 18 most significant digits. This completes the proof.

We end the paper with the following remarks.

Remark 1. The proof of (9) also yields the following estimate

n(ε, d) ≤ 2.51d0.24ε−1.4778842(1 + o(1)), as d→∞.

This follows easily from the formulas for a(d), b(d) and c(d).
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Remark 2. One could try to improve the bound q∗ on the exponent p∗ by using
significantly different values of n and m in the proof of the theorem. We have
checked this approach and, unfortunately, it does not lead to any improvement;
n ≈ m is optimal.

Lemma 8 of [14] can also be used for different values of the parameters F0, F,D,C
and B. We have checked that the choice reported in the proof leads to the smallest
q∗.

Remark 3. As mentioned in the introduction, we have also analyzed the exponent
for the integration problem in the average case setting with respect to the Brownian
bridge.

For this problem, the results of [14] apply with parameters C = B = 1/
√

6,

F0 = 1, F = 2, and D = 1/
√

2. Hence, the functions ge, gc, a, b from the beginning
of Section 3 become

ge(x) =

√
xx−1

6(x− 1)x−12x
, gc(x) = 2x−1 xx

(x− 1)x−1
,

a(d) =
1√
6

max

{(
d2

4π(d− 1)

)1/4

, 1

}
, b(d) =

16√
π(d− 1)

.

Thus, repeating the proof of Section 3, we find

q∗ ≈ 1.28898137370363213616.
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