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GRÖBNER BASES
AND GENERALIZED PADÉ APPROXIMATION

JEFFREY B. FARR AND SHUHONG GAO

Abstract. It is shown how to find general multivariate Padé approximation
using the Gröbner basis technique. This method is more flexible than previous
approaches, and several examples are given to illustrate this advantage. When
the number of variables is small compared to the degree of approximation, the
Gröbner basis technique is more efficient than the linear algebra methods in
the literature.

1. Introduction and main result

The classical Padé approximation theory for univariate polynomials says that
for any polynomials f, g ∈ F[x], where F is any field and g has degree t > 1, and for
any positive integers t1 and t2 with t1 + t2 = t + 1, there are polynomials a ∈ F[x]
of degree < t1 and b ∈ F[x] of degree < t2 so that

(1) b · f ≡ a (mod g),

and the ratio a/b is unique for all the solutions a and b. Furthermore, the extended
Euclidean algorithm can be used to find a minimal solution a and b. Is there a
parallel theory for multivariate polynomials?

Given a function f(x1, . . . , xm), the generalized Padé approximation problem
is to find suitable polynomials a, b ∈ F[x1, . . . , xm] so that f ≡ a

b modulo some
predetermined conditions. The details of the requirements for a and b vary for
different types of problems. A general approach is to consider solutions of the form

(2) b · f ≡ a (mod I),

where I ⊂ F[x1, . . . , xm] is a given ideal. In the univariate case above, I is the ideal
generated by g in F[x]. In the multivariate case, the ideal I is more complicated.
We shall see that for different choices of ideals, Equation (2) generalizes various
forms of approximation that are studied in the literature.

The straightforward approach to finding a suitable Padé approximant is to rec-
ognize (2) as a homogeneous linear system (where the coefficients of a and b are
unknowns) and to apply Gauss elimination or any efficient method for solving lin-
ear systems. This linear algebra approach has cubic complexity in the number of
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coefficients in a and b. We measure the degree of approximation by the total number
of coefficients in a and b. Recently, some effort has been made to apply the method
of Gröbner bases to the Padé approximation problem [11, 16]. The approaches in
these two papers do not work in general. Even in the case that these methods are
successful, they indicate that the contribution of Gröbner bases to this problem
are primarily theoretical rather than practical, since the efficiency of computing a
Gröbner basis via Buchberger’s algorithm is not comparable to the numerical Gauss
elimination methods. However, our recent work in [8] indicates that the Gröbner
basis in this problem can be computed efficiently and improves upon the linear
algebra technique when the number of variables m is small relative to the degree
of approximation.

To fix notation, we denote F[x] = F[x1, . . . , xm], and, for any α = (α1, . . . , αm) ∈
Nm where N is the set of nonnegative integers,

xα = xα1
1 · · ·xαm

m .

We shall use monomial orders and Gröbner basis theory; see [2, 5, 6] for an excellent
introduction. We fix an arbitrary monomial order on F[x] (also called term order),
and LT(g) denotes the leading term of a polynomial g ∈ F[x]. Define

B(I) = {xα : α ∈ Nm and xα �= LT(g) for all g ∈ I}.
Then B(I) forms a basis for the quotient ring F[x]/I as a vector space over F; see
[5]. The basis B(I) is called the monomial basis of I with respect to the monomial
order used. Actually, we can define B(g1, . . . , gs) for any set of polynomials in I by

B(g1, . . . , gs) = {xα : α ∈ Nm and xα is not divisible by any LT(gi), 1 ≤ i ≤ s}.
For the Padé approximation problem in (2), I will be a zero-dimensional ideal

in F[x], so the quotient ring F[x]/I is finite dimensional as a vector space over F.
We call this dimension the degree of I. The degree of I corresponds to the degree
of approximation mentioned above. The Padé approximation problem is to find
certain “minimal” solutions a and b that satisfy (2), where “minimal” may mean
“minimal in total degree” or any other conditions. We shall denote by Mf the set
of all solutions, that is,

Mf = {(a, b) ∈ F[x]2 : a and b satisfy (2)}.
One can check that Mf is closed under addition (of vectors) and if (a, b) ∈ Mf ,
then h · (a, b) = (ha, hb) ∈ Mf for all h ∈ F[x]. Hence Mf forms a module over the
ring F[x].

Theorem 1. Let I be a zero-dimensional ideal in F[x] = F[x1, . . . , xm] of degree t.
Fix a monomial order on F[x], and denote the corresponding monomial basis by

B(I) = {1 = xα1 ,xα2 , . . . ,xαt},
ordered in increasing order. Then, for any f ∈ F[x] and any positive integers t1
and t2 with t1 + t2 = t + 1, there is a pair of polynomials in F[x] of the form

(3) a =
t1∑

i=1

aixαi , b =
t2∑

i=1

bixαi ,

not both zero, that satisfy (2). Furthermore, there is a pair (a, b) of the above form
that is contained in the reduced Gröbner basis for the module Mf under a certain
term order.
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The main issue in the above theorem is to define an appropriate term order on
Mf that extends any given monomial order on F[x]. We shall deal with term order
for modules in Section 2 and prove Theorem 1 in Section 3.

To see how Theorem 1 generalizes the approaches in the literature, let us con-
sider the equation lattice approach as described in [7], where the main focus is on
bivariate polynomials. In this approach, the shape of the numerator a is controlled
by a set N ⊂ Nm, and that of the denominator b by a set D ⊂ Nm. That is,

(4) a =
∑
γ∈N

aγxγ and b =
∑
β∈D

bβxβ,

where aγ , bβ ∈ F. In most applications, N and D are subsets of a delta set E ⊂ Nm.
Note that a subset E of Nm is called a delta set if β ∈ E and α ∈ Nm with α ≤ β
(componentwise), then α ∈ E. As observed in [16], when E is a delta set, then the
set

{xα : α ∈ Nm with α �∈ E}
is closed under multiplication and generates a monomial ideal, denoted by IE , in
F[x]. Furthermore, for any monomial order, the corresponding monomial basis of
IE is the same, namely

{xα : α ∈ E}.
Note that IE has only one common zero, namely (0, . . . , 0), but with multiplicity
equal to the cardinality of E. Hence, equation (2) corresponds to approximating
the Taylor expansion of f at the origin by a rational function a/b, and the degree
of approximation is controlled by the cardinality of E, i.e., the degree of the ideal
IE . We shall see in Section 4 how the shapes of a and b in Theorem 1 may vary
when we vary the monomial order.

Monomial ideals are only one extreme case of general ideals I where I has only
one common zero (but with multiplicity). Another extreme case is for I to be a
radical ideal, so I has distinct zeros, and in this case the approximation problem
is to find a rational function that interpolates the values of f at distinct points.
Of course most ideals fall somewhere between these extremes and correspond to
the interpolation of the Taylor expansions of f at different points with possibly
different multiplicities. We shall demonstrate this by examples in Section 4.

Rational function approximation has applications including coding theory (de-
coding algebraic geometry codes, e.g., Berlekamp–Welch [3], Fitzpatrick [10], Gu-
ruswami and Sudan [13]) and numerical analysis. Cuyt [7] provides a survey of
progress over the past 30 years in attacking multivariate Padé approximation. Ad-
ditionally, her extensive bibliography includes much of the work in this area by the
numerical analysis community. Finally, multivariate polynomial interpolation is
useful in several applications, and Gasca and Sauer [12] provide an excellent survey
of the varied approaches to this problem.

2. Term orders for modules

Most of the background material for Gröbner bases for modules can be found
in [15] or in chapter 3 of [2]. Robbiano [19] proved that any valid monomial order
on F[x1, . . . , xm] may be described by a matrix W ∈ R�×m with � ≤ m. Under
such an order, two monomials are compared using the first row of W as a weighted
degree; if the result is a tie, then the next row is used, then the third row, etc.
It should be noted that not all the monomial orders can be defined by integers or
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rational numbers. For example, the (1,
√

2)-weight degree order on F[x, y] cannot
be expressed by any 2 × 2 matrix over Q.

Let M be a free module of rank r over A = F[x1, . . . , xm], t ≥ 1. We choose
a basis z1, . . . , zr ∈ M so that we can write any element h ∈ M uniquely as
h = h1z1 + · · · + hrzr, where h1, . . . , hr ∈ A. For a fixed basis, it is sometimes
convenient to denote h as a vector (h1, . . . , hr).

A term of M is an element of the form xαzi, where α ∈ Nm and 1 ≤ i ≤ r. Term
orders on M are defined in much the same way that we define monomial orders
on a ring. Two types of term orders are used most of the time, position-over-term
(POT) order and term-over-position (TOP) order. Of course, POT and TOP
are not the only possible term orders for modules; in fact, they represent only two
extremes. By definition an order < on the terms of M is a term order on M if

(i) < is a total order (i.e., either X < Y, X = Y or X > Y for any two terms
X,Y ∈ M);

(ii) X < xα · X, for every term X ∈ M and every monomial xα ∈ A with
xα �= 1; and

(iii) if X < Y, then xα · X < xα · Y for all terms X,Y ∈ M and for any
monomial xα ∈ A.

An arbitrary term order can be defined by a matrix, each row being a weight
vector w = (w1, . . . , wm, u1, . . . , ur) ∈ Rm+r. The w-weighted degree of xα · zj is
defined to be w · (α, ei) = w1α1 + · · ·+ wmαm + ui, where ei is the ith unit vector.
In general, a term order matrix will be an �× (m + r) matrix T having block form

T = (W |U), where W ∈ R�×mand U ∈ R�×r.

If the rules of a legitimate term order are explicitly given, it is straightforward to
construct the matrix T . Is there a characterization of T , though, that ensures that
T induces a valid term order? The next theorem answers this question affirmatively
for an integral matrix.

Theorem 2. Suppose M is a free module of rank r over F[x] = F[x1, . . . , xm]
with a basis z1, . . . , zr as above. A matrix T = (W |U), where W ∈ Z(m+r)×m

and U ∈ Z(m+r)×r, defines a valid term order for the module M if and only if the
following three conditions hold:

(1) W has rank m;
(2) the first nonzero entry in each column of W is positive; and
(3) letting W1 be a left pseudo-inverse of W (i.e., W1W = (Im, 0)T ), then any

two columns of W1U agreeing in the final r entries must disagree in one of
the first m entries by a nonintegral value.

Proof. The first two requirements for T are similar to the requirements for a mono-
mial order matrix and ensure that properties (ii) and (iii) of the definition of a
term order are satisfied. The final requirement, though unusual in appearance,
guarantees that T is a total order on the terms of M .

In particular, two distinct terms xα1 · zi and xα2 · zj are distinguishable if and
only if W (α1 − α2)T �= U(ej − ei)T , that is,

(5)
(

Im

0

)
(α1 − α2)T �= W1U(ej − ei)T .

The right-hand side of (5) is simply the difference of the ith and jth columns of
W1U . Hence, if any two columns of W1U differ by integers on the first m entries
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and are identical on the final r, then an α1 and α2 may be found so that the two
sides in (5) are equal and the terms xα1 · zi and xα2 · zj are indistinguishable. �

We now describe the role of term orders in applying Gröbner bases to Padé
approximation. Define M to be the free F[x]-module of rank two, that is,

M = F[x] + z · F[x] ∼= F[x]2.

If we fix a polynomial f ∈ F[x] and an ideal I ⊆ F[x], then the module Mf defined
earlier can also be written as

(6) Mf = {z · b − a|a, b ∈ F[x] and f · b − a ∈ I}.
Fitzpatrick and Flynn introduce a term-over-position (TOP) order for M . The

monomial order on F[x] is a weighted order built around a given initial order com-
bined with a special order. This special order must cooperate with the desired
(unknown) solution to satisfy a condition which they call a “weak term order” con-
dition. This algorithm, while laying the necessary groundwork for using Gröbner
bases in rational approximation, is quite restrictive.

Little et al. [16] were able to extend the use of Gröbner bases to a wider class of
rational approximation problems by defining a new term order, denoted ≺τ . This
term order can be thought of as a term-position-term order since the total degree
(tdeg) of the term is considered first, then the position as a module element, and,
finally, the size of the term with respect to a given monomial order. Specifically, if W
is the m×m weight matrix for the given monomial order, then the (m+2)×(m+2)
weight matrix for ≺τ is ⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1 0 0
0 0 . . . 0 1 0

0 0

W
...

...
0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Note that it is possible for one of the columns corresponding to a placeholder
variable to be zero. In such a case, the zero column may be omitted as long as the
remaining placeholder columns are clearly labeled.

Theorem 3 (Little et al., 2003 [16]). Assume that N = {xα : |α| ≤ t1}, D = {xβ :
|β| ≤ t2} and |N | + |D| ≥ |B(I)|+ 1. Then a Gröbner basis for Mf with respect to
the ≺τ order contains an element (a, b) such that tdeg(a) < tdeg(b) ≤ t2, assuming
such a solution exists in Mf .

As Little et al. [16] point out, these hypotheses are still very limiting, although
they do allow for some important cases which the weak term order method does not.
We highlight two of these limitations. First, N and D are limited to a triangular
shape because of the dependence of ≺τ on the tdeg order. The second drawback
is that the Gröbner basis is only guaranteed to have a solution if that solution has
a particular form. Of course solutions will not always be of this form. Remedies
to this problem are suggested in [16]; however, they are either inconvenient or, in
some cases, inadequate, particularly if N and D are to be of some shape besides
triangular.

We address both of these shortcomings by introducing a new term order. Unlike
the two previous orders, this new order intertwines the given monomial order with
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the module position at each step. Our approach allows N and D to take on a much
wider variety of shapes than has been studied previously. Included in these shapes
are the types most frequently cited in the literature: The triangular ones mentioned
previously (see also [14]) and rectangular shapes (see [17]). Many other shapes are
possible by customizing I or the monomial order; see the examples in Section 4.

Lemma 4. Suppose we have an arbitrary monomial order on F[x]. Given any two
terms xα1 and xα2 · z in M = F[x] + z ·F[x], we can extend the monomial order on
F[x] to a term order on M so that xα1 < xα2 · z and they are consecutive, that is,
there is no other term in M that lies between them.

Proof. Suppose the monomial order on F[x] is defined by a matrix W ∈ R�×m. Let
wi be the ith row of W and let ci = wi ·α1 −wi ·α2, 1 ≤ i ≤ �. Define a term order
matrix of the form

T =

⎛
⎜⎜⎜⎝

c1

W
...
c�

0 . . . 0 1

⎞
⎟⎟⎟⎠ ,

where the last column is for z2 = z. The column for z1 = 1 is the zero column,
so it is omitted from T . One can check that T defines a term order on M that
extends W , and we have xα1 < xα2 · z, as they have the same weighted degree for
the first � rows of T but the last row distinguishes them. We need to show that
there is no term in M that lies between xα1 and xα2 · z. Let xβ be an arbitrary
monomial in F[x]. It suffices to show that if xα1 < xβ , then xα2 · z < xβ, and if
xβ ·z < xα2 ·z, then xβ ·z < xα1 . We show the latter, as the former is similar. Note
that xβ ·z < xα2 ·z implies that xβ < xα2 , so there is an index k such wi ·β = wi ·α2

for 1 ≤ i < k, but wk · β < wk · α2. Hence, wi · β + ci = wi · α2 + ci = wi · α1

for 1 ≤ i < k, but wk · β + ck < wk · α2 + ck = wk · α1. Thus, xβ · z < xα1 as
claimed. �

3. Proof of main result

We begin with the following simple but useful lemma. Under a fixed term order
on M , for any G ⊆ M , B(G) denotes the set of terms in M that are not divisible
by any leading terms of elements in G. Also, if S is a finite set of elements in
M , then Span

F
(S) denotes the set of all linear combinations of elements in S with

coefficients in F, i.e.,

SpanF(S) =

{∑
h∈S

ahh : ah ∈ F

}
.

Lemma 5. Let I ⊆ F[x] be a zero-dimensional ideal with dim(F[x]/I) = t, and fix
any term order on the module M = F[x] + z · F[x] ∼= F[x]2. For any f ∈ F[x], let
Mf be defined by (6). Then

(i) the quotient module M/Mf has dimension t as a vector space over F;
(ii) |B(u1, . . . , us)| ≥ t, for any u1, . . . , us ∈ Mf ;
(iii) {u1, . . . , us} is a Gröbner basis for Mf if and only if |B(u1, . . . , us)| = t.

Proof. (i) Since dimF(M/Mf ) does not depend on the term order, we can assume
a POT order on M with z > all xi and with any fixed monomial order on the F[x].
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We immediately note that I ⊂ Mf (where polynomials in F[x] are now viewed as
module elements) and that z − f ∈ Mf .

Next, we claim that if {w1, . . . , ws} is a Gröbner basis for I, then {w1, . . . , ws,
z − f} is a Gröbner basis for Mf . Certainly, for any element u ∈ Mf , either
LT(u) = z ·xα so that LT(u) is divisible by LT(z− f) = z, or u = 0 · z+ a in which
case a ∈ I and LT(u) = LT(a) is divisible by some LT(wi), 1 ≤ i ≤ s. Finally,
B(w1, . . . , ws, z − f) = B(w1, . . . , ws), implying dimF(M/Mf ) = t.

(ii) Suppose G = {u1, . . . , us} ⊆ Mf . Then each w ∈ M can be reduced by G
to a polynomial in Span

F
{B(G)}. So Span

F
{B(G)} contains a basis for M/Mf ;

consequently, |B(G)| ≥ dim(M/Mf ) = t.
(iii) If G is a Gröbner basis for Mf , then each w ∈ M has a unique reduction

with respect to G. So |B(G)| = t. Conversely, if |B(G)| = t, then, since the terms
in B(G) are linearly independent, they must form a basis for M/Mf . So, for any
w ∈ Mf , as w ≡ 0 in M/Mf , we see that w must be reduced to zero by G. Hence
G is a Gröbner basis. �

Proof of Theorem 1. Note that in a and b we have t1 + t2 = t + 1 coefficients to
determine. Further, note that we have t linear equations implied by the congruence
f · b − a ≡ 0 mod I. Since the system is homogeneous, it cannot be inconsistent,
and, since the system has more unknowns than equations, a nontrivial solution is
guaranteed. So, there is at least one element, bz − a satisfying (2), in the module
Mf with a, b ∈ Span

F
{xα1 , . . . ,xαt} not both zero.

Suppose the monomial order on F[x1, . . . , xm] is defined by an � × m matrix
W . Using Lemma 4, we define a term order on M = F[x] + F[x] · z so that
xαt1 < xαt2 · z and so that they are consecutive. Now suppose the last part of the
theorem is false. Thus, for any nonzero solution bz−a ∈ Mf , we would have either
LT(a) > xαt1 or LT(b) > xαt2 . Let G be any Gröbner basis for Mf . Then none
of the terms xα1 , . . . ,xαt1 , z · xα1 , . . . , z · xαt2 is divisible by a leading term of G.
Hence, {xα1 , . . . ,xαt1 , z · xα1 , . . . , z · xαt2} ⊆ B(G), implying that |B(G)| ≥ t + 1.
This contradicts Lemma 5, and the theorem is proved. �

Theorem 1 proves that at least one solution exists in the Gröbner basis, but
uniqueness of the solution is not guaranteed even if gcd(a, b) = 1 is required, as
Example 3 below shows. Additionally, to find a solution, one can simply find a
Gröbner basis for Mf . How the Gröbner basis is computed depends on how I is
given. Specifically, if we are already given a Gröbner basis for I, then the Gröbner
basis for Mf can be computed by a Gröbner basis conversion method such as
Gröbner walk or FGLM. On the other hand, if I is given by a set of points (distinct
or with multiplicities) in Fm, then the algorithms in [1, 4, 8, 18] may be used.

We note that the guaranteed solution is minimal with respect to the degree of
b. Finally, if t2 = 1, then we are back to the case of polynomial interpolation.

4. Examples

We now illustrate the power and flexibility of Theorem 1. Specifically, the fol-
lowing examples show the impact of size, shape, and monomial order on the Padé
approximant.

Except in Examples 2 and 4, we work over the finite field with two elements,
F2. Computations are done with the computer algebra package Magma using the
algorithm in [8].
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Figure 1. The shape of B(I) (left) and N and D in Example 1

Example 1. We first examine a triangle-shaped Karlsson–Wallin approximant
discussed by Little et al. in [16]. Unlike their approach, though, our method has the
flexibility to allow D ⊂ N , N ⊂ D or N = D. Additionally, we are able to choose N
or D to be “incomplete” triangles, e.g., {1, x, y, x2, xy} rather than {xα : |α| ≤ 2},
although Karlsson–Wallin approximants assume complete triangles.

Let I = 〈xy4, y5, x6, x5y, x4y2, x3y3〉 ⊂ F2[x, y], and let N = D = {xα : |α| ≤ 3}.
So |B(I)| = 19, and |N | = |D| = 10. If we assume a graded lexicographical order
(glex ) with y > x, then the conditions for Theorem 1 are satisfied (see Figure 1).

Let f = 1 + x + y + y2 + xy + x3 + xy2 + x4 + x2y2 + xy3 + x4y + x2y3. We find
that the Gröbner basis for Mf contains the desired solution

(a, b) = (y3 + xy2 + x2y + y2 + y + x, xy2 + x2y + x3 + x2 + y + x).

It is often the case that we wish b(0) �= 0. Little et al. [16] point out that we
can assume this is true for sufficiently general f . This assumption is valid for most
polynomials f when working over fields of characteristic zero; however, b(0) = 0
with probability q−1 over the field Fq. Hence, for small fields such as F2, b will not
have the desired property for a significant portion of f .

Keeping I and the monomial order on F2[x, y] the same, we can vary the sizes
of N and D as long as we ensure that |N | + |D| = |B(I)| + 1. In the extreme
case N = B(I), D = {1}, the problem reduces to the multivariate polynomial
interpolation problem, and the module order is the simple POT order.

Example 2 (Coding theory). In this example we work over the finite field with
nine elements generated by a primitive eighth root of unity ω, i.e., if ω satisfies the
primitive polynomial p(x) = x2−x−1 ∈ F3[x], then F9 = {0, ω0 = 1, ω, ω2, . . . , ω7}.
We use a (3, 4)-weight degree order on x and y, with ties broken by y > x. Set
I = 〈x9 − x, y3 − y − x4〉 and |N | = 22 and |D| = 6. The shapes of B(I), N , and
D are displayed in Figure 2. Here, I is radical, i.e., each point in V(I) is distinct.
This corresponds to the problem of decoding the five-error-correcting [27, 14, 11]9
Hermitian code; see [9] for details. The only difference is that in the coding problem
the function f , corresponding to the received vector, is given implicitly (but can be
computed by interpolation).

For example, a certain received vector corresponds to the following polynomial:

f = ω6x8y2 + ω5x8y + 2x6y2 + x7y + ω3x8 + x6y + x7 + ω6x4y2 + ω2x5y

+ω5x6 + ω3x4y + x5 + 2x2y2 + ω7x4 + ωxy2 + ω6x2y + x3 + ω2xy + ω2x2

+ωy + ω3x + ω6.
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Figure 2. The shape of B(I), N and D in Example 2

The Gröbner basis for Mf contains the entry

(a, b) = (ωy2x5 + ωyx6 + ω2x7 + ω6y2x4 + ω7yx5 + x6 + ω3y2x3 + yx4 + yx3

+ω5x4 + ω5y2x + ω5yx2 + ωx3 + ω6y2 + ω7yx + 2x2 + ω6y + x + ω5,

xy + 2x2 + ω5y + ω3x + ω7).

Here,

b · f − a = ω6y3x9 + ω2y2x10 + ω3y3x8 + ωyx10 + 2y3x7 + ω3yx9 + ωy3x6

+ω7x10 + ω3yx8 + ω6y3x5 + ω3x9 + 2yx7 + ω3y3x4 + ω7x8 + ωyx6

+2y3x3 + x7 + ω6yx5 + ω5y3x2 + ωx6 + ω3yx4 + ω6y3x + ω6x5

+ω6y2x2 + 2yx3 + ω7x4 + ωyx2 + x3 + ω5yx + ω2x2 + ω5x.

Since I is not a monomial ideal, it is not immediately obvious that bf − a is zero
modulo I. However, bf −a can indeed be reduced to zero by x9−x and y3−y−x4,
the two polynomials in the Gröbner basis for I.

In the coding theory setting, b corresponds to an error-locator polynomial, and
a “contains” the original message polynomial. We remark that the method of Little
et al. [16] is able to handle the weighted degree order in this case since it happens to
be equivalent to a total degree order on B(I). However, the method still is unable
to handle the incomplete row in N .

Example 3. Next, we compare the effects of using three different pairs of N and
D with a single I; in each case, though, |N | = |D| = 11. We again choose a
rectangular shape for B(I) by letting I = {y3, x7} (see Figure 3).

x

y

Figure 3. The shape of B(I) in Example 3
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Figure 4. The shape of N and D in Example 3

Our function to approximate is

f = 1 + x + y + x2 + xy + xy2 + x4 + x2y2 + x5 + x4y + x6 + x4y2 + x6y + x6y2.

First, we impose a lex order on F2[x, y] with x > y. N1 and D1 have x3y as the
leading term and have the shape indicated in Figure 4. The resulting approximant
is

(a1, b1) = (x3y + x2y2 + xy + y2, x3y + x2y + x3 + xy + y2).

Compare this output with that of choosing N2 and D2 by allowing a lex order
on F2[x, y] with y > x. Again, the leading term is x3y, but Figure 4 shows that
the shape of N2 and D2 is different from that of N1 and D1. The approximant
appearing in the Gröbner basis is also different:

(a2, b2) = (x2y + y + x6 + x5 + x3 + x2 + x + 1, xy + x6 + x5 + x3 + 1).

Thus, the shape of N and D, influenced by the monomial order and by the chosen
cardinality, results in very different approximants, even though the leading term of
the sets is the same.

Consider the set N3 and D3 using a (1, 3)-weight degree order on x and y with
ties broken by y > x. Note that N3 and D3 are exactly the shape of N2 and D2;
however, the sets are ordered differently, indicated by the dotted lines. In this case
the Gröbner basis yields two solutions:

(a3, b3) = (x6 + x2y + x5 + y + x3 + x2 + x + 1, x6 + x5 + xy + x3 + 1),
(a4, b4) = (x3y + x2y + x5 + xy + x4 + y + 1, x2y + x5 + xy + x4 + x3 + x + 1).

Observe that (a3, b3) is actually equal to (a2, b2). We might have anticipated this,
since N3 and D3 have the same shape as N2 and D2. Where did the additional
solution come from? Closer inspection shows that the leading term of (a4, b4) =
(x3y, 0) is divisible by LT(a2, b2) = (x2y, 0), but not by LT(a3, b3) = (x6, 0). Hence,
even among N and D of the same size and shape, different solutions may arise from
various monomial orders.
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Example 4. As was stated in Section 1, the generalized Padé approximation prob-
lem typically assumes that the ideal I is a monomial ideal, so that the Taylor series
expansion of a solution about a single point has zero coefficients for any term in
B(I). In this example we consider an example of an ideal that is defined by two
points, both with nontrivial multiplicities.

We next give an example for points with different multiplicities. For any point
P ∈ Fm and any delta set ∆ ⊂ Nm, we say that f ∈ F[x] vanishes at P with
multiplicity ∆ if the Taylor expansion of f at P , say

f(x + P ) =
∑

α∈Nm

fαxα,

has fα = 0 for all α ∈ ∆. Consider the following simple example with two points
in F2

3. Let

P1 = (0, 0), ∆1 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)},

and

P2 = (1, 2), ∆2 = {(0, 0), (1, 0), (0, 1)}.

Assume a glex order on F3[x, y] with y > x. These two points define an ideal, called
a vanishing ideal, by

I = {f ∈ F3[x, y] : f vanishes at Pi with multiplicity ∆i for i = 1, 2} .

For details on computing both a Gröbner basis for such an ideal and a Taylor series
expansion for a multivariate polynomial, see [8].

It is easy to verify by hand (using Lemma 5) that G = {y3 − xy2 + x2y, x3y +
x4, x2y2 + xy2 − x2y, x5 − x4 − xy2 − x2y} is a Gröbner basis for I in our example.
The monomial basis is B(I) = {1, x, y, x2, xy, y2, x3, x2y, xy2, x4} and |B(I)| = 10 =
|∆1| + |∆2|, implying that |N | + |D| should be 11. Suppose we would like the
numerator to have seven terms and the deonominator to have four. That is, N =
{1, x, y, x2, xy, y2, x3} and D = {1, x, y, x2}. Then ≺w is defined by

⎛
⎝ 1 1 1

0 1 0
0 0 1

⎞
⎠ .

Note that all the work that we have done so far is only precomputation. Once
this information has been computed for an ideal, it can be used repeatedly. For any
polynomial f , we can compute a Gröbner basis for Mf . In this example, we pick

f = 1 + y + x2 + xy + y2 + x2y + x4.

The Gröbner basis for Mf has only one element that lies within N and D, namely

(a, b) = (−x3 − y2 + xy − y − x − 1, x2 − x − 1).

One can verify that this is indeed a solution by showing that bf − a ∈ I.
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5. Final remarks

We have presented a general framework for multivariate Padé approximation
that can be viewed as an analogue of the univariate theory, though the approxi-
mant is not unique in general. Also, the Padé approximation can be computed by
the Gröbner basis technique, which is a generalization of the extended Euclidean
algorithm for univariate polynomials. Our Gröbner basis approach is more efficient
than the linear algebra approach based on Gauss elimination when the number of
variables is small relative to the degree of approximation.

Our method works for an arbitrary field F, and we have assumed exact arithmetic
in F throughout the paper. This is fine for finite fields which are important for
coding theory and cryptography applications. For the field of real numbers, there
are other important issues, e.g., numerical stability, convergence of approximants
when the degree of approximation goes to infinity, etc. These issues certainly
deserve further investigation.
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