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ON THE ROBUSTNESS OF MULTISCALE

HYBRID-MIXED METHODS

DIEGO PAREDES, FRÉDÉRIC VALENTIN, AND HENRIQUE M. VERSIEUX

Abstract. In this work we prove uniform convergence of the Multiscale
Hybrid-Mixed (MHM for short) finite element method for second-order el-
liptic problems with rough periodic coefficients. The MHM method is shown
to avoid resonance errors without adopting oversampling techniques. In par-
ticular, we establish that the discretization error for the primal variable in the
broken H1 and L2 norms are O(h+ εδ) and O(h2+h εδ), respectively, and for
the dual variable it is O(h+ εδ) in the H(div; ·) norm, where 0 < δ ≤ 1/2 (de-
pending on regularity). Such results rely on sharpened asymptotic expansion
error estimates for the elliptic models with prescribed Dirichlet, Neumann or
mixed boundary conditions.

1. Introduction

Flows in porous media, which commonly exhibit multiple scale structures, are
usually modeled by a second-order elliptic problem (Darcy equation) with rough
discontinuous coefficients. Such a model arises when we consider the simulation of
oil reservoirs in a highly heterogeneous and/or fractured media. Multiscale prob-
lems necessarily require the use of very fine meshes, which makes their numerical
approximation extremely expensive. Since the pioneering work of Babuška and
Osborn [9] and its extension to higher dimensions by Hou and Wu [23], multiscale
numerical methods have emerged as an attractive “divide and conquer” option to
handle heterogeneous problems (see [14, 15, 36], just to cite a few). Overall, the
idea relies on basis functions specially designed to upscale submesh oscillations to
an overlying coarse mesh. As a result, such numerical methods become precise
on coarse meshes. Also interesting, the multiscale basis functions can be locally
computed through completely independent problems. This makes the resulting
numerical algorithm particularly attractive for use in parallel computing environ-
ments.

Recently, a new family of multiscale finite element methods, named the Multi-
scale Hybrid-Mixed (MHM) method, was presented in [20] and further analyzed
in [4]. The framework has since been extended to the linear elasticity model in
[19] and the reactive-advective-diffusive problem in [21]. The MHM method has
a notably general formulation that recovers some well-established finite element
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methods, such as the ones proposed in [6, 12], under appropriate hypotheses. The
method does not require scale separation or periodicity of the media. Moreover,
it produces precise numerical primal and dual variables (standing for the pressure
and the velocity in porous media problems, respectively), with respect to the mesh
parameter h (cf. [4]). Although the primal solution is non-conforming (as the
MsFEM with over-sampling [23], for instance), conformity is maintained for the
dual variable. Since the velocity variable is often the quantity of interest, such a
property is particularly welcome in porous media flow simulations.

In this work we address the important question of the robustness of the MHM
method with respect to the fine scale oscillations of the physical coefficient. Specif-
ically, under the assumption that the physical coefficient is periodic with period
of order ε, we prove the method converges when both ε and h go to zero. Such
a question was beyond the scope of [4], in which the focus was on h-convergence
results. It is worth mentioning that the mathematical techniques involved in the
present analysis differ completely from those used in [4], requiring in particular the
usual periodicity assumption. Moreover, the convergence results are established
without involving any kind of oversampling techniques. This is, to the best of our
knowledge, a first in the multiscale numerical method literature.

To be more precise, let Ω ⊂ R
d, d ∈ {2, 3}, and assume the boundary of ∂Ω :=

∂ΩD ∪ ∂ΩN is Lipschitz. The boundary value problem considered in this work
consists of finding uε, the solution of

(1)

⎧⎨
⎩ −∇ · (Aε∇uε) := − ∂

∂xi
(aij(x/ε)

∂

∂xj
uε) = f in Ω ,

uε = g on ∂ΩD and Aε∇u · n = b on ∂ΩN ,

where Aε(x) = A(x/ε) = (aij(x/ε)) is a symmetric positive definite matrix. Here
ε ∈ (0, 1) is the (small) parameter controlling the fine scale oscillations of the
physical coefficient, g ∈ H1/2(∂ΩD), n represents the unit outward normal vector
on ∂Ω, b ∈ H−1/2(∂ΩN ), and f ∈ L2(Ω) (these spaces having their usual meaning).
Above, and throughout the paper, the indices i, j run from 1, . . . , d, even when
not explicitly mentioned, and we employ the Einstein summation convention, i.e.,
repeated indices indicate summation. We also assume that aij ∈ L∞

per(Y ), i.e.,

aij ∈ L∞(Rd) and it is Y -periodic, Y = (0, 1)d, and there exist positive constants
γa and γb such that

γa |ξ|2 ≤ aij(y)ξiξj ≤ γb |ξ|2 for all ξ = {ξi} ∈ R
d and y ∈ Y ,(2)

where |.| represents the Euclidean norm. In the case ∂ΩD = ∅, we also assume that
the following compatibility condition holds:

(3)

∫
Ω

f dx =

∫
∂Ω

b d s .

We employ asymptotic expansion error estimates in our analysis. Such a technique
assumes the periodicity hypothesis on aij and was first adopted in the context
of multiscale scheme analysis in the seminal work [22]. It has been used since
by several authors [3, 5, 24, 34, 35]. Also, the adoption of asymptotic analysis for
multiscale methods has influenced the choice of interpolation spaces, yielding more
robust theoretical error estimates [7].

Asymptotic techniques adopted to analyze the MsFEM method [22] highlight
that the resulting discrete solution uε

h for (1) (with Dirichlet boundary condition)
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converges as follows:

‖uε − uε
h‖1 ≤ c1 h ‖f‖0 + c2

( ε

h

)1/2

,

where the constants c1, c2 depend on Ω but are independent of h and ε. Here ‖ · ‖1
and ‖ · ‖0 stand for the norms in the H1(Ω) and L2(Ω) spaces (with their usual
meaning), respectively. We observe the presence of the so-called resonance error

term
(
ε
h

)1/2
, which indicates that the method may lose convergence when h and ε

have the same order of magnitude. Unfortunately, it has been verified numerically
that such an estimate is actually sharp, with the resonance error extending from the
choice of local boundary conditions used to compute the multiscale basis functions.
Strategies to diminish the resonance error have focused on the construction of more
involved local boundary conditions using “global information”. Examples in this
direction are the over-sampling strategy [15,23] and the limited global information
technique [25]. These alternatives result in non-conforming methods with lower
resonance errors of order ε

h . When used within a Petrov-Galerkin framework, such
a non-conforming approach leads to resonance-free solutions under the prior knowl-
edge of the thickness of boundary layers (cf. [24]) and the assumption ε

h < c, where
c < 1 is of order one. However, for realistic domains such information is generally
not available, and it is particularly difficult to be measured in domains with corners
(which is usually the case with finite elements). Moreover, the analyses performed
in the aforementioned works assume smooth physical coefficients.

The main result of this work establishes the convergence of the MHM method
in the L2 and the broken H1 norms for any choice of ε and h under the condition
ε < c h, where c < 1 is of order one. For instance, we prove that under mild
regularity conditions, the following estimates hold:

‖uε − uε
h‖1,h ≤ c1

(
h+ εδ

)
‖f‖0 and ‖uε − uε

h‖0 ≤ c2 h
(
h+ εδ

)
‖f‖0 ,

where ‖.‖1,h stands for the broken H1 norm, 0 < δ ≤ 1/2 (depending on regularity).
The established dependence of the error in terms of ε stems from a better approx-
imation result which combines new asymptotic expansion estimates with Galerkin
error analysis (see Lemma 7). Next, by choosing an appropriate finite element
space, the sharp error estimates with respect to h also emerge (see Theorems 8-9
and Theorem 11). As in [15, 22, 24], the convergence analysis assumes the numeri-
cal approximation of the local problems (basis functions) is exact or its associated
error is negligible (setting a fine submesh at the second level, for instance). We left
the study of the impact of the two-level discretization as well as the influence of
high-contrast coefficients on the constants out of the scope of this work (see [13]
for a related work).

As we have mentioned, the convergence analysis of the MHM method relies
on new asymptotic error estimates. To this end, we first revisit the asymptotic
expansion technique to sharpen error estimates for second-order elliptic problems
assuming rough coefficients and more diverse boundary conditions (other than the
pure Dirichlet case). In fact, Neumann or mixed boundary conditions turn out
to be natural choices in Darcy models. Also interesting, the asymptotic estimates
obtained here may be used in homogenization problems coming from other appli-
cations, e.g., composite materials, nuclear reactors, among others; see for instance
[8, 10, 26, 31] and references therein.
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Let us highlight the main asymptotic results. We estimate the error between uε

and its first-order asymptotic expansion approximation, u0 − ε χj
ε
∂u0

∂xj
, where u0 is

the solution of the homogenized problem, χj is the solution of the cell problem, and
χj
ε(x) := χj(x/ε). These terms are precisely defined in Section 2. It is well known

that if u0 ∈ W 2,∞(Ω) and χj ∈ W 1,∞
per (Y ), then the estimate

(4)

∥∥∥∥uε − u0 − ε χj
ε

∂u0

∂xj

∥∥∥∥
1

≤ c ε1/2‖u0‖2,∞

holds, where the constant c depends on γa, γb, χ
j and Ω (cf. [10, 26]). However,

the regularity assumption χj ∈ W 1,∞
per (Y ) may not be satisfied. Indeed, such a

regularity can be guaranteed if one assumes aij ∈ L∞(Y ) has discontinuities along
a C1,α curve, α > 0 (see [29, Theorem 1.1] for further details). Observe that the
usual case of a piecewise constant coefficient on polygonal subdomains of Y does not
fulfill this assumption, and thus (4) may not be used in this case. Generalizations of
estimate (4) considering weaker assumptions on χj and u0 have been investigated
by several authors in the case of Dirichlet boundary conditions; see for instance
[2, 17, 31, 32, 35].

We pursue the idea of building asymptotic estimates under weaker assumptions
on χj and u0 than those proposed in [2,32,35]. In this work, the regularity assumed
on χj and u0 follows the one adopted in [17], although the asymptotic expansion
considered here differs from the one used in [17] where more regularity is assumed
on Ω. Also, it appears that the asymptotic results in [17] do not seem to have a
straightforward application to the analysis of multiscale schemes. Finally, it seems
that the problem (1) with a Neumann or mixed boundary condition has not received
as much attention as the Dirichlet case, although some results in this direction
have been addressed in [31]. In this context, the present asymptotic expansion
results improve estimate (4) in two ways (see Theorems 1 and 2). First, we assume
u0 ∈ H2(Ω) and χj ∈ W 1,q(Y ), q > d, or u0 ∈ W 1,p(Ω), p > d, and χj ∈ H1(Y ),
which allows the piecewise constant coefficient case to be included in the analysis;
see for instance [30, Theorem 1] and [27, Theorem 10.1]. Second, we establish the
dependence of the right-hand side of (4) in terms of Ω. Such results turn out to be
central to the convergence analysis of multiscale numerical schemes.

The paper is outlined as follows: This section ends with notational conventions.
Error estimates for the first-order asymptotic expansion of the exact solution are
given in Section 2. Section 3 is dedicated to the numerical analysis of the MHM
finite element method, followed by numerical validations in Section 4. Conclusions
are drawn in Section 5.

We close this section with some notation used throughout the paper (and also
employed above). Let B ⊂ R

d be an open set and define

‖v‖m,∞,B := max
|α|≤m

{ess. sup
x∈B

|∂αv(x)|} and |v|m,∞,B := max
|α|=m

{ess. sup
x∈B

|∂αv(x)|} ,

and for 1 ≤ q < ∞

‖v‖m,q,B :=

⎛
⎝∫

B

∑
|α|≤m

|Dαv|qdx

⎞
⎠

1/q

and |v|m,q,B :=

⎛
⎝∫

B

∑
|α|=m

|Dαv|qdx

⎞
⎠

1/q

.
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We define the broken norms related to a partition Th of B in elements K by

‖v‖m,q,h :=

( ∑
K∈Th

‖v‖2m,q,K

)1/2

,

and the norm in the H(div;B) space, i.e., the space of functions belonging to L2(B)
with divergence also in L2(B), by

‖σ‖div,B :=

(∫
B

|σ|2dx+

∫
B

|∇ · σ|2dx
)1/2

.

Hereafter, we do not make reference to the domain B, or to the coefficient q
when B = Ω, or q = 2, respectively. In what follows, c denotes a generic constant
independent of ε and h, although it may change in each occurrence. Also, dΩ
denotes the side of the maximum square (or cube in 3D) contained in Ω, and LΩ

is the length of the boundary of Ω in the 2D case (or area in 3D). Throughout this
work we shall assume

dΩ > c ε ,(5)

where c > 1 is of order one. Also, we simplify the notation with respect to the
norms of χj by setting

‖χ‖s,p,Y := max
1≤j≤d

‖χj‖s,p,Y .

2. Asymptotic expansion error estimates

We start with the weak formulation of (1) which reads: Find uε ∈ H1(Ω) such
that

(6)

∫
Ω

Aε∇uε · ∇φ dx =

∫
∂ΩN

b φ ds+

∫
Ω

f φ dx for all φ ∈ V ,

under the condition uε|∂ΩD
= g if ∂ΩD 
= ∅ or

∫
Ω
uε dx = 0 if ∂ΩD = ∅, where

(7) V :=

{
{φ ∈ H1(Ω) : φ|∂ΩD

= 0} if ∂ΩD 
= ∅ ,
{φ ∈ H1(Ω) :

∫
Ω
φ dx = 0} if ∂ΩD = ∅ .

Next, we consider the ansatz

(8) uε(x) = u0(x,x/ε) + ε u1(x,x/ε) + ε2 u2(x,x/ε) + · · ·,
where the functions uj(x,y) are Y -periodic in y. Substituting (8) in equation (1)
and collecting the terms with the same order in ε define functions uj . We recall
below such a construction for the first terms in (8) (for more details, see [10, 26]).

Let χj ∈ H1
per(Y ), i.e., χj ∈ H1

loc(R
d) and is Y -periodic, be the weak solution

with zero mean value on Y of

(9) ∇y · A(y)∇yχ
j = ∇y · A(y)∇yyj =

∂

∂yi
aij(y),

and let A0 be the symmetric positive definite matrix given by

(10) A0 := (a0ij), a0ij =
1

|Y |

∫
Y

alm(y)
∂

∂yl
(yi − χi)

∂

∂ym
(yj − χj)dy.

By defining u0 ∈ H1(Ω) as the weak solution of

(11)
−∇ · (A0∇u0) = f in Ω ,

u0 = g on ∂ΩD, A0∇u · n = b on ∂ΩN ,
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the first-order corrector u1 in (8) reads

(12) u1(x,x/ε) := −χj (x/ε)
∂u0

∂xj
(x) .

Hereafter, we shall denote

(13) u1
ε(x) = u0(x) + ε u1(x,x/ε).

The following theorem provides an estimate for ‖uε − u1
ε‖1.

Theorem 1. Let uε be the solution of (1), and let u0 and u1
ε be defined by (11)-

(13). Assume (5) holds and

(14) u0 ∈ H2(Ω), χj ∈ W 1,q
per(Y ), with q > d.

Then,

(15) ‖uε − u1
ε‖1 ≤

[
(c(p′)(LΩ)

1/2−1/p′
+ c)(1 + LΩ)

]
ε1/2−1/p′‖χ‖1,q,Y ‖u0‖2,

where the last inequality holds for any 2 < p′ < Kd with

(16)

{
Kd = ∞, if d = 2 ,
Kd = 2d/(d− 2) if d > 2 .

Also, the constant c(p′) depends on p′, and c(p′) → ∞ when p′ → Kd. Finally, the
constants c and c(p′) may depend on the cone property of Ω, but they do not depend
on the size of Ω.

Proof. We start our proof following the ideas in [26, Section 1.4]. Introducing the
notation y = x/ε, we obtain

(Aε∇u1
ε)i = aij(y)

∂u1
ε

∂xj
=

(
aij(y) + aik(y)

∂χj(y)

∂yk

)
∂u0

∂xj
+ ε aij(y)χ

k(y)
∂2u0

∂xj∂xk

= a0ij
∂u0

∂xj
+ gji (y)

∂u0

∂xj
+ ε aij(y)χ

k(y)
∂2u0

∂xj∂xk
,

(17)

where gji (y) = aij(y) + aik(y)
∂χj(y)
∂yk

− a0ij . We have from (9) that the vector fields

are solenoidal, i.e. ∇y ·gj = 0, as their i-th component is gji . Hence, by Theorem 3.4
and Remark 3.11 from [16] there exists αj ∈ W 1,q

per(Y )3, ∇ ·αj = 0 (αj ∈ W 1,q
per(Y )

in the 2D case), such that

(18) gk = curlyα
k with ‖αk‖1,q,Y ≤ c ‖χj‖1,q,Y .

Equation (17) yields

(19) Aε∇u1
ε −A0∇u0 = curlyα

k(y)
∂u0

∂xj
+ ε

(
aij(y)χ

k(y)
∂2u0

∂xj∂xk

)
,

where the last term on the right-hand side of (19) is the vector whose i-th component

is aij(y)χ
k(y) ∂2u0

∂xj∂xk
. Next, we observe that

curl

(
αk(y)

∂u0

∂xk

)
= αk(y)×∇∂u0

∂xk
+ curlαk(y)

∂u0

∂xk
.
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Since curlyα
k(y)∂u0

∂xj
= ε curlαk(x/ε)∂u0

∂xj
it holds from (19) that

Aε∇u1
ε −A0∇u0 = ε curl

(
αk(x/ε)

∂u0

∂xk

)

− εαk
(x
ε

)
×∇∂u0

∂xk
+ ε χk

(x
ε

)
aij

(x
ε

) ∂2u0

∂xj∂xk
.(20)

Next, from (18) and Sobolev inequalities we obtain∥∥∥∥εαk
(x
ε

)
×∇∂u0

∂xk
+ ε χk

(x
ε

)
aij

(x
ε

) ∂2u0

∂xj∂xk

∥∥∥∥
0

≤ ε
(
‖αk‖0,∞,Y + ‖χ‖0,∞,Y

)
‖u0‖2 ≤ c ε ‖χ‖1,q,Y ‖u0‖2 ,

(21)

where the constant c depends on Y .
From the weak formulation of problems (1) and (11) and the compatibility con-

dition (3) we conclude that for any boundary condition and for all φ ∈ V

(22)

∫
Ω

(Aε∇u1
ε −A0∇u0) · ∇φ dx =

∫
Ω

(Aε∇u1
ε −Aε∇uε) · ∇φ dx.

We also observe that

∇ · curl
(
αk(x/ε)

∂u0

∂xk

)
= 0,

and, therefore, from (20) and (21) we arrive at

(23)

∣∣∣∣
∫
Ω

Aε∇(uε − u1
ε) · ∇φ dx

∣∣∣∣ ≤ c ε ‖χ‖1,q,Y ‖u0‖2|φ|1 for all φ ∈ V .

Nevertheless, the function uε−u1
ε /∈ V and, hence, we cannot choose φ = uε−u1

ε in
(23) to conclude the desired result. To overcome this difficulty, we first introduce a
cut-off function τε to define a new approximation of uε in H1(Ω). In the sequel, we
use (23) and a triangle inequality to obtain the desired result. Define τε satisfying⎧⎨

⎩
‖∇τε‖∞ ≤ c

ε ,
τε ∈ C∞

0 (Ω) ,
τε(x) = 1 if dist(x, ∂Ω) > ε .

Recalling that χj
ε(x) := χj(x/ε), we set ũ1

ε ∈ H1(Ω), the new approximation of uε,
as follows:

ũ1
ε := u0 + ε τε χ

j
ε

∂u0

∂xj
.

Now, we measure the error between u1
ε and ũ1

ε in the H1 norm. To this end, we
define

Ωε := {x ∈ Ω : dist(x, ∂Ω) ≤ ε} ,
and observe that∥∥u1

ε − ũ1
ε

∥∥2

1
=

∥∥∥∥ε (1− τε)χ
j
ε

∂u0

∂xj

∥∥∥∥
2

0,Ωε

+

∣∣∣∣ε (1− τε)χ
j
ε

∂u0

∂xj

∣∣∣∣
2

1,Ωε

≤
∥∥∥∥ε (1− τε)χ

j
ε

∂u0

∂xj

∥∥∥∥
2

0,Ωε

+ c

(∥∥∥∥ε (1− τε)
∂χj

ε

∂xk

∂u0

∂xj

∥∥∥∥
2

0,Ωε

(24)

+

∥∥∥∥ε ∂τ ε∂xk
χj
ε

∂u0

∂xj

∥∥∥∥
2

0,Ωε

+

∥∥∥∥ε (1− τε)χ
j
ε

∂2u0

∂xk∂xj

∥∥∥∥
2

0,Ωε

)
.
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The first term on the right-hand side of (24) is bounded using the Sobolev embed-
ding theorem as follows:∥∥∥∥ε (1− τε)χ

j
ε

∂u0

∂xj

∥∥∥∥
0,Ωε

≤ ε ‖χ‖0,∞,Ωε

∥∥∥∥∂u0

∂xj

∥∥∥∥
0,Ωε

≤ ε ‖χ‖1,q,Y ‖u0‖1 .

To estimate the remaining terms in (24), we use the Y -periodicity of the function
χj to get

(∫
Ωε

χj(x/ε)q dx

)1/q

≤
(
LΩ

ε

∫
εY

χj(x/ε)q dx

)1/q

≤
(
εLΩ

∫
Y

χj(y)q dy

)1/q

.(25)

The second term on the right-hand side of (24) is estimated as∥∥∥∥ε (1− τ ε)
∂χj

ε

∂xk

∂u0

∂xj

∥∥∥∥
0,Ωε

≤ ‖(1− τ ε)‖0,s,Ωε

∥∥∥∥ε ∂χj
ε

∂xk

∥∥∥∥
0,q,Ωε

∥∥∥∥∂u0

∂xj

∥∥∥∥
0,p′,Ωε

≤ |Ωε|
1
s (LΩ ε)

1
q ‖χ‖1,q,Y ‖u0‖2,Ωε

≤ c(p′)(LΩ ε)1/2−1/p′‖χ‖1,q,Y ‖u0‖2,Ωε
,

where

(26)
1

s
+

1

p′
+

1

q
=

1

2
.

The constant c(p′) depends on p′ and its dependence on Ωε relies only on the cone
property of ∂Ωε. As for the third term on the right-hand side of (24), we observe
that ∥∥∥∥ε ∂τ ε∂xk

χj
ε

∂u0

∂xj

∥∥∥∥
0,Ωε

≤
∥∥∥∥ε ∂τ ε

∂xk

∥∥∥∥
0,s,Ωε

‖χj
ε‖0,q,Ωε

‖u0‖1,p′,Ωε

≤
∥∥∥∥ε ∂τ ε

∂xk

∥∥∥∥
0,∞,Ωε

|Ωε|
1
s (LΩε)

1
q ‖χ‖0,q,Y

∥∥∥∥∂u0

∂xj

∥∥∥∥
0,p′,Ωε

≤ c(p′)(LΩ ε)1/2−1/p′‖χ‖1,q,Y ‖u0‖2,(27)

where we used (25) and that p′ and s satisfy (26). We now estimate the last term
on the right-hand side of (24) as∥∥∥∥ε τ ε χj

ε

∂2u0

∂xk∂xj

∥∥∥∥
0,Ωε

≤ ε ‖χj
ε‖0,∞,Ωε

‖u0‖2,Ωε
≤ ε ‖χ‖1,q,Y ‖u0‖2 .

Finally, gathering previous contributions, we conclude that

(28) ‖u1
ε − ũ1

ε‖1 ≤ (c(p′)(LΩ)
1/2−1/p′

+ c) ε1/2−1/p′‖χ‖1,q,Y ‖u0‖2 ,

where the constant c(p′) satisfies (16).
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We now estimate ‖uε − ũ1
ε‖1. The ellipticity of Aε in (2) and the triangle in-

equality yield ∣∣uε − ũ1
ε

∣∣2
1
≤ c

∣∣∣∣
∫
Ω

Aε∇(uε − ũ1
ε) · ∇(uε − u1

ε) dx

∣∣∣∣
+ c

∣∣∣∣
∫
Ω

Aε∇(uε − ũ1
ε) · ∇(u1

ε − ũ1
ε) dx

∣∣∣∣ ,
and from (23) and (28) we arrive at∣∣uε − ũ1

ε

∣∣
1
≤ (c(p′)(LΩ)

1/2−1/p′
+ c) ε1/2−1/p′‖χ‖1,q,Y ‖u0‖2 .

Next, from the Poincaré inequality,

(29)
∥∥uε − ũ1

ε

∥∥
1
≤

[
(c(p′)(LΩ)

1/2−1/p′
+ c)(1 + LΩ)

]
ε1/2−1/p′‖χ‖1,q,Y ‖u0‖2

holds, and we obtain (15) from the triangle inequality and from equations (28) and
(29). �

The next theorem assumes less regularity on χj , and more on u0.

Theorem 2. Let uε be the solution of (1), and let u0 and u1
ε be defined by (11)-

(13). Assume (5) holds and

(30) u0 ∈ W 2,p(Ω), χj ∈ H1
per(Y ), with p > d.

Then,

(31) ‖uε − u1
ε‖1 ≤ c ε1/2‖χ‖1,Y ‖u0‖2,p .

Proof. This result arises following closely the proof of Theorem 1 with straightfor-
ward modifications. For instance, estimate (27) now becomes∥∥∥∥ε ∂τ ε

∂xk
χj
ε

∂u0

∂xj

∥∥∥∥
0,Ωε

≤ ‖χj
ε‖0,Ωε

∥∥∥∥ε ∂τ ε

∂xk

∂u0

∂xj

∥∥∥∥
0,∞,Ωε

≤ (LΩ ε)
1
2 ‖χ‖0,Y ‖u0‖2,p,

where we used (25). �
The next theorem estimates the error between uε and u0 in the L2 norm.

Theorem 3. Let uε be the solution of (1), and let u0 and uε
1 be defined by (11)-

(13). Assume (5) holds, u0 ∈ W 2,p(Ω) and χj ∈ W 1,q
per(Y ), with p, q > d. Then,

(32) ‖uε − u0‖0 ≤ c ε ‖χ‖1,q,Y ‖u0‖2,p .

Proof. We introduce the following boundary corrector term θε ∈ H1(Ω) as the
solution of

(33) −∇ · (Aε∇θε) = 0 in Ω, θε = −u1(x,x/ε) on ∂Ω,

and observe that u0+ε u1+ε θε ∈ H1(Ω) satisfies the Dirichlet boundary condition
in (1). From the definition of θε it holds for all φ ∈ H1

0 (Ω) that

(34)

∫
Ω

(
Aε∇(u1

ε + ε θε)−Aε∇uε

)
· ∇φ dx =

∫
Ω

(Aε∇u1
ε −Aε∇uε) · ∇φ dx,

where we used notation (13). Hence, from (23) we obtain

(35)

∣∣∣∣
∫
Ω

(
Aε∇(u1

ε + ε θε)−Aε∇uε

)
· ∇φ dx

∣∣∣∣ ≤ c ε ‖χ‖1,q,Y ‖u0‖2,p|φ|1 ,
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for all φ ∈ H1
0 (Ω). Now, we take φ = uε − u1

ε − ε θε in (35) to conclude that

(36) |uε − u1
ε − ε θε|1 ≤ c ε ‖χ‖1,q,Y ‖u0‖2,p ,

and the Poincaré inequality yields

‖uε − u1
ε − ε θε‖0 ≤ c ε ‖χ‖1,q,Y ‖u0‖2,p .

Next, the maximum principle guarantees that

‖θε‖0 ≤ c (LΩ)
d ‖χ‖0,∞|u0|1,∞ ≤ c (LΩ)

d ‖χ‖1,p‖u0‖2,p ,

and the desired result follows observing that∥∥∥∥ε χj
ε

∂u0

∂xj

∥∥∥∥
0

≤ c ε ‖χ‖0,q,Y ‖u0‖1,p. �

3. Convergence analysis of a multiscale method

In this section, we analyze the convergence of the MHM method proposed in [20].
The numerical approximation of uε relies on a decomposition of uε as a result of
the hybridization technique proposed in [33]. For the sake of clarity, we summarize
next the main points of the MHM methodology assuming that b = 0 in (1) for
simplicity (see [20] for further details).

Hereafter, we assume Ω is a polygonal domain and {Th}h>0 is a family of regular

triangulations of Ω composed of elements K with boundary ∂K. We denote by Eh

the set of all faces F of elements K ∈ Th. For each F ∈ Eh, we associate a normal
n, taking care to ensure this is facing outward on ∂Ω, and we introduce the space

(37) Λ := {σ · nK |∂K : σ ∈ H(div; Ω), ∀K ∈ Th} ,

where nK denotes the outward normal vector to ∂K. We equip it with the following
norm:

‖μ‖Λ := inf{
σ ∈ H(div; Ω);

σ · nK |∂K = μ, K ∈ Th

} ‖σ‖div .(38)

We replace the weak problem (6) by the following one: Find (uε, λε) ∈ H1(Th)×Λ
such that

(39)
(Aε∇uε, ∇v)Th

+ (λε, v)∂Th
= (f, v)Th

for all v ∈ H1(Th) ,
(μ, uε)∂Th

= (μ, g)∂ΩD
for all μ ∈ Λ ,

and we note that the Neumann boundary condition is prescribed as an essential
condition, i.e., all μ in Λ vanish on ∂ΩN . Here the inner (duality) products are
given by

(φ, ψ)Th
:=

∑
K∈Th

∫
K

φψ dx and (φ, ψ)∂Th
:=

∑
K∈Th

〈φ, ψ〉∂K ,

where 〈φ, ψ〉∂K stands for the duality product between the spaces H−1/2(∂K) and
H1/2(∂K). We recognize problem (39) as the standard hybrid formulation of (6)
from which the primal hybrid methods arise [33]. Problem (39) is shown to be well-
posed with uε ∈ H1(Ω) also being the solution to (6) and λε = −Aε∇uε · nK |∂K
for all K ∈ Th.
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We now characterize the solution of (39) as a collection of solutions of local
problems which are pieced together using solutions to a global problem. To this
end, we introduce the decomposition

H1(Th) = V0 ⊕ V ⊥
0 ,

where V0 is defined by

V0 := {v ∈ L2(Ω) : v |K is constant on K ∈ Th} .
Notice that the orthogonal complement V ⊥

0 in H1(Th) corresponds to V ⊥
0 ≡

L2
0(Th) ∩H1(Th), where L2

0(Th) is the space of functions belonging to L2(Ω) with
mean value equal to zero in each K ∈ Th. Thereby, the exact solution uε ∈ H1(Th)
of (39) admits the expansion

uε = u0
ε + u⊥

ε ,(40)

in terms of a unique u0
ε ∈ V0 and u⊥

ε := uε − u0
ε ∈ V ⊥

0 .
Next, we observe that problem (39) is equivalent to: Find (u0

ε + u⊥
ε , λε) ∈

(V0 ⊕ V ⊥
0 )× Λ such that

(41)

{
(λε, v

0)∂Th
= (f, v0)Th

for all v0 ∈ V0 ,

(μ, u0
ε + u⊥

ε )∂Th
= (μ, g)∂ΩD

for all μ ∈ Λ ,

(42) (Aε∇u⊥
ε , ∇v⊥)Th

= −(λε, v
⊥)∂Th

+ (f, v⊥)Th
for all v⊥ ∈ V ⊥

0 .

Thereby, a portion of the solution to problem (39) may be computed locally from λε

and f . Indeed, from (42) the component u⊥
ε of the exact solution can be expanded

as

u⊥
ε = Tε λε + T̂ε f ,(43)

where Tε : Λ → V ⊥
0 and T̂ε : L2(Ω) → V ⊥

0 are linear bounded operators. They are
well defined locally on each K ∈ Th through the (unique) weak solutions of

(44) −∇ · (Aε∇Tε μ) = cμK in K, −Aε∇Tε μ · nK = μ on F ⊂ ∂K ,

and

(45) −∇ ·
(
Aε∇T̂ε q

)
= q − q̄K in K, Aε∇T̂ε q · nK = 0 on F ⊂ ∂K ,

where

(46) q̄K :=
1

|K|

∫
K

q dx and cμK :=
1

|K|

∫
∂K

μ ds .

Decomposition (43) provides us a way to eliminate the portion of the solution
u⊥
ε in terms of λε and f . As such, we complete the characterization of the exact

solution uε by replacing (43) in (41) and solving the resulting global problem: Find
(u0

ε, λε) ∈ V0 × Λ such that

(47)

{
(λε, v

0)∂Th
= (f, v0)Th

for all v0 ∈ V0 ,

(μ, u0
ε + Tε λε)∂Th

= −(μ, T̂ε f)∂Th
+ (μ, g)∂ΩD

for all μ ∈ Λ .

Owing to the previous definitions, we establish from (40) and (43) that the exact
solution uε of (39) (e.g. (6)) can be characterized as follows:

(48) uε = u0
ε + Tελε + T̂εf .
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We use the equivalence between the local-global coupled system (44)-(45) and
(47) and the original problem (6) (in the sense that (48) also satisfies (6)) to build
the numerical method for (44)-(45) and (47). We start selecting Λh as a continuous
polynomial subspace of Λ which embeds the space of piecewise constant functions
on Eh. The underlying MHM method corresponds to the standard Galerkin method
over the space Λh: find (u0,h

ε , λh
ε ) ∈ V0 × Λh satisfying

(49)

{
(λh

ε , v
0)∂Th

= (f, v0)Th
for all v0 ∈ V0 ,

(μh, u0,h
ε + Tελ

h
ε )∂Th

= −(μh, T̂εf)∂Th
+ (μh, g)∂ΩD

for all μh ∈ Λh ,

where Tελ
h
ε and T̂εf solve (44) and (45) with μ = λh

ε and q = f , respectively. The
exact solution uε is then approximated as follows:

(50) uε ≈ uh
ε := u0,h

ε + Tελ
h
ε + T̂εf .

The assumption that Λh includes the space of piecewise constant functions on Eh

yields the well-posedness of the MHM method (49) (see [20, Theorem 3.2]).

Remark 4. Discretization decouples the local problems (44)-(45) from the global
one (49). Thereby, a staggered algorithm can be adopted to solve the system. To
see this more clearly, it is instructive to consider T λh

ε in more detail. Suppose

{ψi}dimΛh

i=1 is a basis for Λh, and define the set {ηi}dimΛh

i=1 ⊂ V ⊥
0 such that

(51) −∇ · (Aε∇Tε ηi) = cψi

K in K, −Aε∇Tε ηi · nK = ψi on F ⊂ ∂K ,

i.e., ηi = Tε ψi, where ψi changes its sign in (51) according to the sign of n ·nK |F .
Now, given λh

ε =
∑dimΛh

i=1 ci ψi in Λh, ci ∈ R, the linearity of problem (44) implies
we may uniquely write

Tε λ
h =

dimΛh∑
i=1

ci Tε ψi =

dimΛh∑
i=1

ci ηi .

Therefore, the degrees of freedom ci of λ
h
ε are “inherited” by Tε λ

h
ε . It then follows

from (50) that

uh
ε = u0,h

ε +
dimΛh∑
i=1

ci ηi + T̂ε f .(52)

As a result, the global formulation (49) is responsible for computing the degrees
of freedom of u0,h

ε (one per element) and the ci’s in (52), once the multiscale basis

functions ηi and T̂εf are available from the local problems. Also, it is interesting to
note that heterogeneous and/or high-contrast aspects of the media automatically

impact the design of the basis functions ηi as well as T̂ε f as they are driven by (51)
and (45), respectively.

Observe that uh
ε /∈ H1(Ω), i.e., the MHM method is non-conforming with respect

to H1(Ω). Also, it is interesting to note that built within the approach is an
approximation of the dual variable σε := −Aε∇uε through the formula

(53) σh
ε := −Aε∇

(
Tελ

h
ε + T̂εf

)
∈ H(div; Ω) .

As a result, the MHM method is an H(div; Ω) conforming approach. Also, it is
worth mentioning that, from (47) and (49), λε and λh

ε satisfy the compatibility
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condition

(54)
1

|K|

∫
∂K

λε ds = f̄K =
1

|K|

∫
∂K

λh
ε ds ,

which ensures the consistency of the coupled global-local formulation (44)-(45) and
(47) (or of the MHM method (49)).

In summary, the staggered algorithm for computing an approximation to uε and
σε is:

(i) compute T̂εf from (45) and the multiscale basis {ηi}dimΛh

i=1 from (51) as a
local highly parallelizable preprocessing step;

(ii) compute the degrees of freedom of u0,h
ε and λh

ε from (49), noting that T λh
ε

expands in terms of {ηi}dimΛh
ε

i=1 using the degrees of freedom for λh
ε ;

(iii) build the approximate solution uh
ε from (52) and σh

ε from (53).

We now estimate the error |uε − uh
ε |1,h, which from (48) and (50) corresponds

to measure |Tελε − Tελ
h
ε |1,h. First, notice that |Tε μ|1,h actually defines a norm on{
μ ∈ Λ : (μ, v0)∂Th

= 0 , ∀v0 ∈ V0

}
.(55)

Indeed, from the definitions of ‖ · ‖Λ in (38) and the operator Tε in (44), ellipticity
condition (2), and the fact that ∇ · (Aε∇Tε μ) = 0 in each K ∈ Th, we get

(56) ‖μ‖Λ ≤ c |Tε μ|1,h .

To measure |uε−uh
ε |1,h we first remark that u0, the solution of the homogenized

problem (11), can also be decomposed in global-local problems as

(57) u0 = u0
0 + T0 λ0 + T̂0 f ,

where T0 : Λ → V ⊥
0 and T̂0 : L2(Ω) → V ⊥

0 are linear bounded operators defined

such that T0 μ and T̂0 q restricted to each K satisfy, respectively,

(58) −∇ · (A0∇T0 μ) = cμK in K, −A0∇T0 μ · nK = μ on F ⊂ ∂K ,

and

(59) −∇ ·
(
A0∇T̂0 q

)
= q − q̄K in K, A0∇T̂0 q · nK = 0 on F ⊂ ∂K .

These local problems are brought together by searching for (u0
0, λ0) ∈ V0×Λ as the

solution of

(60)

{
(λ0, v

0)∂Th
= (f, v0)Th

for all v0 ∈ V0 ,

(μ, u0
0 + T0 λ0)∂Th

= −(μ, T̂0 f)∂Th
+ (μ, g)∂ΩD

for all μ ∈ Λ .

Observe that the first equation in the system above ensures the consistency of the
coupled global-local formulation (58)-(60).

We now set up the asymptotic regime in which the forthcoming convergence
results will be proved. Let dK be the side of the largest square (or cube in 3D)
contained in K ∈ Th. Hereafter, we shall assume that

(61) inf
K∈Th

dK > c ε ,

where c > 1 is of order one. Observe that such a regime is in accordance with
practical standpoints. The following lemma is central to prove the convergence of
the MHM method.
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Lemma 5. Assume (61) holds, and u0 ∈ W 2,p(Ω) and χj ∈ W 1,q
per(Y ), with p

and q satisfying either (14) or (30). Also, let T̂0 f be defined by (59), and assume

T̂0 f |K ∈ W 2,p(K) for all K ∈ Th. Then,∥∥∥∥Tελε − T0λ0 − ε χj
ε

∂T0λ0

∂xj

∥∥∥∥
1,h

≤ c(p′) ε1/2−1/p′‖χ‖1,q,Y
(
‖u0‖2,p + ‖T̂0f‖2,p,h

)
,

where

(62)

{
2 < p′ < Kd and Kd satisfies (16) if (14) holds ,
p′ = ∞ if (30) holds ,

and the constant c(p′) is such that c(p′) → ∞ when p′ → Kd.

Proof. We consider only the case when (14) holds, since the other case is proved in
a similar manner. From Theorem 1 applied to uε it holds that

(63)

∥∥∥∥uε − u0 − ε χj
ε

∂u0

∂xj

∥∥∥∥
1

≤ c(p′) ε1/2−1/p′‖χ‖1,q,Y ‖u0‖2,p.

Also, observing that the result in Theorem 1 does not depend on the diameter of Ω,
and using the definition of the operator T̂ε in (45), it holds from Theorem 1 (with

Ω replaced by K and uε by T̂ε f) that T̂ε f |K satisfies

(64)

∥∥∥∥∥T̂ε f − T̂0 f − ε χj
ε

∂T̂0 f

∂xj

∥∥∥∥∥
1,h

≤ c(p′) ε1/2−1/p′‖χ‖1,q,Y ‖T̂0 f‖2,p,h.

Next, we use the characterization of u0 and uε given in (57) and (48), respectively,
and the triangle inequality to arrive at∥∥∥∥Tελε − T0λ0 − ε χj

ε

∂T0λ0

∂xj

∥∥∥∥
1,h

=

∥∥∥∥uε − T̂ε f − u0 + T̂0 f − ε χj
ε

∂T0λ0

∂xj

∥∥∥∥
1,h

=

∥∥∥∥∥uε − u0 − ε χj
ε

∂u0

∂xj
− T̂ε f + T̂0 f + ε χj

ε

∂T̂0 f

∂xj

∥∥∥∥∥
1,h

≤
∥∥∥∥uε − u0 − ε χj

ε

∂u0

∂xj

∥∥∥∥
1,h

+

∥∥∥∥∥T̂ε f + T̂0 f + ε χj
ε

∂T̂0f

∂xj

∥∥∥∥∥
1,h

≤ c(p′) ε1/2−1/p′‖χ‖1,q,Y (‖u0‖2,p + ‖T0f‖2,p,h)
and the result follows. �

Remark 6. The previous lemma assumed that T̂0f |K ∈ W 2,p(K) for all K ∈ Th,
since the estimates depend on ‖T̂0f‖2,p,h. When p = 2, d = 2 and f ∈ L2(Ω),
the regularity theory for elliptic equations and the assumption {Th}h>0 is regular
ensure that (see [18])

(65) T̂0f |K ∈ H2(K) and ‖T̂0f‖2,K ≤ c ‖f‖0,K ,

where the constant c is independent of K. To guarantee that such an estimate holds
in the case d = 3, we assume that the elements of Th are affine transformations of
a finite set of reference elements. Also, in the case that p > 2, d = 2 or d = 3, we
may not infer that T̂0f |K ∈ W 2,p(K) if f ∈ Lp(Ω) due to the polygonal boundary
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of K, and then, (65) cannot be used. Moreover, there exist conditions on K ∈ Th
such that if T̂0f |K ∈ W 2,p(K), then ‖T̂0f‖2,p,h ≤ c ‖f‖p when p < ∞ and d = 2
(see [18, Theorem 4.3.2.4]). In order to avoid unnecessary technicalities, we shall
prove the next results under the condition p = 2.

Next, we prove a best approximation result. To this end, we introduce a subset
of the discrete space Λh which embeds the condition (54); more specifically,

Λh
∗ :=

{
μ ∈ Λh :

∫
∂K

μ ds =

∫
K

f dx, ∀K ∈ Th
}

.

Lemma 7. Let uε be the exact solution of (1) and let uh
ε be the approximate solution

given by (50). Assume u0 ∈ H2(Ω) and χj ∈ W 1,q
per(Y ), with q > d, f ∈ L2(Ω),

and (61) and (65) hold. Then,

|uε − uh
ε |1,h ≤ c(p′) ε1/2−1/p′‖χ‖1,q,Y (‖u0‖2 + ‖f‖0)(66)

+ inf
μh∈Λh

∗

[
c(p′) ε1/2−1/p′‖χ‖1,q,Y ‖T0μ

h‖2,h

+

∣∣∣∣T0λ0 + εχj
ε

∂T0λ0

∂xj
− T0μ

h − εχj
ε

∂T0μ
h

∂xj

∣∣∣∣
1,h

]
,

where we can choose p′ > 2 satisfying (62), and the constant c(p′) depends on
p′ (c(p′) → ∞ when p′ → Kd).

Proof. We recall from [4, Lemma 3.5] that

|uε − uh
ε |1,h = |Tελε − Tελ

h
ε |1,h

≤ c inf
μh∈Λh

‖λε − μh‖Λ.(67)

Next, we restrict the infimum in (67) to Λh
∗ and use that λε − μh belongs to the

space defined by (55) to get

|uε − uh
ε |1,h ≤ c inf

μh∈Λh
‖λε − μh‖Λ

≤ c inf
μh∈Λh

∗

‖λε − μh‖Λ

≤ c inf
μh∈Λh

∗

|Tελε − Tεμ
h|1,h

≤ c inf
μh∈Λh

∗

[
|Tελε − Tελ0|1,h + |Tελ0 − Tεμ

h|1,h
]
,(68)

where we used (56) and the triangle inequality. The second term on the right-hand
side of (68) is also bounded using the triangle inequality as follows:

|Tελ0 − Tεμ
h|1,h ≤

∣∣∣∣Tελ0 − T0λ0 − ε χj
ε

∂T0λ0

∂xj

∣∣∣∣
1,h

(69)

+

∣∣∣∣Tεμ
h − T0μ

h − ε χj
ε

∂T0μ
h

∂xj

∣∣∣∣
1,h

+

∣∣∣∣T0λ0 + ε χj∂jT0λ0 − T0μ
h − ε χj

ε

∂T0μ
h

∂xj

∣∣∣∣
1,h

.
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We observe that T0μ
h |K ∈ H2(K) from a standard regularity argument [18] and

characterization (57) and the regularity assumptions on u0 and on f yield T0λ0 |K ∈
H2(K). Hence, from the definition of the operator Tε (see (44)) and the fact that
Theorem 1 does not depend on the size of Ω, we can also use this result applied
to Tελ0 |K (i.e. replacing Ω by K and uε by Tελ0 ) to estimate the first term on
the right-hand side of (69). The second term on the right-hand side of (69) is also
estimated through Theorem 1 applied to Tεμ

h. Thus, the term |Tελ0 − Tεμ
h|1,h

in (68) is bounded as desired. Similarly, from the triangle inequality the term
|Tελε − Tελ0|1,h in (68) is bounded as follows:

|Tελε − Tελ0|1,h ≤
∣∣∣∣Tελε − T0λ0 − ε χj

ε

∂T0λ0

∂xj

∣∣∣∣
1,h

+

∣∣∣∣T0λ0 + ε χj
ε

∂T0λ0

∂xj
− Tελ0

∣∣∣∣
1,h

.

(70)

Next, Lemma 5 provides an estimate for the first term in the right-hand side of
(70), while the second one is estimated using Theorem 1 as T0λ0|K ∈ H2(K). The
final result follows from summing up all contributions. �

We now choose μh in (66) with approximation properties to estimate |uε−uh
ε |1,h

with respect to h. To this end, we assume χj ∈ W 1,∞
per (Y ) and apply Theorem 1.

Theorem 8. Let uε be the solution of (1) and let uh
ε be its numerical approximation

defined by (50). Also, let σε := −Aε∇uε be the post-processed exact dual variable
and let σh

ε be its approximation given by (53). Assume u0 ∈ H2(Ω), χj ∈ W 1,∞
per (Y ),

f ∈ L2(Ω), and (61) and (65) hold. Then,

|uε − uh
ε |1,h ≤ c1(p

′)
(
ε1/2−1/p′

+ h
)
‖χ‖1,∞,Y (‖u0‖2 + ‖f‖0) ,(71)

‖σε − σh
ε‖div ≤ c2(p

′)
(
ε1/2−1/p′

+ h
)
‖χ‖1,∞,Y (‖u0‖2 + ‖f‖0) ,(72)

where p′ satisfies (16).

Proof. We first observe that

∣∣∣∣T0λ0 + ε χj
ε

∂T0λ0

∂xj
− T0μ

h − ε χj
ε

∂T0μ
h

∂xj

∣∣∣∣
1,h

≤
∣∣T0λ0 − T0μ

h
∣∣
1,h

(73)

+

∣∣∣∣ε χj
ε

∂T0λ0

∂xj
− ε χj

ε

∂T0μ
h

∂xj

∣∣∣∣
1,h

and ∣∣∣∣ε χj
ε

∂T0λ0

∂xj
− ε χj

ε

∂T0μ
h

∂xj

∣∣∣∣
1,h

≤ ε ‖χ‖0,∞,Y ‖T0λ0 − T0μ
h‖2,h(74)

+ ‖χ‖1,∞,Y ‖T0λ0 − T0μ
h‖1,h .

Noting that T0λ
h and T̂0 f belong to H2(Th) and choosing μh ∈ Λh

∗ such that
μh |F = 1

|F |
∫
F
λ0, we conclude from [33, Theorem 4.1] that

(75) ‖T0λ0 − T0μ
h‖1,h ≤ c h ‖u0‖2 and ‖T0λ0 − T0μ

h‖2,h ≤ c ‖u0‖2 .
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Therefore, result (71) follows from Lemma 7. Estimate (72) results from (71),
ellipticity condition (2) and observing that, for all K ∈ Th,

∇ ·
(
σε − σh

ε

)
= −∇ ·

(
Aε∇Tε(λε − λh

ε )
)
= 0(76)

holds, since λε − λh
ε belongs to space (55). �

We next present a convergence result assuming minimal regularity from χj and
u0. As expected, we do not obtain sharp error estimates in terms of h.

Theorem 9. Let uε be the solution of (1) and let uh
ε be its numerical approximation

defined by (50). Also, let σε := −Aε∇uε be the post-processed exact dual variable
and let σh

ε be its approximation given by (53). Assume u0 ∈ H2(Ω), χj ∈ W 1,q
per(Ω),

q > d, f ∈ L2(Ω), and (61) and (65) hold. Then,

|uε − uh
ε |1,h ≤ c1(p

′)
(
ε1/2−1/p′

+ h1− d
q

)
‖χ‖1,q,Y (‖u0‖2 + ‖f‖0) ,(77)

‖σε − σh
ε‖div ≤ c2(p

′)
(
ε1/2−1/p′

+ h1− d
q

)
‖χ‖1,q,Y (‖u0‖2 + ‖f‖0) ,(78)

where p′ satisfies (16).

Proof. This result is obtained from Theorem 1 and an argument similar to the one
used in the proof of Theorem 8. In particular, to estimate the second term on the
right-hand side of (73) we set 1/p+1/q = 1/2 and use Hölder’s inequality to obtain∥∥∥∥ε ∂χj

ε

∂xk

∂(T0λ0 − T0μ
h)

∂xj

∥∥∥∥
0

≤ ‖χ‖1,q,Y ‖T0λ0 − T0μ
h‖1,p,h

≤ c ‖χ‖1,q,Y ‖T0λ0 − T0μ
h‖1+s,h

≤ c h1−s‖χ‖1,q,Y ‖T0λ0 − T0μ
h‖2,h ,

with (see [1, Theorem 7.57])

2d

d− 2s
= p and hence s =

d

q
.

The other terms are bounded following the proof of Theorem 1 with straightforward
modifications. �

Remark 10. Under the assumptions that T0 μ
h ∈ W 2,p(Th) and T̂0 f ∈ W 2,p(Th),

and χj ∈ W 1,∞
per (Y ) and u0 ∈ W 2,p(Ω), with p > d, it holds from Remark 6 that

the approximation error in the broken H1 norm is O(h+ ε1/2).

Our final result measures the error in the L2 norm. Unlike classical approaches,
we do not employ duality techniques and, therefore, no extra regularity is assumed.

Theorem 11. Let uε be the solution of (1) and let uh
ε be its numerical approxi-

mation defined by (50). Assume u0 ∈ H2(Ω), χj ∈ W 1,∞
per (Y ), f ∈ L2(Ω), and (61)

and (65) hold. Then,

‖uε − uh
ε‖0 ≤ c1(p

′)h
(
ε1/2−1/p′

+ h
)
‖χ‖1,∞,Y (‖u0‖2 + ‖f‖0) ,(79)

where p′ satisfies (16).
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Proof. From the definition of uε and uh
ε we get

‖uε − uh
ε‖0 ≤ ‖u0

ε + Tελε − u0,h
ε − Tελ

h
ε‖0

≤ ‖u0
ε − u0,h

ε ‖0 + c h |Tελε − Tελ
h
ε |1,h,(80)

where we used the triangle inequality, the Poincaré inequality, and the assumption
on the regularity of the mesh.

Next, we estimate ‖u0
ε − u0,h

ε ‖0. Without losing generality, we assume that
u0
ε − u0,h

ε ∈ V0 does not vanish in K ∈ Th. Let σ	 be the vector-valued function
belonging to the lowest order Raviart-Thomas space such that ∇ · σ	 = u0

ε − u0,h
ε .

We recall that σ	 · nK |∂K is piecewise constant for all K in Th. Now, from (47),
the fact that Tελε |K and Tελ

h
ε |K belong to L2

0(K) for all K ∈ Th and the Cauchy-
Schwarz inequality, we get

‖u0
ε − u0,h

ε ‖0 =
(∇ · σ	, u0

ε − u0,h
ε )Th

‖∇ · σ	‖0

=

∑
K∈Th

(σ	 · nK , u0
ε − u0,h

ε )∂K

‖∇ · σ	‖0

= −
∑

K∈Th
(σ	 · nK , Tελε − Tελ

h
ε )∂K

‖∇ · σ	‖0

= − (σ	,∇(Tελε − Tελ
h
ε ))Th

+ (∇ · σ	, Tελε − Tελ
h
ε )Th

‖∇ · σ	‖0

= − (σ	,∇(Tελε − Tελ
h
ε ))Th

‖∇ · σ	‖0
and hence

‖u0
ε − u0,h

ε ‖0 ≤
∑

K∈Th
‖σ	‖0,K‖∇(Tελε − Tελ

h
ε )‖0,K

‖∇ · σ	‖0
≤ c h |Tελε − Tελ

h
ε |1,h ,

where we used that ‖σ	‖0,K ≤ c hK ‖∇ · σ	‖0,K from a scaling argument (cf. [11,
page 111]) and the regularity of the mesh. Collecting the previous results, we get
from (80) the existence of c such that

‖uε − uh
ε‖0 ≤ c h |uε − uh

ε |1,h ,
and the result follows from Theorem 8. �

Remark 12. If we further assume regularity u0 ∈ Hk+1(Ω) in Theorems 8 and 11

and T̂0 f ∈ Hk+1(Th), with k ≥ 1, then we can choose Λh such that high-order
h-convergence is achieved. To this end, select Λh such that it embeds the space
P
k(F ) of piecewise polynomial functions of degree less than or equal to k on F ∈ Eh,

and take μh ∈ P
k(F ) as the L2 projection of λ0 on P

k(F ). From [33, Theorem 4.1]
it holds that ‖T0λ0 − T0μ

h‖1,h ≤ c hk ‖u0‖k+1 , and following closely the proof of
Theorems 8 and 11, we get

|uε − uh
ε |1,h ≤ c1(p

′)
(
ε1/2−1/p′

+ hk
)
‖χ‖1,∞,Y (‖u0‖k+1 + ‖T̂0 f‖k+1,h) ,

‖uε − uh
ε‖0 ≤ c2(p

′)h
(
ε1/2−1/p′

+ hk
)
‖χ‖1,∞,Y (‖u0‖k+1 + ‖T̂0 f‖k+1,h) ,

where p′ satisfies (16).
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4. Numerical validation

We assess the theoretical convergence results through a problem with a highly-
oscillatory coefficient. The domain is a unit square with prescribed homogeneous
Dirichlet boundary conditions, f(x) = sin(x1) sin(x2), and coefficient given by

Aε(x) =
[
1 + 100 cos2(

πx1

ε
) sin2(

πx2

ε
)
]
I ,

where ε is a small parameter defining the periodicity and I is the identity matrix.
The reference solution is depicted in Figure 1 with ε = 1

64 . It is constructed using a
mesh composed by 16, 777, 216 quadrilateral bilinear elements. The MHM method
is validated using quadrilateral elements with piecewise constant interpolation on
edges to approximate the Lagrange multipliers. The multiscale basis functions ηi
and T̂εf are approximated at the local level by the standard Galerkin method over
the bilinear continuous polynomial space defined on structured submeshes. The
submeshes are selected such that functions ηi and T̂εf are accurately approximated
so as the underlying errors do not impact the MHM method. A typical basis
function (ε = 1

64 ) is shown in Figure 1.

Figure 1. Isolines of the reference solution (left) and the elevation
of a multiscale basis function (right). Here ε = 1

64 .

First, we verify that the theoretical errors with respect to ε in the H1 and
L2 norms hold. This is shown in Figure 2. To avoid any pollution of the error
estimates by the mesh parameter h, we decrease it proportionally to ε1/2 as ε tends
to zero. We observe that the numerics agree with the predicted results presented
in Theorems 8 and 11.

The next test verifies that the MHM method produces resonance-free error es-
timates under the assumption (61). To this end, we investigate the error in the L2

norm and broken H1 semi-norm when ε and h tend to zero all together. Here we set
ε
h = 1

8 . Figure 3 depicts the convergence results which are in agreement with the
estimates presented in Theorems 8 and 11, with the upshot that super-convergence
is found at the first points.
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ε
0.0078125 0.0138889 0.0312500 0.0555556 0.1250000

||u
ε
−
u
h ε
|| 0

0.0000305

0.0000536

0.0001254

0.0002410

0.0006579

MHM
ε

ε
0.0078125 0.0138889 0.0312500 0.0555556 0.1250000

|u
ε
−

u
h ε
| 1,

h

0.0018798

0.0026456

0.0038482

0.0054066

0.0092638

MHM√
ε

Figure 2. Convergence history with respect to ε agree with the
theoretical estimates.

ε
0.0078125 0.0156250 0.0312500 0.0625000

||u
ε
−
u
h ε
|| 0

0.0000209

0.0000371

0.0001250

0.0006477

MHM
ε0.84

ε
0.0078125 0.0156250 0.0312500 0.0625000

|u
ε
−

u
h ε
| 1,

h

0.0016422

0.0021834

0.0038482

0.0090874

MHM
ε0.42

Figure 3. Convergence history with respect to ε
h such that ε

h = 1
8 .

We observe resonance-free errors as predicted by the theory.

Next, we investigate the convergence with respect to h for a fixed (small) value of
ε. To this end, we set ε = π

150 to fit the benchmark proposed in [28] in which some
of the most relevant and recent multiscale finite element methods are compared.
In Figure 4, we present the relative error in the L2 and broken H1 norms. We find
that the results from the MHM method are qualitatively equivalent to the ones in
[28].

h
0.00391 0.00781 0.01563 0.03125 0.06250 0.12500 0.25000 0.50000

||u
ε−

u
h ε
|| 0

||u
ε||

0

0.02480

0.03218

0.04049

0.07037

0.08854

0.13728

0.46300

MHM

h
0.00391 0.00781 0.01563 0.03125 0.06250 0.12500 0.25000 0.50000

||u
ε−

u
h ε
|| 1

,h

||u
ε||

1,
h

0.15611

0.17922

0.23897
0.25932

0.29491

0.34871

0.71506

MHM

Figure 4. Convergence history with respect to h fixing ε = π
150 .
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As in [28], we identify three different regimes. First, we recover the expected
theoretical convergence in the case ε

h ≤ 1
6 . Such an upper-bound is comparable

to the one found with the MsFEM method presented in [24]. It is worth recalling
that the numerical results from the MHM method are obtained without using any
oversampling techniques. A second regime is found in the interval 1

6 < ε
h ≤ 1 in

which the numerical results show an increasing error of order h−1. Observe that
this regime stays outside of the current theory. The convergence is recovered when
ε
h ≥ 1 as expected since the mesh is fine enough to capture the overall scales of the
reference solution.

Despite being beyond the scope of the theory, the convergence in the intermediate
regime ( 16 < ε

h ≤ 1) can be recovered by enhancing the space of approximation of
the Lagrange multipliers. Specifically, we replace the interpolation space using one
piecewise constant function per edge by the space spanned by multiple piecewise
constant functions on each edge. See Figure 5 for an illustrative comparison between
these different interpolation choices on triangles.

Figure 5. Illustration of different interpolation spaces on edges.
The one constant (left) and the two constants (right) cases [21].

Specifically, we set a structured quadrilateral mesh with h = 1
8 and progressively

increase the number of degrees of freedom on each edge. We compute the relative
error in the broken H1 norm using this strategy (called space-based) and compare
it to the one obtained from successive mesh refinements (called mesh-based). The
results are depicted in Figure 6. On the left side of Figure 6, we analyze the result
from the perspective of the diameter h, where h stands for the diameter of the edge
partition in the space-based case (here the mesh is fixed with diameter 1

8 ) and h
recovers its usual meaning in the mesh-based case. On the right side of Figure 6,
we perform the same analysis but now with respect to the number of degrees of
freedom NDOF .

We observe that the drawback shown in the mesh refinement strategy is com-
pletely overcome by the space-based enhancing approach. As a result the underlying
error is drastically decreased with the upshot that the region of error divergence
(of order h−1) is no longer presented. In addition, considerably fewer degrees of
freedom are necessary to achieve a given error threshold. We recall that such be-
havior is achieved without any oversampling technique and it is not predicted by
the current theory. This indicates that such a very promising aspect of the MHM
method deserves further investigations.
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h
0.001 0.00391 0.00781 0.01563 0.03125 0.0625 0.125 0.25 0.5 1

||u
ε−

u
h ε
|| 1

,h

||u
ε||

1,
h

0.04

0.06

0.12

0.18

0.29

0.72

MESH-BASED
SPACE-BASED

1
NDOF

0,000001 0.00001 0.0001 0.001 0.01 0.1

||u
ε−

u
h ε
|| 1

,h

||u
ε||

1,
h

0.03969

0.05614

0.12410

0.17922

0.23896

0.29491

0.715062

MESH-BASED
SPACE-BASED

Figure 6. Convergence history. Comparison between the one
piecewise constant interpolation per edge case with mesh refine-
ment (mesh-based) and the multiple piecewise constant interpo-
lation per edge case on a fixed mesh (space-based). The latter
induces a tremendous improvement in the quality of the numerical
results with fewer degrees of freedom.

5. Conclusion

We showed that the MHM method is robust with respect to the small parameter
ε under mild regularity conditions. This was made possible by the association
of the new asymptotic error estimates with the innovative form and properties
of the MHM method. To our knowledge, such uniform bound estimates are the
first to be established for a multiscale numerical algorithm within the standard
Galerkin method. Also, the local boundary conditions are built from an entirely
local strategy. It is worth mentioning that theoretical results are supported by the
numerics presented in this work and in [4, 20].
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