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—NOTES—

A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR
PROBLEMS IN LEAST SQUARES*
By KENNETH LEVENBERG1 (Frankford Arsenal)

The standard method for solving least squares problems which lead to non-linear
normal equations depends upon a reduction of the residuals to linear form by first
order Taylor approximations taken about an initial or trial solution for the parame-
ters.2 If the usual least squares procedure, performed with these linear approxima-
tions, yields new values for the parameters which are not sufficiently close to the ini-
tial values, the neglect of second and higher order terms may invalidate the process,
and may actually give rise to a larger value of the sum of the squares of the residuals
than that corresponding to the initial solution. This failure of the standard method
to improve the initial solution has received some notice in statistical applications of
least squares3 and has been encountered rather frequently in connection with certain
engineering applications involving the approximate representation of one function
by another. The purpose of this article is to show how the problem may be solved
by an extension of the standard method which insures improvement of the initial
solution.4 The process can also be used for solving non-linear simultaneous equations,
in which case it may be considered an extension of Newton's method.

Let the function to be approximated be h{x, y, z, • • • ), and let the approximating
function be H{oc, y, z, • • ■ ; a, j3, y, ■ • ■ ), where a, /3, 7, • ■ ■ are the unknown param-
eters. Then the residuals at the points, yit zit • • • ), i = 1, 2, ■ • • , n, are

/,•(«, /3, 7, • • • ) = H(xi, yit zit • • • ; a, /3, y, ■ • • ) — h(xit yit z,-, • • • ), (1)

and the least squares criterion requires the minimization of
n

s(a, 0, 7. * * * ) = £ /<- (2)
1

(It is assumed that the weights of the residuals are unity. If not, consider the func-

* This paper was read before the Annual Meeting of the American Mathematical Society in Chicago,
111., on Nov. 26, 1943. Manuscript received Feb. 2, 1944.

1 The writer wishes to thank Dr. J. G. Tappert, under whose direction the method of damped least
squares was developed, and Dr. H. B. Curry, for valuable suggestions and guidance.

! E. T. Whittaker and G. Robinson, The calculus of observations, Blackie and Son, London, 1937,
p. 214.

3 E. B. Wilson and R. R. Puffer, Leasl squares and laws of population growth, Proc. Amer. Acad. Arts
and Sci. (Boston), 68, 285-382 (1933).

4 Another extension of the standard method, which requires the use of second partial derivatives,
is given by Wilson and Puffer (I.e.).

A different kind of approach, not based upon the standard method, is given by Cauchy, MSthode
generate pour la resolution des systemes d'equations simultanees, C. R. Acad. Sci. Paris, 25, 536-538 (1847).
See also a paper by H. B. Curry, not yet published, (abstract in Bull. Amer. Math. Soc., 49, 859 (1943),
abstract No. 278).
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tion fi to be the product of the residual and the square root of the corresponding
weight.) Choosing an initial solution, po = (ao, /So, To, • • • ), at which it is assumed
that 5 does not have a stationary value, the first order Taylor expansions of the
residuals are taken about po, giving a set of linear approximations to the residuals,

/,(«, /3, y, • • • )££Fi(a, 0, 7, ■ • • ) = Mpo) + Aa + A/3 + A7 + • • • , (3)
da 3/3 dy

where Aa=a-a0, A/3 = /3 —/3C, • • • , and the partial derivatives are evaluated at p0.
Now, the standard method consists of minimizing

«
S(a,/3, 7, • • • ) = (4)

1

by setting the partial derivatives of S with respect to the various parameters equal
to zero, yielding the usual linear normal equations,

1 dS
■— — = [aa]la + [a/3] A/3 -f- [a7]A7 + • • • + [aO] = 0,
2 da

1 d S (5^
 = [/3«]A a + [/3/3]A/3 + [/3T]A7 + • ■ • + [(30 ] = 0,2 dp

where the notation [ ] is a symbol of summation, so that, e.g.,

Ml -£(£■/.). etc.

However, as pointed out above, the values of the increments, A a, A/3, A7, • • • , ob-
tained by solving equations (5), may be so large in absolute value as to invalidate the
approximations (3) so that the decrease in 5 may not correspond to a decrease in 5.

In such cases, it would seem advisable to limit or "damp" the absolute values of
the increments of the parameters in order to improve the first order Taylor approxi-
mations (3) and to minimize simultaneously the sum of the squares of the approximat-
ing residuals (4) under these damped conditions. In order to make both the incre-
ments and the residuals small in absolute value, the least squares idea can be em-
ployed. The sum of the squares of both the residuals and the increments may be
minimized. More precisely, the expression to be minimized will be -

S(a, /3, 7, • • • ) = wS(a, /8, y, ■ ■ ■ ) -f a(Aa)2 + b(A/3)2 + c(A7)2 + • ■ • , (6)

where a, b, c, ■ ■ • are a system of positive constants or weighting factors expressing
the relative importance of damping the different increments, and w is a positive
quantity expressing the relative importance of the residuals and increments in this
minimizing process. If we denote the point at which S takes its minimum, for any
positive value of w, by pw = (<Xu>, Pw, 7», • • • ), and set

Q(a, /3, 7, • • ■ ) = a(Aa)2 + 6(A/3)2 + c(AT)2 +•••,' (7)

it is seen, under the assumption that s is not stationary at p0, that
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wS(pw) < wS(pw) + Q{pw) = S(pw) < S(p0) = wS{p0) + Q(po) = wS(po),

whence S(pw) < S(po). (8)

Also, denoting the standard least squares solution by p„ (the reason for the notation
is discussed later), we have

wS{pw) + Q(pw) = S(pw) < S(p„) - wS{px) + Q(poo) < wS(pw) + Q(px),

whence Q(pw) < Q(px). (9)

Inequality (8) shows that the minimization of (6) will diminish the sum of the squares
of the approximating residuals, S, and (9) shows that the increments given by the
standard least squares solution will be improved in the sense that the weighted sum
of their squares, Q, will be reduced. That the sum of the squares of the true residuals,
s, can be diminished, will be proved shortly.

To minimize (6) and obtain pw, the partial derivatives of S with respect to the
various parameters are put equal to zero, and we get

dS dS dS dS
■—— = w 1- 2aAa = 0,   = w b 26A/3 = 0, • • • .
3a da 3/3 3|8

When we divide through by 2w, and substitute the expressions for the partial deriva-
tives of 5 from (5), the "damped normal equations" become

([act] + OW_1)Aa + [a/3]Aj3 + [aY]Ay + • • • + [aO] = 0,

[Pa] Aa + ([AS] + bw->) A/3 + [/3y]A-y + ■ • • + [/30] = 0, (10)

These equations are seen to be the same as the ordinary normal equations (5), except
for the coefficients of the principal diagonal, which are increased by quantities pro-
portional to the weighting factors a, b, c, • ■ • , respectively. Since the symmetry
of the matrix of the coefficients of equations (5) is preserved, simplified methods of
solution of linear simultaneous equations, which take full advantage of such sym-
metry,5 may be used to solve equations (10). It is to be noted that the standard
method of least squares corresponds to w—* °o, and is thus a special case of the method
here given, which may be termed the method of "damped least squares."

If we denote the number of parameters by k, it is seen from the determinantal
solution of equations (10) that, in the neighborhood of w = 0,

— [a0}wl~kbcd ■•• + •••
Aa = aw — a o =   = — [a0]a-1w + • • • ,

w~kabc ••• + •■•

whence ( ^ - — [a0]a_I, (11)
\dw / M=o

and similarly for the other parameters. Now

ds(pw) ds da ds dfi—— = + -+•••, (12)
dw da dw 3/3 dw

> P. S. Dwyer, The solution of simultaneous equations, Psychometrika, 6, 101-129 (1941).



1944] KENNETH LEVENBERG 167

and, from the definition of the summation symbols, we find that the partial deriva-
tives of 5 at po are given by

ds ds
-=2[«0], — = 2[/30], • • • . (13)
oa op

Hence the substitution of (11) and (13) in (12) yields

(±) = - 2{ [aO]2a-1 + [/SO]^-1 + • • • J. (14)
\dw / w—o

This derivative is negative since the partial derivatives in (13) are not all zero, by
the assumption that s does not have a stationary value at p0. Therefore, s(pw) is de-
creasing at w = 0, thus insuring that values of w can be found for which the sum of the
squares of the true residuals (2) will be reduced.

The best value of w to use may theoretically be determined directly by solving

= 0; (15)

however, this equation is generally complex in practice. By writing

s(pw) = s(p0) + w(—) , (16)
\dw / u'=o

and setting the left side of (16) equal to zero on the assumption that po was chosen
so that the decreased value s(pw) will be small, the approximate formula,

*(po) h(p o)
ds/dw,Cm,o [a0]2a-1 + [|80]26_1 + • • •

is obtained.6 If necessary, this value may be improved by calculating s(pw) for several
different trial values of w, so that an approximate minimum may be located graphi-
cally. Experience with the method, especially in connection with fitting a particular
function H(x, y, z, ■ ■ ■ ; a, (3, y, ■ • • ), enables one to get an idea of the general order
of magnitude of the best value of w so that very feV trial values of w should suffice.
If so desired, the improved set of values of the parameters may be further improved
(if the true minimum has not already been reached), by a repetition of the process,
considering this improved set as a new initial solution.

So far, the weighting system a, b, c, • • • has been left arbitrary, the only restric-
tion being that the weighting factors be positive. If we set the criterion that these
factors be chosen so that the directional derivative of s, taken at w = 0 along the curve
a = aw, jS =(iw, • • • , should have its minimum value, namely, the negative gradient,
we have

ds ((da \2 / <//3 \2 )-1'2 Uds\2 /ds\2 W'2

^{w) + t) +"" \W + (^) + ""/ ' <18)
where the derivatives are taken at w — 0. Substitution of (14), (11), (13) in (18)
gives us

6 This type of approximation was used by Cauchy (I.e.).
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{ [a0]2a_1 + [|30]2&~l + • • • J |a[0]2a-2 + [/30]2ft-2 + • • ■ }~1/2

= { [«0]2 + [/SO]2 H- • - - }1/2, (19)

and this is satisfied when the factors a, b, c, ■ • ■ are all equal. Without loss of gen-
erality, they may be taken equal to unity. For this weighting system, the formation
of the damped normal equations (10) may be thought of as being accomplished simply
by the addition of a positive constant, 1 /w, to the coefficients of the principal diagonal
of the standard normal equations (5). Another weighting system which has been used
successfully is, a = \aa ], b=m, ■ ■ • ; in this case the damped normal equations
are formed by multiplying the principal diagonal coefficients of the standard normal
equations by a constant greater than unity, 1 + 1 /w.

The nature of the damping which we have imposed upon the parameter variables
can be given a simple geometric interpretation. For instance, if the unity weighting
system is considered, the "overshooting" of the solution is prevented by damping the
distance (k dimensional) from the initial solution point, since Q is then the square
of this distance. By this restriction of k dimensional distance (which would appear
to be a natural way to prevent overshooting), we are not obliged to decide on an ar-
bitrary preassigned procedure restricting the variables individually, as is done, for
example, by the method of Cauchy (I.e.). The greater freedom given the individual
variables by the method of damped least squares may account for the fact that it
has solved, with a comparatively rapid rate of convergence, types of problems which
are of much greater complexity than those to which the principle of least squares is
ordinarilv applied.

ON THE DEFLECTION OF A CANTILEVER BEAM*
By H. J. BARTEN (Washington Navy Yard)

In spring theory it is sometimes necessary to compute the deflection of a cantilever
beam for which the squares of the first derivatives cannot be neglected as is done in
classical beam theory. This problem is thus placed in the same category as the prob-
lem of the elastica.

The solution given in this note can be applied to a cantilever of any stiffness. The
difference between the deflection as found by the classical beam theory and that
found by the present method is, however, noticeable only in the case of beams of
low stiffness.

The clamped end of the beam is taken as the origin of coordinates and downward
deflections are considered as positive. A point on the beam may be identified by four
quantities of which only one is independent. These four quantities are the two rec-
tangular coordinates x and y, the arc length j measured from the origin of coordinates,
and the deflection angle 6 which is the angle between the tangent to the curve at the
point under discussion and the horizontal. We may thus identify this point by the
symbol (x, y, s, 0). The subscript L is used to identify the value of these quantities
at the free end of the beam. Before deflection a vertical load P is applied at the point
(L, 0, L, 0). The beam has a uniform cross section of moment of inertia I and is com-
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