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Introduction and Motivation

e Massive circuits are reduced by approximate
compact models before simulations.

e EXxplicit moment matching and Krylov
subspace

e Hierarchical and parallel technigues
e Passivity preservation



Review of subspace projection
based MOR

e Circuit formulation
Cx;, = —Gxy; + Buy,

iy = LTX}'?
n is number of state variables ,
m is the number of ports,
X, Is the vector of state variables ,
C is storage element matrix,
G is conductance matrix,

B is position matrix for input ports,
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L is position matrix for output ports.



Krylov subspace

e Block moments
H(s) = My+Ms+Ms* + ...
A=-G'C R=G'B
M; = LT AR
e Block Krylov subspace
Kr(4.R,q) = colsp[R,AR,A’R,.... AR,



Krylov subspace projection
based MOR

e Reduction of original system
colsp(X) =Kr(A,R,q)

C=xlcx G=X'Gx

B=Xx!B L=x'L
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e Passivity preserved through congruent
transformation



Hierarchical projection MOR:
hiePrimor

e An illustrative example
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Two subcircuits (I, 1) are connected
through the top circuit only.




Subcircuit |

e Sub MNA
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e Modified B matrix (add one current source)
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Partitioned MNA
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In general case

e An n-way partitioned R
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e Sub-level reduction
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e Top-level reduction

Gx +Cx = Bu
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Moment matching connection

e Final reduced model ~ >**'** Top leve
oreserves the first k e
nlock moment.

e hiePrimor will have
the same accuracy
as the flat projection
based method, If kth
using the same
reduced order. «th

kth

kth




Passivity preservation

e Transfer function: positive real, iff

(1) H(s) 1s analytic, for Re(s) > 0
(2) H"(s)=H(s"), for Re(s) >0
(3) H(s)+H(s*)L >0, for Re(s) >0

e (1) and (2) are always satisfied for RLC circuits
(no unstable poles and real response).

e Proof of (3) in detail can be found in our paper.



Circult partitioning

e Use hMETIS partition tool suite.

e Minimize the capacitive cut to make sure a
DC path If there are current sources.

e Reduce terminal counts of subcircuits as
much as possible.

e Very suitable for very large RLC networks like
bus, coupled transmission lines and clock
nets with loosely coupled circuits.

e Also be applied to densely coupled circuits



Experimental Environment

e Use Matlab 7.0 for matrix/vector operations.
e Use Python as parser for I/O operations.

e Intel Xeon 3.0GHz dual CPU workstation with
2GB memory.

e Sparse matrix structure in Matlab.
e Test circuits are in SPICE format.

e Benchmarks: capacitively-coupled bus lines
with different length.



Results (1)

e Accuracy comparison of PRIMA and
hiePrimor in Cktl when k=4, q=n x k.
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Results (2)

e Accuracy comparison of PRIMA and
hiePrimor in Cktl when k=8, q=n x k.
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Results (3)

Reduction time comparison of PRIMA and
niePrimor for all test circuits.

niePrimor up to 5x faster.

Test Ckts || #Nodes | #Sub | #Ports | PRIMA (s) | hiePrimor (s) | Speedup
Cktl 25k 2 8 5 4 1.25
Ckt2 50k 4 16 16 9 1.78
Ckt3 100k 8 16 32 13 2.46
Ckt4 200k 8 16 69 27 2.56
Ckt5 500k 16 24 248 60 4.13
Ckt6 800k 16 24 401 99 4.05
Ckt7 1M 16 32 863 154 5.60
Ckt8 1.5M 16 20 — 176 —




Results (4)

~or different numbers of partitions

Test Ckts || #Parts =2 | #Parts =4 | #Parts =8 | #Parts = 16
CktS 116 100 71 60
Ckto6 374 251 128 99
Ckt7 383 298 204 154
Ckt8 675 394 257 176

#Ports || PRIMA | hiePrimor | Speedup
8 189 56 3.38
16 339 96 3.53
32 863 154 5.60

~or different numbers of ports (Ckt7)




Results (5)

e Comparison in artificial parallel computing
setting.

Test Ckts || Max Sub (s) | Top (s) | Sum (s) | Speedup
Cktl 2 0 2 2.50
Ckt2 3 1 4 4.00
Ckt3 3 1 4 8.00
Ckt4 5 1 6 11.50
Ckt5 6 1 7 35.43
Ckt6 10 1 11 36.46
Ckt7 17 3 20 43.15
Ckt8 14 1 15 —




Conclusion

e Hierarchical projection based MOR:
niePrimor.

e Divide-and-conqguer strategy to reduce the
reduction complexity and speed up the
reduction process.

e Same accuracy as flat MOR given the same
reduced order.

e Preserving passivity.
e Parallel computing techniques.
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