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“From the TOP500 supercomputer list, about 56% computing power is 

from GPGPUs…”



GPU Architecture Overview
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 4 clusters, each consisting of 4 SMs (GTX480/980)

 Thousands of threads execute on massive CUDA cores 

under SIMT style

 Capacity of L1D is much smaller than RF and Shmem
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Observations and Motivations
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 Duplicated data among SMs since L1D is private

 L1D missed requests can be served by neighboring SMs

 8 SMs： up to 75.7% with an average of 43.8%

 4 SMs： 36.4% on average （means 27.3% more data）

 Move L1D out and combine them as L1.5D cache
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A Sharing-Aware L1.5D Cache Overview

 Two challenges must be addressed for L1.5D

 The increased latency due to the bigger capacity and  

longer wire distance

 Sharable data thrashing problem due to the limited 

capacity and the default warp scheduler (intra-warp 

locality)
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L1.5D: Structure and Layout
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 A compatible structure based on the actual 2D layout

 “8-SM L1.5D”: Highest sharing rate, cross-cluster 

communications, long latency and multi-ported structure is 

needed
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L1.5D: Structure and Layout
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 A compatible structure based on the actual 2D layout

 “4-SM L1.5D”:  Symmetric accesses, shorter wire latency

 “2-SM L1.5D”:  Same merits but least sharing rate

L1.5D

SIMT core Register fileShared memory LD/ST unit



L1.5D: Behavior Analysis
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 Taxonomy of cache requests based on reusability

 Inter-warp reuse (sharable data) is dominating

 Greedy-then-oldest scheduler is skilled at intra-warp

 Sharable data should be identified and protected



L1.5D: Sharing-aware Management
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 A history table to record access information

 Same PCs lead to similar behaviors [ISCA2001, MICRO2010] and 

such correlation is extended to sharing possibility

 History table is indexed by PCs

 2-bit reusebits and 4-bit sharebits for recording



Sharing-aware Management（cont.）
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 1. Hit, retrieved as before 

 2. Miss, fetch reuseBits from HT

 3. reusebits comparison

 4.  Bypass, record in MSHR and 

self correction

 5. Not bypass, get sharebits from 

HT and protect shared ones

 6. Victim blocks, update the HT

 7.  Correct bypass decision in 

MSHR



Experiment Setting
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Baseline L1.5D

#SMs 16, 4 per cluster

Warp size 32 threads

Scheduler 2 GTO warp scheduler per SM

TLP 2048 threads, 64 warps, 32 CTAs per SM

On-chip 
memory

L1D: 16KB per SM
tag: ≈1.25KB, 4-way 
History table: n/a

L1.5D: 64KB per cluster
≈2.44KB, 4-way per cluster

≈0.1KB, 128-entry

128B cache line, LRU, 48KB shared memory

L2 cache Unified, 128KB x 16, 128 line size, 8-way, LRU

 Simulator: GPGPU-Sim v3.2.2

 Benchmarks: 12 apps. from Rodina and Parboil

 Cost:  Extra 1.19KB tag bits to store ID, access information 

and hashedPC and 768 bits for the history table per cluster



Experiment Setting (cont.)
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 To learn the L1.5D latency, we measure the wire length on a 

die photo and calculate the planar wire latency

 Using CACTI 6.5 to get cache access time and energy

 “8-SM L1.5D”: Latency of remotest SMs conservatively 

Die photo of GTX480



Evaluation on Performance
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 8-SM L1.5D: longer latency, degrades about 32.5%

 4-SM L1.5D: 12.3% improvement for highly sharable 

applications, degrades about 3.1% for others

 2-SM L1.5D: less sharing possibility , less improvement

 Cache sensitivity: “spmv” gains 19.6% while “hspot” gets 

little



Comparisons on Performance
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 Sharing-aware management brings extra 7.8% gains

 Totally 20.1%, better than baseline with 32KB L1D

 Lowly sharable applications:  “bp” and “srad” get small

improvements due to bypass technique



Comparisons on Memory Statistics
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 Hit rate increase of 16.9% against 16KB-L1D baseline

 "conv“: achieve the most performance improvement along 

with twice hit rate increase



Evaluation on Energy
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 Assuming all memory requests hit in L2 conservatively

 Less running time, less static power consumption

 About 2% more energy for highly sharable applications
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Related work
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 Most similar:  S. Dublish et al

 Same observation, ring network

 Nondeterministic Response time

 Duplication still exists

 Cache thrashing:  Dynamical memory request 

reordering [HPCA14], cache aware thread block 

scheduling[MICRO12]， thread block throttle

[MICRO14], cache bypassing or prioritization 

[HPCA15,ISCA15]…
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Summary

 L1D is far from needed and duplication is a waste

 A shared L1.5D substitutes some private L1D

 Layout compatibility meets timing requirement

 Sharing-aware management protects sharable data

 Achieve an average of 20.1% CPI improvement 

with 16.9% hit rate increase for high sharing apps
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Thank you！

Q&A



Backup: More Detailed Memory
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 Bare L1.5D performs poorer at L1D hit rate

 About 6% gap between them
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Backup: Miss Prediction Rate 
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 To learn the bypassing and sharing prediction creditability

 Miss-bypassed: requested again in the following 1K cycles

 Miss-shared: number of blocks that is insufficiently shared

 Both are low, 6.5% and 13.4% respectively
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