International Journal of Computational Intelligence Systems

ATLANTIS Vol. 12(2), 2019, pp. 580-596
PRESS DOTL: hitps://doi.org/10.2991/ijcis.d.190424.001; ISSN: 1875-6891; eISSN: 1875-6883 s
https://www.atlantis-press.com/journals/ijcis/ $ystims

.

A Novel Method Based on Fuzzy Tensor Technique for
Interval-Valued Intuitionistic Fuzzy Decision-Making with

High-Dimension Data

Shengyue Deng!2, Jianzhou Liu®", Jintao Tan?, Lixin Zhou!>3

' Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China

*School of Science, Hunan University of Technology, Zhuzhou, Hunan 412008, China

*Faculty of Science, Guilin University of Aerospace Technology, Guilin, Guangxi 541004, China

ARTICLE INFO

Article History

Received 29 Aug 2018
Accepted 17 Apr 2019

ABSTRACT

Keywords

Fuzzy tensor

Interval-valued intuitionistic fuzzy
tensor

Generalized interval-valued
intuitionistic fuzzy weighted
averaging (GIIFWA) operator

Generalized interval-valued
intuitionistic fuzzy weighted
geometric (GIIFWG) operator

Multiple attribute group
decision-making

Dynamic multiple attribute group
decision-making

1. INTRODUCTION

As an important branch of decision-making fields, the multiple
attribute group decision-making has been paid a close attention in
past decades. Normally, multiple attribute group decision-making
problems is that multiple decision-makers select the optimal alter-
natives or ranking them from a set of feasible alternatives by the
attribute weights and attribute values, for details refers to Xu and
Cai [1]. However in some real applications such as Xu and Cai [1],
Liu et al. [2], Wang et al. [3], Qin ef al. [4], He [5], and Hashemi
et al. [6], due to the undetermined decision-making environment,
the multi-attribute group decision-making seems to be useless for
decision-making. One alternative dealing with this difficulty is the
fuzzy set, which was subsequently extended to intuitionistic fuzzy
set by Atanassov [7] for applications in various decision-making
areas, and Atanassov and Gargov [8] presented the concept and
properties of interval-valued intuitionistic fuzzy set based on intu-
itionistic fuzzy set in 1989, which enriched intuitionistic fuzzy set
theory. Especially in recent researches, multiple attribute group
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To solve the interval-valued intuitionistic fuzzy decision-making problems with high-dimension data, the fuzzy matrix is
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decision-making with incorporated interval-valued intuitionistic
fuzzy sets has attracted great attentions and yielded plentiful results.
For example, Xu [9] developed a method based on distance mea-
sure for group decision-making with interval-valued intuitionistic
fuzzy matrices. Kabak and Ervural [10] devised a generic concep-
tual framework and a classification scheme for multiple attribute
group decision-making methods. Yang et al. [11] proposed a new
method based on dynamic intuitionistic normal fuzzy aggrega-
tion operators and VIKOR method with time sequence prefer-
ence for the dynamic intuitionistic normal fuzzy multi-attribute
decision-making problems. Liu [12] proposed the interval-valued
intuitionistic fuzzy power Heronian aggregation operator and
interval-valued intuitionistic fuzzy power weight Heronian aggre-
gation operator for the multiple attribute group decision-making.
Chen and Huang [13] proposed a new multi-attribute decision-
making method by the interval-valued intuitionistic fuzzy weighted
geometric average (IIFWGA) operator and the accuracy func-
tion of interval-valued intuitionistic fuzzy values. Wang and
Chen [14] proposed an improved multiple attribute decision-
making method by the score function Sy of interval-valued
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intuitionistic fuzzy values and the linear programming methodol-
ogy. Qiu and Li [15] employed the plant growth simulation algo-
rithm (PGSA) to calculate the optimal preferences of the entire
expert group and proposed a new method to solve the multi-
attribute group decision-making problem.

However the above mentioned models which are based on matrix
frame meet with difficulties in processing higher dimension data
and might lose their efficiency. To tackle this problem, we intro-
duce a new developed tensor model which is a generalization of
matrix. The concepts of higher-order tensor eigenvalues and eigen-
vectors were introduced by [16] and [17]. Subsequently, the theory
and algorithms of some special tensors and the spectra of tensors
with their various applications have attracted wide attention [18-
31]. For example, Ding and Wei [18,19] investigated the solutions
of some structured multi-linear systems whose coefficient tensor is
M-tensor. Qi [20] proved two new spectral properties and a max-
imum property of the largest H-eigenvalue in a symmetric non-
negative tensor system. Ni et al. [21] obtained an upper bound of
different US-eigenvalues and the count of US-eigenpairs corre-
sponding to all nonzero eigenvalues in the symmetric tensors. Ng
et al. [22] proposed an iterative method to calculate the largest
eigenvalue of an irreducible nonnegative tensor. Rajesh Kannan
et al. [23] gained some properties of strong H-tensors and (gen-
eral) H-tensors. Based on the diagonal product dominance and $
diagonal product dominance of tensor, Wang et al. [24] established
some new implementable attribute which can be used for identify-
ing nonsingular H-tensor. By studying the general product of two
n-dimensional tensors A and /3 with orders m > 2 and k > 1, Shao
et al. [25,26] found that the product is a generalization of the usual
matrix product and it satisfies the associative law. Bu et al. [27] gave
some basic properties for the left (right) inverse, rank, and product
of tensors. Pumpliin [28] studied the tensor product of an associa-
tive and a nonassociative cyclic algebra. Giladi et al. [29] studied the
volume ratio of the projective tensor products €5 ® ; €7 ® ; ¢} with
1 < p € g £ r £ o and obtained asymptotic formulas that are
sharp in almost all cases. Gutiérrez Garcia et al. [30] employed ten-
sor products of complete lattices into fuzzy set theory. Hilberdink
[31] studied operators having (infinite) matrix representations and
gave such operators infinite tensor products over the primes. More-
over, we have defined the concept of fuzzy tensor and established
the general form of the fuzzy synthetic evaluation model for solving
multiple attribute group decision-making problems [32].

Based on the research results we have achieved [32], we will pro-
pose two new generalized aggregation operators based on interval-
valued intuitionistic fuzzy tensor for solving the interval-valued
intuitionistic fuzzy multiple attribute group decision-making
problem. Specifically, we will first establish the generalized interval-
valued intuitionistic fuzzy weighted averaging (GIIFWA) and gen-
eralized interval-valued intuitionistic fuzzy weighted geometric
(GIIFWG) operators. Then some properties about those new gener-
alized aggregation operators are developed and a new algorithm is
presented for the corresponding decision-making problems. Indeed
as shown in numerical experiments, the proposed interval-valued
intuitionistic fuzzy tensor model does provide a new way for solv-
ing multiple attribute group decision-making problems with high-
dimension data.

The whole paper is arranged as follows: In Section 2, we
introduce some concepts and properties of the fuzzy tensor

and interval-valued intuitionistic fuzzy aggregation. Section 3 is
devoted to the derivation of the GIIFWA and GIIFWG operators by
the product of tensor and vector, and gives some properties of two
new generalized aggregation operators. In Section 4, we present an
algorithm for solving the interval-valued intuitionistic fuzzy multi-
ple attribution group decision-making problems. In Section 5, two
different application examples are shown for illustrating the pro-
posed approach. A conclusion is finally drawn in Section 6.

2. PRELIMINARIES

This section provides basic preliminaries about the fuzzy tensor,
interval-valued intuitionistic fuzzy set, and interval-valued intu-
itionistic fuzzy information aggregation theory.

Let R be the real field and F and IVIF be the fuzzy set and interval-
valued intuitionistic fuzzy set defined in universe R, respectively.
The Ty (m, n), Ty (m, n), and Tyyg (i, n) denote the set of all mth-
order n-dimension real tensors, fuzzy tensors, and interval-valued
intuitionistic fuzzy tensors, respectively, and [n] = {1,2,---, n}. F*
and IVIF" denote the n-dimensional fuzzy vector in the F and n-
dimensional interval-valued intuitionistic fuzzy vector in the IVIF,
respectively.

Definition 2.1. [8] Let X be a finite nonempty set. Then

A = {(x, 13 (x), 3 (0))|x € X}

is called an interval-valued intuitionistic fuzzy set, where i3 (x) C
[0,1] and 75 (x) C [0, 1], x € X, with the condition:

sup fiz (x)+sup P (x) < 1, x€X

Note: For convenience, the interval-valued intuition-
istic fuzzy numbers (IVIFNs) [33] can be denoted as
A= ([/"f& (), 1 (x)] , [v/% (), v (x)]) in this paper, where

[ 4] € 10,11, [v, v§] € [0, 1], p§ + v < 1.

and [M%,/xg] and [Vi,vg] represent the supported interval and
opposed interval about an evaluation object, respectively.

Definition 2.2. [33] Let & = ([, e] [vho 1), &1 = ([sdh,

i | [yt ]) and éip = ([, bt ] [k, ] ) e TVIENS,
Then

1. &= ([vkv¢]. 1 1)), where & is the complement of &.

2 ey A&y = ([min e} min {u et ]

, max {vggl,vgg }]),

1+ = ([, - Rl e, + s, - i)

[Vélvéz, V&, ng]);.
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= 5 1 1 u u 1 1 1l u u
5. @8 = ([udl/xdz,/.tdludz], [vg, + Va, — Ve, Va,» Vé, + V&, -
u u
vdlvdz]).

6. Aa=([1-(1- st 1- (- ][R 0] ). 2 > 0

7. &t

([(ﬂé{)ﬂ, MM [1- @ -vph1-a- vé—})ﬂ),/l >0.

Definition 2.3. [16] Let A € Ty (m,ny X ny X +-- X n,,), and its
elements @ ,.i, € R where i; € [n1],iy € [ny],-++,i, € [n,].
Then A is called a mth-order tensor.

Note: According to the Definition 2.3, we know that the matrix is
the 2nd-order tensor.

Definition 2.4. [32] Let A € T (m,ny X ny X -+ X n,,), and its
elements a; ;,..; € [0,1] where iy € [m],iy € [ny],--,i, €
[1,,], then A is called a mth-order fuzzy tensor.

Definition 2.5. Let ﬁIVIF = (ailiz'“i ) S
"y Xny X xn,,

Tivie (m,ny Xty X +-+ X ), and its elements

— 1 u I u
Giyiy---iy, - (I:uiliZ'“im’MiliZ'"im]’[Vilil'”im’vilil'”im]) where

! I :
[“ilizmim’ﬂiuliz---im]c [0,1], [Viliz---imvv;:iz---im] C [0,1] satisfy the
condition

M?Iiz"'im + V,’I;iz...im <1,
nd the interval [, ,ut; . |and [v}, v ., | denot
a e interval |p; ;i M, | @ Ligeeiiy s Viyip-rei,, | denote
the supported interval and opposed interval about an evaluation

object, respectively. Then Ay is called a mth-order interval-
valued intuitionistic fuzzy tensor.

Definition 2.6. [1]Let&; (i =1,2,---,n)bea collection of IVIFNS,

and let IIFWA: F}y;x = Fryg. If

IIFWACU (&1,5{2, ’&n) = 0)15(1 + 602&2 + -+ 60”5(”

where @ = (w1,w,,,w,)" is the weight vector of

n
& (i=1,2,-,n),withw; € [0,1](i=1,2,---,n),and ) @; =1,
i=1
then the function IIFWA is called an interval-valued intuitionistic
fuzzy weighted averaging (IIFWA) operator.

Definition 2.7. [1] Let IIFWG: F?VIF - FIVIF‘ If

IIFWG,, (&, &y, -+, 8,) = &
then the function IIFWG is called an interval-valued intuitionistic
fuzzy weighted geometric (IIFWG) operator.

Definition 2.8. [33] Let & = ([uk, u&],[v%,v%]) be an IVIEN.
Then we call

1 u _u
(@)= 1 (e )

the score of &, where s is the score function of &, s (&) € [-1, 1].

Definition 2.9. [33] The accuracy function of an IVIFN & is
defined as

| u u
(@) = 5 (kg + Hg + Vg + V%)

where h (&) € [0,1].

Definition 2.10. [33] Let &; and &, be any two IVIFNs. Then

1. Ifs(5c1) < 5(5(2), then 5(1 < 5(2.

2. Ifs(@&;) = s(&y), then
(a) Ifth (dl) <h (5{2), then 5(1 < dz.

(b) Ifh (5(1) >h (5(2), then 071 > 6(2.
(C) Ifh (&1) = h(&z), then 5{1 ~ &2.

Definition 2.11. [16] Suppose that A = (aiﬂz'“im) S
0y X1y XX,
Tg(m,ny Xny X---Xmn,) is a mth-order tensor, and
o T
X; = <x{,xé, ,xi) € RY (] €[m- 1]) isa nj—dimension vec-
tor, then the i,,th component of the vector A o X; 0 X5 --- 0 X,, 1
in R" is defined as the following:

(AoXyoXy-oXy),

n M1
= Z Z A i xlx? oL
127m 1 tm-1
=1 i1 =1
Definition 2.12. [34] Let Uand V be universes and F (V) be the set
of all fuzzy sets in V (power set).
e f: U— F(V)isamapping

* fisa fuzzy function iff

My V) = g (W, V),V (u,v) € UX 'V,
where ug (4, v) is the membership function of a fuzzy relation.
Note: The mapping fin Definition 2.12 is also a fuzzy mapping.
Definition 2.13. Let A = (“ilfz~--im ) €
Y XHyXee X,

Ty (M, ny X ny X -+- Xn,), and let the function GIIFWA:

IIZX"'XII lll
For — Fve If
GIIFWA (Apypo Xy 0 X300 X,,) (1)
nz nm
frd e P . . 2 DRI m
- Z z a1112---1m xiz xim
iZ im
2 2 2 T
where X, = (xl’”.’xiz’.“’x%) s X =
T
( xT’ e xlf” Lo ,x;”m> are the weight vectors of
m

a:izi-'-j(iZ = 1529""’12)’ ety Al (lm = 1’29"'anm)) reSPeC‘

1, x™ > 0, then the

'm

) :’”m

tively, and Z 2 =1,x2 >0 Z X" =
: ) 2 . Im
ip=1 i, =1

function GIIFWA is called the GIIFWA operator.

n, XXy,

Definition 2.14. Suppose that the function GIIFWG: Fiy¢ -
Frog- If

GIIFWG (Aypo Xz 0X30 - 0X,,) )

then the function GIIFWG is called the GIIFWG operator.
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3. GENERALIZED INTERVAL-VALUED
INTUITIONISTIC FUZZY AGGREGATION
OPERATORS BASED ON FUZZY TENSOR
TECHNIQUE

Since the interval-valued intuitionistic fuzzy information aggrega-
tion is helpful for dealing with fuzzy multiple attribute decision-
making problem, we will first develop, in this section, the GIIFWA
and GIIFWG operators by the product of the mth-order fuzzy ten-
sor with vector. Then both the GIIFWA and the GIIFWG operators
are proved to having properties of idempotency and boundedness,
which lays a theoretical foundation for the algorithm to solve the
fuzzy multiple attribute group decision-making problems in next
section.

Theorem 3.1. Let A = (a,-,-...i)
1200 ) Xy exn

€ Tigp(m,ng XnyX---Xmn,) be a mth-order interval-

valued intuitionistic fuzzy tensor, and its elements a;;,..;

<|:Mili2'”im’/lili2'“im:| , [villiZ"'im’ vi‘;iz,,_im] ) Then the aggregated
value by using Equation (1) is

GIIFWA (Apyp o Xz 0 X3 0+ 0X,,)

2

) m x5 eex
T TT (- )™

=1 i =1
2 m
Ty N
1- H H 1= iy, :
iy=1 i, =1
}12 Tlm 2 "Xm
1 2 'm
HH (V’i’z lm> ’
ip=1 i, =1
] M K2 i
u 2 im
: <Vlllz lm>
iy=1 i, =1
2 2 2 T
where X, = <'x1""’x,‘2""sxn2> s X, =
T
(xT’ ’x;:,’ ,x;"m> are the weight vectors of
s (=12, 1), a.y (G =1,2,-+,n,), respec-
m
nm
tzvely,cdex —1x/' Zx =Lx" 20
ip=1 i, =1 "

Proof. We prove the Theorem 3.1 by using mathematical induction
On My, =+, My

1. Whenn, =--- =n, =1, wehave

GIFWA (Apyp o X3 0 Xz 0+ 0 X,,) = @ 1...1%3 - )

N RN
=1(1- (1—/~li11--~1> 1= (1—#i11-~-1) )
N
(vi11~~1> ’<Vi,;1~»l> .

2. Letl; ={2,3,---,m}and I, = {ny,ns,---,n,} be indicator
sets. When at least one element in the indicator set I, add to
“1,” then we consider the following cases:
(@) Whenj €I, and n; = 2, then we have

(b)

(©)

(d)

GIIFWA (Apypo Xy 0 X300 X,)

lj 1
2
=||1- H 1 Hipti -
1}:1
2 X.
U-TT (1 )

1121

2 .
= E J
= 111__.1]__. 'xi,

583

When jl1,j2 € I; (jl ;éj2) and nj; = nj = 2, then we

have

GIFWA (AppoXy0X30-0X,)
2 2

— 2 1 2 m
= Z Z aill...ijl...52.4.1x1 .injl )Jijz xl
iﬂ:lijZZI
2 2 2. le A2
—_ | | | | i
- 1- (1 :utll l )
1]1—11}2—1
2 2 j1 2
1 u X/ A}’jZ
. _Mill'“ijl"'l}z"'l
11121112:1
2 2 xf-“f_l x? m
TT 1 (~
111 i -1 ’
tﬂ:lsz:l
2 2 FE T
H H i i
< 111 z 1]2 ~-1)
’j1=1’j2=1

o,

When j1,j2,---,jl € Ij (jl #j2# - #jl) and n,

nj = --- = n; = 2, then we have
GIFWA (AppoXy0X30-0X,)
2 2
— 2 i1
=% Y g

Il
IT!
|
e
.

—
R

When all the elements in the indicator I, add to “1,” that
is, ny = --- = n,, = 2, then we have

GIIFWA (Apyjp o Xz 0 X3 0 -+

oXm)
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2 2 GIIFWA (Apyp 0 X5 0 X3 0 ---oxm)
— 2 m
= Z P Z ailiz"'imxiz ...xim KZ ]1+1 12+1 m
=1 i,=1 = Z Z Z Z a; i X0
1ha i iy,
2 2 xz = b=l  ip=1 =1 =1
= 1- H H (1 #’112 > ’ x’1 x’2 e
ip=1 i,=1 i in i
2 2 2 -
) L o GIIFWA (AipoXzo0Xz 0+ 0X,,)
— | | . | | /,11112 i, s Jl+1 12+1 K,
i=1 i, =1 2
2 2 P Z Z Z Z 11i2"‘ij1"'ijz"'imxi2
| | | | (V.ZA . > 2 m =1 ip=1 ip=l =1
iy ety ’ ‘1 i2
=1 i,=1 'lel )le ce it
2 2 2o ! ! "
H . H y“ in [ KZ Kj1+1 K12+1
Iyiye-+i,, = 1- | | . | | | |
ip=1 i, =1 - :
i=1 zjl—l 112—1
Therefore, according to the above analysis, when at least Ko K2l
. . . « 1 2 1 Y2
one element in the indicator set I, add to “1 the (1 Hiyiy-wviy i zm) o,
Theorem 3.1 holds. in=1
K, Kj+1 Kip+1
3. Suppose that n, = Ky, n3 = K3, -+, n,, = K,,, the Theorem 1- | | | l I |
3.1 holds, that is, =l ip=l ip=l
~ K 1 j2 m
GIIFWA (A,V,F 0oXz0X30:-0X,) L X
11 _Miliz“‘l}l“'ijz“'im ’
e m lm:
2 Z Diyiyervi iz xim K, Kj+l  Kp+l
i=1 i,=
% X, oo | | l | | |
= 1- | | 1 qu i 2 im , iy= z'ﬂ:l ’j2:1
l l 1027ty K 2 1 2 om
ir=1 i, = m X S AR
2 m 1 k 1 iz 'm
K, Kin K2 II Viyigeiyy-oeiig iy, ’
1- | | <1_M:‘41i2 i ) ’ " ’ =1
m
i=1 i, =1 K)1+1 sz+1
K K l xl?z..xl | | | |
m e
| | (Villz lm) s 1—1 52—1
L=l i A
K, "

2
m !
u m
Vijiyei
172 m

LetI; = {K,, K3, -+, K,,} be an indicator set. When at least one
element in the indicator set I3 add to “1,” then we consider the (c)

following cases:
(a) Whenjel, and ny=K;+1, then we have

When j1,j2,--+,jl € I (jl #j2# - #jl) and njy =
Ki+1np=Kp+1, -, n;=K;+ 1, then we have

GIIFWA (Ao X0 Xz 0+ 0X,)

GIIFWA (Apypo Xy 0 X300 X,) K, K+l Kl g
5 | DI D I I IR
2 J m : . - m 1
- Z Z Gigiy--vijee-i, X1 xzj X1 =l =1 =1 m=1
i=1 =1 i, =1 le x]l XM
_ 1 m | x,'z xij X; KZ Kjl+l K)I+1
i=1 =1 =1 R ’ =11~ H H H
= i= i, = ; ; ;
K, K]+1 K,, 2 g ip=1 ’jl_l 1j,_1
1 1 u in i iy Km 2 3}1 ’\JI "
— ’ulllz“"“"m » H 1 1 2 i m
i=1 ;=1 i, =1 - 'u1112 bt ’
i =
K K+1 K 2 j m
2 ] m ; xi2~--xij-~-xlm K, K]1+l Kﬂ+1
| | | | 1 V1112-~1]-~1m ’ 1- | | | | | |
= i= i= ;
K)+1 m ip=1 ih=1 ip=1
Ky J Ky xl2 x xrn Ky »? )/1 /\}’ x
u 2 ’J m 12 i
Vl PRI H 1 _I'(u ‘i1 i1
=5 it ] 1727775 m ) l]l'“ljl“'lm El
= Ij_ = im:
K, Kiv1 Kpn K,
(b) Whenjl,j2 € I (jl#j2)and ny = Ky + 1, np = [T 1111
i=1 ijl=1 ij1=1 i,=1

Kj; + 1, then we have
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i1 i1
K X"
( I ) 2ojr o
1112-~-ij1~ i 'Z‘jm ’
K, Kir1 K K,
iy= ij1=1 ijl=1 i, =1
N .

(d) When all the elements in the indicator I3 add to “1,” that
is,ny =Ky +1,n3 =Kz +1,--,n, =K, + 1, then we

have
GIIFWA (Apypo Xy 0X30 -+ 0X,)
K41 K+l
=3 Y A
12" 12 Ly
iy=1 i, =1

I
N
—
I
A
+
=
=~
3
—
=
RS
5
SN——
N
s

'm
Ky+1 K, +1 X
2 'm
1_H”'H<1 M11’21> ’
ip=1 i, =
[K2+1 K,+1 2 ym
11 ()™
iyiyeiy, s
ir=1 i, =1

Therefore, for any n,, ns, -+, n,, the Theorem 3.1
holds from (1), (2), and (3). This completes the proof of
Theorem 3.1.

[1] Let Apygr € Trye(2,n X m) be an interval-
(aij)nxm where

Corollary 3.1.
valued intuitionistic fuzzy matrix, and Ay

<[,u,], ,ulj] [ Vjj, Vi ]), then their aggregated value by using the
GIIFWA operator is also an IVIFN and

GIIFWA (Apyp 0 X)
= ([ TT, os) T, (o).
I, 04" I1, 7))

where X =

(%7, s Xy o0 ,x,)| is the weight vector ofa:j(j =1,2,
m

-,m), with x; € [0,1] and Z x =1
j=1
Remark 3.1.

Clearly, the Theorem 3.1 is the extension of Corollary 3.1 which is
the Theorem 2.3.1 in Xu [1].

Theorem 3.2. Let A = (a,-l,-z...,- )
" nyXny XX,
S Trp(m,ny Xny X .-+ Xn,) where its elements
— 1 !
Qiyiyeriiy, = ([/'{ﬁiz“"'m’l'{ﬁiz“'im]’[V"l"z‘“im’V;Iiz“'imD' Then the

585
aggregated value by using Equation (2) is

GIIFWG (Aypo Xz 0 X3 0+ 0 X,,)

ny M | xizz-nx:"
= ([H H <:ui1i2-~im) "
2

iz—l i, =1

Proof. The proof of the Theorem 3.2 is similar to the proof of
Theorem 3.1.

Corollary 3.2. [1] Suppose that Ajyp € Tryp(2, # X m) is an

interval-valued intuitionistic fuzzy matrix, and Ayp = (aij) y
nxXm

where a; = ([,u,l-j, ui]] [Vé,‘l/ ]) then their aggregated value by
using the GIIFWG operator is also an IVIFN, and

o o |
J= =
-TJa- vgj)xf, 1-JJa- vg)"iD

j=1 j=1

GIFWG (Apyr 0 X) <ln%

T, . .
(xl, e Xy ,xm) is the exponential weight vector of

), with x; € [0,1] and Z x =1
j=1

where X =

a;(j=1,2-,m

Remark 3.2.
The Theorem 3.2 is the general form of Corollary 3.2 which is the
Theorem 2.3.2 in Xu [1].

Theorem 3.3. The operational results in Theorems 3.1 and 3.2 are
ny-dimension IVIF vectors.

Proof. By the Theorems 3.1 and 3.2, we have

GIIFWA (Apypo Xy 0 Xz 0+ 0X,)
noom 2
m
=\ [1- H ’ H (1 M’l’z"'%) >
ip=1 i =
nz Ylm ; X!
u m
1_H“H(1 #'112') ’
iy= i, =1
n n 2
2 m ; x*z x::ln
Vi iyeei, ’
ip=1 i, =1
n My X,Z .A.le
u 2 'm
H ] (vlliZ"'im>
ip=1 i, =1
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and

GIIFWG ('/ZIVIF o X2 0Xz0:0 X

i e

i,=1 i, =1

] 2...,5"
1 11 (s ) |

1I
[ H T (k)=

= i, =1
n n 2 m
1 2 m 1 u xiz---xim
- v | | _V1112~"Zm
ip=1 i, =1

and i; € [ny], then both GITFWA (Apyp 0 X5 0 X3 0 -
GIIFWG (Apypo Xy 0 X30-+- 0 X, ) € IVIF™.

©X,) and

Therefore, the operational results in the Theorems 3.1 and 3.2 are
ni-dimension IVIF vectors.

Theorem 3.4. Let ‘/[IVIF = <a,»1 iyeeed )
"y XnyXe X,

€ Tmw(m,ny XnyX---Xn,) be a mth-order interval-valued

T
intuitionistic fuzzy tensor, and X, = <x§,---,xi22,---,xﬁz> s
T
vy X, = (x’{‘,---,x::,---,xf,“m) are the weight vectors of
L =1,2,-,np), -, a..i (i,=1,2,--,n,), respec-
n

tively, that is, Z X2 o= Lx2 2 0 Z P
iy=1 2 i, =1
X" >

! 0. Then GIIFWA (ApypoXzo0Xzo0-
GIIFWG (Apypo Xz 0 X3 0+

o Xm) and
0 Xm) are fuzzy mappings.

Proof. ‘/[IVIF (S TIVIF (m, nyp Xngy X--:
interval-valued intuitionistic fuzzy tensor.

X n,,) is a mth-order

According to the Definition 2.5, we have

73 _ 1 u 1 u
Air = (([Mi1i2~~~im’/"ili2~~~im]’ Viyigeweip> Viyig- iy,

nyXnyX---Xn,,

for arbitrary [,u,l,z y ,,u,l,z ,m] C 1], [Villiz"'im’vi?iz"'im] C
[0,1]and uii;,..i +Vijiy.i, S 1

T
Owing to X, = (xf,xlzz,,xﬁz) ,on X =
<x§”,---,x$,---,x;"m>T are the weight vectors of a ...

(i2 = 1’29 i 9”2)1"': u:.‘.;im (Zm = 1’2’ Tty
is, inz € [0,1],---, Vx!" € [0,1]. Then we obtain X, €
2 m
-, X,, €[0,1]".

n,,), respectively, that
[0,1]%,

On the basis of the Theorem 3.3, we get
GIIFWA (Apypo Xy 0 Xz 0 -+ 0 X,,,) € IVIF™  and
GIIFWG( Ay 0 Xz 0X30 -+ 0 X,,) € IVIF".

Thus GIIFWA (Apypo Xy 0 X300 X,) and

GIIFWG (/TIVIF 0X,0X30:0 Xm) are fuzzy mappings from
[0, 1] to TVIF™ by the Definition 2.12.

Theorem 3.5. Let A = (@i iy, Iy xiyxxn, €
Tryp (m, ny Xy X -o- X ny,) be a mth-order
interval-valued intuitionistic fuzzy tensot, where

— 1 u ! u

Giyiyeeiy, _<[”i1iz"‘im’“iliz"‘im]’ viliz“'im’viliz“'im]>' And
T
_ 2 2 2 _

%o = (i) e Xy = @,
xffm)T are the weight vectors of a, (i2=1 2,00 1),
a.... (i =1,2,-++,ny,), respectively, and z x = 1,

ip=1

nm
IR
m m

i, =1
properties of GIIFWA operator:

0. Then we have the following

1. (Idempotency). If all the elements of Ay are equal, that is,

ailiz-uim =a, il € [nl] ’ i2 € [HZ] sty € [nm] s then

GIIFWA (Apypo Xy 0X30 - 0X,,)
= (O(, ay e, a)T S IVIF"I

2. (Boundedness). Let

- _ . i
a = [ min. {#iliZ'“im}’ min {M’ﬂz ’m}]
119105 5l

i15i25 sl

[ max {Vili e }’ max lut i ]
172 m 127
ipsiny iy, i35 sy
+ _ 1
a’ = - max. ’l'{iliz"‘im , max ,u,l,z iy
i15i05 sl i15in5 sl

: ) : u
[A min. {Vilizmim}x min. {Vilizmim}]>

DL IR L 115125 sl

and (o, ---,a)T, (at,---,at)T € IVIF". Then, for any X5,

X3, -+, X,,, we have
(@, o) < GUFWA (Apypo Xy 0 Xz 0+
< (a+7 te ’a+)T

oXm)

Proof.
1. Let a = ([u,u"],[¥,v"]). By the Theorem 3.1 and
@jiy.i, = a(iy € [m1], i3 € [na], -+, iy, € [n,,]), we have the

i th component of GIIFWA operator and

GIIFWA (Apo Xy 0X30--0X,,).
n

xz...
n, 1 izi
[ le_ H(ﬂ)
2 m
2_1 i =1 Hijiy-oi, )
2 m
)Xiz"'xim

I3

2 m
n n <.
T, T a5
iy= i, =1
[T, T, (%
= i =
n nm 2
I, T, o
iy= i, =1
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n M
. Z K2k
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=1 i =1
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n "
Z e Z _x_2 . xm
) I
i=1 i =1
1= (1= py2=t :

Z_; Zj ot Z |
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= (- (=) 1 =], ),
([ v ]),

and i; € [n,], then we get
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Since for any 150, 5 s we have
. 1 1 1
. min, {I'tiﬂz“'im} S M, S max. {MiliZ"‘im}’
iy5ip9 " sl i15i3y sl
. u u u
. min {Miliz--~im} S HMigiyei, S max {'“iliz'"im}’
1155 iy 115125 s
. 1 1 1
. mm. {Vi1i2"'im} S Ve, S max. {ViliZ“'im} and
B0y iy, 115025 sl
min v} v} < max v
o . ipiye iy, = ipipeed = iy iy §
i1500 sl 1529 sl
Then
] M
1
1_|| || (1 :uzlzz
=1 i,=1
2
xtz' xlm
ny M 1
>1- : min { .}
z i,=1 i =1 i lulllz tm
] M
. Z K2 X"
2 tm
. =1 i, =1
=1-(1- min {/,{fi.,,i} 2 m
iineeri 127 m
1i27
= min {,ul- }
iyigeeriy, O 127
n M 2
u 2 ‘m
1_]j[“']i[(l iy, ’m)
i=1 i, =1
2 m
X
ny n, . 2
>1-T[™ _y (1 min
ip= i, = iyigeeiy,
n, n

Il
—
|
S
—
|
8
=.
=)
—~——
=
R
<
&
o
\/
Iy
1
—
S
—

CE 2y
! 2 m
111 ()
i=1 i, =1
2
) M iy xr:’”
>[I min{vl’, l}
= A5 \dpip--i 127 m
ip=1 i, =1
ny n

Il
7N
8
=.
=]
—~———
S~

e
N
——
5
I
-
<
1}
—

iyipe
= min v;; }
iyinee-i 172
127" m
and
ny n, ’2 Xm
u 2 'm
H H <Vi112 )
ip=1 im:I
P
u 2 'm
> H H min { 1112 }
i=1 i, inigeeeiy

: ir=1 i, =1
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Similarly, we get

n, n 2
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and

ip=1 i, =1
) 1, Xy
I iIinH} Vll’z""m
ip=1 i, =1 1727 m

Without loss of generality, for Vi; € [n1], let

GIIFWA (ApypoX;0X30-:0X,,) =a

n
where a = ([1!, u*], [v',v]). By the Definitions 2.8 and 2.10, we
get

s(a) = % (U =y + ur - v

1
< E ( max {qultz

iyiyeeeiy, ipiyeiy,

+ max {“!112 }—

ipiyeeriy, iyiyeei,
=s(at)
and
s(@) = % (U = v+ - v
1
> 2 <’1I’?H‘}m {Mll'liz' i }_ zlrzl;a)z(m {‘!/1-11,-2 ‘m}

- max {vi“,- i })
S i i 127" "m
1 m

Next, we will consider the following three cases:

i. Whens(a)<s (oc*') and s () > s(a”), the conclusion (2) in
Theorem 3.5 holds.

ii. When s(@ = s(a*), we have a = at, that

: I _ 1 u u
s, o = max {:uiliz---im}> g =  max {:uiliz---im})
i15in5 " slp, 115125 sl
v =  min {villiz_._i } and ¥ = min {vi’;iz...i }
i 50957 sy " 5025 sy "

Hence, by the Definition 2.9, we get
1 1 u 1 u
h(a) = 5(‘“ + v+ o)
= 5 mox fu o o+ max i )
2 1112 l ! 2 1112 1 1112 i

: ) u
+-mlr11- {Vi1i2~--i }+ mu} {viliz"'im}>

2 iyiy:
=h(at).
In this case, according to the Theorem 3.1 and Definition
2.10, we obtain GIIFWA (AjpoX30X30--0X,,) = at.
h
Due to the arbitrariness of i}, we get
GIIFWA (AjpoXy0X30--0X,) = (at,--,at) € IVIF.

iii. When s(oc) = s(x’), we have ¢ = «a, that is,
1 _ : I
u n } = min iy b=
’1”2’ - 51257 sk
max { Viyiy- } and v* max {V,-Z;,-Z,_,,-m}. Thus
15099 sl 11,12, ‘sl
1 1 u 1 u
h(oc):z(u + v+

1
3 ( mu} {/"zl'liz-"i }+ mlf} {M;‘Ii,--im}

iip iyip
+ max {vill- i }+ max {v,-“,— i })
172 I 12 m

iyipe fiy:

=h(ax” ).

In this case, on the basis of the Theorem 3.1 and Definition 2.10,
we have GIIFWA(Ajp o X; 0 X3 0 --- 0 X,,.); = o for arbitrary
iy € [n1]. Then

GIIFWA (Ao Xz 0 Xz 0+ 0X,) = (a, -, a”) € IVIF.
Therefore, based on cases (i), (ii), and (iii), we can see that the con-

clusion (2) in Theorem 3.5 holds.

This completes the proof of Theorem 3.5.

Theorem 3.6. Let Ap = (a,»l,-z..i,»)
")y XnyXe X,

S Tryir(m,ny X ny X --- X n,) be a mth-order interval-
where a;; . =

valued intuitionistic ~ fuzzy tensor, i
172
1 u ) u —
<[/’ti1i2"'im’#i1i2"'im]’[Viliz'“im’Viﬂz"'%])' And  X; -

T T

2 2 2

(_xl’...,xiz’...’xn2> s ...’Xm = (x;n’...’x::’...,x:"qm> are

the exponential weight vectors of Aijy:onn (i =1,2,-+,15), -,
n

a:...;i (lm = 172, Tty

m

n,,), respectively, and Z xlz2 =1x >0
i,=1

nm
; Z x' =1, x" 2 0. Then we have the following properties of
GIIFWG operator:
1. (Idempotency).
Tryip (M, 1y Xy X

ih € [m], iz €[na], iy

If all the elements of Ay €
X n,,) are equal, that is, a = qa,
€ [n,,], then

iyige iy,

GIIFWG (AppoXp0Xz0--0X,) = (a0, ,a) € IVIF"
2. (Boundedness). For any X,,X3,---,X,, we have
@,,a) < GUFWG (AppoXy0Xzo-0X,) <

(at, ---,oc+)T, where

o = ([ i et} min G ]

hiz iyip

! u
[ max {Viliz'”fm}’ ma}f {Viliz"'im}]> ’
m

ipiyeeriy, iqiy
}’ ma)l( {'u’l’z i }] ’

+_
a = <[ {’ulllz
1112 l 1112
min {Vl» ; } min {V»“. ; }
i ipiyeeeiy, 0 i iyiyeeeiy,

1112 i 12

and (a”, -, a)", (at, .- ,oc+)T e IVIF™,
Proof. The proof of the Theorem 3.6 is similar to the proof of
Theorem 3.5.
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4. ALGORITHM

In this section, we will employ the generalized GIIFWA and
GIIFWG operators to devise a new approach for solving the
multiple attribute group decision-making problems with high-
dimension data. The concrete steps of the algorithm are listed as
follows:

Step 1. The interval-valued intuitionistic fuzzy decision matri-

ces are transformed into interval-valued intuitionistic fuzzy tensor
Arvirs

Step 2. According to the Theorems 3.1 or 3.2, we utilize the
GIIFWA operator:

&, = GIIFWA (Apypo X0 Xz0--0X,,).
n

or the GIIFWG operator:
& = GIFWG (Apypo Xz 0 Xz 0 - oX,,,)i

1

to aggregate all the elements a;;..; (i1 €[m],i; € [n],
-+, i, € [n,,]) of the interval-valued intuitionistic fuzzy tensor
Ay and get the values E,»l (or 5,»1) corresponding to the alternatives

A, (i1 € [m])

Step 3. Calculate the sores s (E,»l) (ors (Ell)) and the accuracy
degrees h (¢, ) (orh(&,)) (i € [m]) by the Definitions 2.8
and 2.9.

Step 4. Rank the alternatives A; (i} € [n;]) by the Definition 2.10,
and then obtain the best desirable alternative.

5. APPLICATION EXAMPLES AND
DISCUSSION

5.1. Interval-Valued Intuitionistic Fuzzy
Multiple Attribute Group
Decision-Making

In this subsection, we apply the GIIFWA and GIIFWG operators
to solving the interval-valued intuitionistic fuzzy multiple attribute
group decision-making problem with the numerical example used
in Qiu [15].

5.1.1. Numerical example

In this example, let us assume that someone intends to buy a car
and consults a set of experts. The car supplier x; (i; =1,2,---,5)
are evaluated by four decision-makers €, (i, = 1,2,3,4), and each
decision-maker evaluates the alternatives based on five different
characteristics ¢, (i3 = 1,2, -+, 5). The interval-valued intuitionis-
tic fuzzy decision matrix proposed by e, (i, = 1,2,3,4) are listed
in the Tables 1-4, and the weighted vector of the four experts
is X, = (0.3,0.2, 0.3,0.2)T, and the weighted vector of the five
characteristics is X3 = (0.2,0.15,0.2, 0.3,0.15)T. Due to space
limitations, the original interval-valued intuitionistic fuzzy deci-
sion matrices are omitted in this paper. For a detailed description,
please see Qiu [15].

We now implement our algorithm to solve this problem.

Step 1. If the interval-valued intuitionistic fuzzy tensor and the
GIIFWA operator are employed for expressing data in Tables

1-4, then A‘IVIF = (lli iri S TIVIF (3, 5X4X% 5), where
1723
5x4x5

1 !
its elements a;;; = (['uﬁizis’#?lizis] ’[Vilizis’vizi2i3]>’ and
a; . (iy = [5]) represent five suppliers, a.; . (i, = [4]) represent
four experts and a.;, (i3 = [5]) represent five different character-
istics. The details are as follows:

a1 = ([0.3,0.4],[0.4,0.6]), a115 = ([0.5,0.6],[0.1,0.2]),
a113 = ([0.6,0.7],[0.2,0.3]) , az14 = ([0.7,0.8],[0.0,0.1]),
a115 = ([0.6,0.7],[0.2,0.3]), a1, = ([0.4,0.5],[0.3,0.4]),
a1, = ([0.5,0.6],[0.1,0.2]) , a1,3 = ([0.6,0.7],[0.2,0.3]),
a124 = ([0.7,0.8],[0.1,0.2]), a5 = ([0.7,0.8],[0.0,0.2]),
a131 = ([0.4,0.6],[0.3,0.4]), a13, = ([0.5,0.7],,[0.0,0.2]),
a133 = ([0.5,0.6],[0.2,0.4]), az34 = ([0.6,0.8],[0.1,0.2]),
a13s = ([0.4,0.7],[0.2,0.3]), aza; = ([0.3,0.4],[0.4,0.5]),
a142 = ([0.8,0.9],[0.1,0.1]), a143 = ([0.7,0.8] ,[0.1,0.2]),
a144 = ([0.4,0.5],[0.3,0.5]), a145 = ([0.2,0.4],[0.3,0.6]),
ay11 = ([0.6,0.8],[0.1,0.2]), az» = ([0.6,0.7],[0.2,0.3]),
az13 = ([0.2,0.3],[0.4,0.6]), a4 = ([0.5,0.6],[0.1,0.3]),
az15 = ([0.7,0.8],[0.0,0.2]), a5 = ([0.6,0.8],[0.1,0.2]),
a5 = ([0.5,0.6],[0.3,0.4]) , az3 = ([0.4,0.5],[0.3,0.4]),
aza = ([0.4,0.6],[0.3,0.4]), azs = ([0.4,0.7],[0.1,0.3]),
ay31 = ([0.5,0.8],[0.1,0.2]) , az3, = ([0.3,0.5],[0.2,0.3]),
az33 = ([0.3,0.6],[0.2,0.4]), az34 = ([0.4,0.5],[0.2,0.4]),
ay3s = ([0.3,0.6],[0.2,0.3]), aza; = ([0.5,0.7],[0.1,0.3]),
az42 = ([0.4,0.7],[0.2,0.3]) , azs3 = ([0.4,0.5],[0.2,0.2]),
az4q = ([0.6,0.8],[0.1,0.2]), az45 = ([0.2,0.3],[0.0,0.1]),
az11 = ([0.5,0.8],[0.1,0.2]) , a31, = ([0.7,0.8],[0.0,0.1]),
asy3 = ([0.5,0.5],[0.4,0.5]), az14 = ([0.2,0.3],[0.2,0.4]),
as1s = ([0.4,0.6],[0.2,0.3]), azy = ([0.5,0.6],[0.3,0.4]),
a3 = ([0.5,0.7],[0.1,0.2]) , as»3 = ([0.5,0.6],[0.3,0.4]),
aza = ([0.3,0.4],[0.2,0.5]), asp5 = ([0.6,0.7],[0.2,0.3]),
a331 = ([0.5,0.6],[0.0,0.1]), a33, = ([0.5,0.8],[0.1,0.2]),

a333 = ([0.4,0.7],[0.2,0.3]), az34 = ([0.2,0.4],[0.2,0.3]),
az3s = ([0.5,0.8],[0.0,0.2]), az4; = ([0.2,0.4],[0.1,0.2]),
342 = ([0.4,0.5],[0.2,0.4]), as43 = ([0.5,0.8] ,[0.0,0.1]),
344 = ([0.4,0.6],[0.2,0.3]), a345 = ([0.5,0.6],[0.2,0.3]),
ag11 = ([0.2,0.3],[0.4,0.5]), a415 = ([0.5,0.7],[0.1,0.3]),

[
[
[
ag1s = ([0.6,0.9],[0.0,0.1]), asp1 = ([0.5,0.6],[0.3,0.4]),
a4z = ([0.7,0.8],[0.0,0.1]), asp3 = ([0.4,0.5],[0.2,0.4]),
ag2q = ([0.5,0.7],[0.1,0.2]), asps = ([0.5,0.7] ,[0.2,0.3]),
ag31 = ([0.5,0.7],[0.1,0.3]), a3 = ([0.4,0.6] ,[0.0,0.1]),
aq33 = ([0.3,0.5],[0.2,0.4]), as34 = ([0.7,0.9],[0.0,0.1]),
[ |

LI
LI
LI
LI
LI
LI
a3 = ([0.6,0.7],[0.1,0.2]), ag14 = ([0.4,0.5],[0.1,0.3]),
LI
LI
LI
LI
L1
agss = ([0.3,0.5],[0.2,0.2]), a4q; = ([0.7,0.8],[0.0,0.2]),
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Table1 Interval-valued intuitionistic fuzzy decision matrix proposed by e;.

C Cy Cs Cq Cs
Aq ([0.3,0.4], [0.4,0.6]) ([0.5,0.6], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.0,0.1]) ([0.6,0.7], [0.2,0.3])
Ay ([0.6,0.8], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.2,0.3], [0.4,0.6]) ([0.5,0.6], [0.1,0.3]) ([0.7,0.8], [0.0,0.2])
A3 ([0.5,0.8], [0.1,0.2]) ([0.7,0.8], [0.0,0.1]) ([0.5,0.5], [0.4,0.5]) ([0.2,0.3], [0.2,0.4]) ([0.4,0.6], [0.2,0.3])
Ay ([0.2,0.3], [0.4,0.5]) ([0.5,0.7], [0.1,0.3]) ([0.6,0.7], [0.1,0.2]) ([0.4,0.5], [0.1,0.3]) ([0.6,0.9], [0.0,0.1])
As ([0.6,0.8], [0.1,0.2]) ([0.3,0.5], [0.4,0.5]) ([0.4,0.6], [0.3,0.4]) ([0.6,0.8], [0.1,0.2]) ([0.5,0.6], [0.2,0.3])
Table 2 Interval-valued intuitionistic fuzzy decision matrix proposed by ;.

C Cy Cs Cq Cs
Ay ([0.4,0.5], [0.3,0.4]) ({0.5,0.6], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.1,0.2]) ({0.7,0.8], [0.0,0.2])
Ay ([0.6,0.8], [0.1,0.2]) ([0.5,0.6], [0.3,0.4]) ([0.4,0.5], [0.3,0.4]) ([0.4,0.6], [0.3,0.4]) ([0.4,0.7], [0.1,0.3])
A3 ([0.5,0.6], [0.3,0.4]) ([0.5,0.7], [0.1,0.2]) ([0.5,0.6], [0.3,0.4]) ([0.3,0.4], [0.2,0.5]) ([0.6,0.7], [0.2,0.3])
Ay ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.0,0.1]) ([0.4,0.5], [0.2,0.4]) ([0.5,0.7], [0.1,0.2]) ([0.5,0.7], [0.2,0.3])
As ([0.4,0.7], [0.2,0.3]) ([0.5,0.6], [0.2,0.4]) ([0.3,0.6], [0.3,0.4]) ([0.6,0.8], [0.1,0.2]) ([0.4,0.5], [0.2,0.3])
Table 3 Interval-valued intuitionistic fuzzy decision matrix proposed by e3.

C Cy Cs Cq Cs
Ay (10.4,0.6], [0.3,0.4]) ([0.5,0.7], [0.0,0.2]) ([0.5,0.6], [0.2,0.4]) ([0.6,0.8], [0.1,0.2]) ([0.4,0.7], [0.2,0.3])
Ay ([0.5,0.8], [0.1,0.2]) ([0.3,0.5], [0.2,0.3]) ([0.3,0.6], [0.2,0.4]) ([0.4,0.5], [0.2,0.4]) ([0.3,0.6], [0.2,0.3])
Aj ([0.5,0.6], [0.0,0.1]) ([0.5,0.8], [0.1,0.2]) ([0.4,0.7], [0.2,0.3]) ([0.2,0.4], [0.2,0.3]) ([0.5,0.8], [0.0,0.2])
Ay ([0.5,0.7], [0.1,0.3]) ([0.4,0.6], [0.0,0.1]) ([0.3,0.5], [0.2,0.4]) ([0.7,0.9], [0.0,0.1]) ([0.3,0.5], [0.2,0.2])
As ([0.7,0.8], [0.0,0.1]) ([0.4,0.6], [0.0,0.2]) ([0.4,0.7], [0.2,0.3]) ([0.3,0.5], [0.1,0.3]) ([0.6,0.7], [0.1,0.2])
Table 4 Interval-valued intuitionistic fuzzy decision matrix proposed by e4.

Cy Cy C3 Cq Cs
Ay (10.3,0.4], [0.4,0.5]) ([0.8,0.9], [0.1,0.1]) ([0.7,0.8], [0.1,0.2]) ([0.4,0.5], [0.3,0.5]) ([0.2,0.4], [0.3,0.6])
Ay ([0.5,0.7], [0.1,0.3]) ([0.4,0.7], [0.2,0.3]) ([0.4,0.5], [0.2,0.2]) ([0.6,0.8], [0.1,0.2]) ([0.2,0.3], [0.0,0.1])
Aj ([0.2,0.4], [0.1,0.2]) ([0.4,0.5], [0.2,0.4]) ([0.5,0.8], [0.0,0.1]) ([0.4,0.6], [0.2,0.3]) ([0.5,0.6], [0.2,0.3])
Ay ([0.7,0.8], [0.0,0.2]) ([0.5,0.7], [0.1,0.2]) ([0.6,0.7], [0.1,0.3]) ([0.4,0.5], [0.1,0.2]) ([0.7,0.8], [0.1,0.2])
As ([0.5,0.6], [0.2,0.4]) ([0.5,0.8], [0.0,0.2]) ([0.4,0.7], [0.2,0.3]) ([0.3,0.6], [0.2,0.3]) ([0.7,0.8], [0.0,0.1])

44 = ([0.5,0.7] ,[0.1,0.2]) , az43 = ([0.6,0.7],[0.1,0.3]),
agq4 = ([0.4,0.5],[0.1,0.2]), ag4s = ([0.7,0.8],[0.1,0.2]),
as;; = ([0.6,0.8],[0.1,0.2]), as;, = ([0.3,0.5],[0.4,0.5]),
asy3 = ([0.4,0.6],[0.3,0.4]), as 4 = ([0.6,0.8],[0.1,0.2]),
as1s = ([0.5,0.6],[0.2,0.3]), asy, = ([0.4,0.7],[0.2,0.3]),
asy = ([0.5,0.6],[0.2,0.4]), asys = ([0.3,0.6],[0.3,0.4]),
asy, = ([0.6,0.8],[0.1,0.2]), asys = ([0.4,0.5],[0.2,0.3]),
as3; = ([0.7,0.8],[0.0,0.1]), ass, = ([0.4,0.6],[0.0,0.2]),
as33 = ([0.4,0.7],[0.2,0.3]), as34 = ([0.3,0.5],[0.1,0.3]),

aszs = ([0.6,0.7],[0.1,0.2]), as4; = ([0.5,0.6],[0.2,0.4]),
as4p = ([05, 08] N [00, 02]) » A5q3 = ([04, 0. 7] [0 2 0. 3])
Asqq = ([03, 06] N [02, 03]) s A545 = ([07, 0. 8] [O 0 0. 1]

Step 2. By the Theorem 3.1, and J‘TIVH;‘ S TIVIF (3, 5X4X 5),
according to the experts weight X, and the characteristics weight
X5 in Qiu [15], we have

GIIFWG ("‘LVIF o X2 o X3)
4 5

2.3
= <[1 - H H (1 _luglizlg )x’2x13 )
i,=liz=1
a4
=11

’2

5
T 11 (Vi

i=1liz=1

5

x?zx?
1 13
H <1 _Miulizi3> ’
liz=1
‘z x3 ’2 ‘3
) H H ()

= (([0.551,0.651] , [0.000, 0.269]) , ([0.460, 0.657] ,
[0.000,0.290]), ([0.431, 0.570] , [0.000, 0.264]) ,
([0.511,0.661], [0.000, 0.224]), ([0.487, 0.645] ,

[0.000,0.255]))" .

i=1liz=1

that is, x; = ([0.551,0.651], [0.000, 0.267]),
x, = ([0.460,0.657] , [0.000, 0.290])

x3 = ([0.431,0.570] , [0.000, 0.264]),
x4 = ([0.511,0.661] , [0.000, 0.224])
xs = ([0.487,0.645],[0.000, 0.255]).

Step 3. To rank the IVIFNs x; (i; = [5]), we calculate the scores

s(x; )iy = [5]) by the Definition 2.8. s(x;) = 0.466, s(x;) =

s(x3) = 0.369, s(x4) = 0.474, s(x5) = 0.438.

0.414,

Step 4. By the scores s(x; ) result, the ranking order of all the alter-
natives is generated as x4 > x; > x5 > x, > x3. Therefore, the best
car supplier is xg4.

We can also replace the GIIFWA with the GIIFWG to resolve this
problem. The difference starts from step 2.

Step 2’ By the Theorem 3.2, we have

GIIFWG (‘/ZIVIF o XZ o X3)

(|
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= (([0.503,0.641], [0.186,0.323]), ([0.421, 0.598] ,
[0.178,0.349]), ([0.387,0.560] , [0.171,0.307]),
([0.466,0.623] , [0.125,0.280]), ([0.450, 0.659] ,
[0.158,0.282])).

Then, we get

([0.503,0.641], [0.186,0.323]),
([0.421,0.598] , [0.178,0.349]),
x3 = ([0.387,0.560] , [0.171,0.307]),
x4 = ([0.466,0.623] , [0.125,0.280]) ,
xs = ([0.450,0.659] , [0.158,0.282]).

Step 3" In order to rank the IVIENs x; (i; = [5]), we calculate the
scores s(x,-l)(il = 1,2,:--,5) by the Definition 2.8, then we get
s(x1) = 0.318, s(xy) = 0.246, s(x3) = 0.234, s(x4) = 0.342, s(x5) =
0.334.

Step 4’ Then, by the scores s(x;) result, the ranking order of all the
alternatives is generated as x4 > x5 > x; > x, > x3. Therefore, the
optimal car supplier is xg4.

5.1.2. Discussion

In this subsection, we try to explain the difference between our

results with GIIFWA and GIIFWG operators and those in Qiu [15].

1. The comparison of the results is shown in Table 5. By using
the same data and weight information, the results calculated by
GIIFWG operator are the same as the results in Qiu [15]. How-
ever, the results calculated by GIIFWA operator are slightly
different from that in Qiu [15].

2. The reason for the slightly different results calculated by the
GIIFWA and GIIFWG operators is that the ranking result
of GIIFWG operator is more accurate because zero-valued
elements in expert preferences do not affect the calculation
process; the GIIFWG operator ensure the reasonable of the
alternative ranking in this numerical example.

3. Compared with the method in Qiu [15], we get the same calcu-
lation result with the GIIFWG operator which is more simple
in establishing and computing model.

5.2. Dynamic Interval-Valued Intuitionistic
Fuzzy Multiple Attribute Group
Decision-Making

In this subsection, we will use a practical example which is a slightly
revised version of Case illustration in Xu and Yager [35] to illustrate
the efficiency and universal applicability of the presented algorithm.

5.2.1. Practical example

Located in Central China and the middle reaches of the Changjiang
(Yangtze) River, Hubei Province is distributed in a transitional
belt where physical conditions and landscapes are on the tran-
sition from north to south and from east to west. Thus, Hubei
Province is well known as a land of rice and fish since the region

enjoys some of the favorable physical conditions, with a diver-
sity of natural resources and the suitability for growing various
crops. At the same time, however, there are also some restric-
tive factors for developing agriculture, such as a tight man-land
relation between a constant degradation of natural resources and
a growing population pressure on land resource reserve. Despite
cherishing a burning desire to promote their standard of living,
people living in the area are frustrated because they have no
ability to enhance their power to accelerate economic develop-
ment because of a dramatic decline in quantity and quality of
natural resources and a deteriorating environment. Based on the
distinctness and differences in environment and natural resources,
Hubei Province can be roughly divided into seven agroecologi-
cal regions: Y;-Wuhan-Ezhou-Huanggang; Y,-Northeast of Hubei;
Y3-Southeast of Hubei; Y,-Jianghan region; Ys-North of Hubei;
Ys-Northwest of Hubei; Y;-Southwest of Hubei. In order to pri-
oritize these agroecological regions Y; (i = 1,2, -+, 7) with respect
to their comprehensive functions, a committee comprised of three
experts E; (I = 1,2, 3) has been set up to provide assessment infor-
mation on Y; (i = 1,2, ---, 7). The attributes which are considered
here in assessment of Y;(i =1,2,---,7) are (1) G; is ecological
benefit, (2) G, is economic benefit, and (3) Gz is social bene-
fit. The committee evaluates the performance of agroecological
regions Y; (i = 1,2, -+, 7) in the years 2004 - 2006 according to the
attributes Gj ( j=12, 3), and constructs, respectively, the interval-
valued intuitionistic fuzzy decision matrices R (t;() (Lk=1,2,3)
(here, 1,‘11 denotes the year “2004, tl2 denotes the year “2005,
and t; denotes the year “2006”) as listed in Tables 6-14. Let
w = (1/6,2/6, 3/6)T be the weight vector of the years ti k=1,2,3),

=(0.5,0.2, 0.3)Tbe the weight vector of the experts Ey(I = 1, 2, 3),
and & (0.3,0.4,0.3)" be the weight vector of the attributes

G (j=123).

Step 1. If the interval-valued intuitionistic fuzzy tensor and the
GIIFWA operator are employed for expressing data in Tables 6-14,
S TIVIF(47 7X3X3X 3), where
7x3%x3%3
i1ipi3iy ([#’11213’4’#’1’2’3’4] [ ’1’2’3’4’V11’2’3’4])
and a; ::: (iy €[7]) represent seven agroecologrcal regions,
(12 € [3]) represent three years, a..; . (i3 € [3]) represent
three experts, and a..;, (ig € 3D represent three attributes. The
details are as follows:

then Ay = { ai4,1,,

its elements a;

1111 = ([0.8,0.9],[0.0,0.1]), a111 = ([0.7,0.8],[0.1,0.2]),
a1113 = ([0.6,0.8],[0.0,0.2]), a1121 = ([0.5,0.6],[0.2,0.3]),
1122 = ([0.2,0.6],[0.1,0.2]), a1123 = ([0.3,0.6],[0.2,0.3]),
a1131 = ([0.3,0.6],[0.1,0.3]), a1132 = ([0.2,0.5],[0.2,0.5]),
a1133 = ([0.2,0.5],[0.3,0.4]), a1511 = ([0.7,0.8],[0.1,0.2]),
1212 = ([0.8,0.9],[0.0,0.1]), a1213 = ([0.7,0.9],[0.0,0.1]),
1221 = ([0.2,0.6],[0.3,0.4]), a1225 = ([0.2,0.5],[0.3,0.4]),
1223 = ([0.4,0.5],[0.2,0.5]), a1231 = ([0.4,0.6],[0.1,0.3]),
1232 = ([0.2,0.6],[0.1,0.2]), a233 = ([0.2,0.5],[0.2,0.4]),
a1311 = ([0.6,0.7],[0.1,0.3]), a1312 = ([0.7,0.9],[0.0,0.1]),
a1313 = ([0.8,0.9],[0.0,0.1]), ay32; = ([0.4,0.6],[0.2,0.3]),
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Table 5 The comparison among the results of the GIIFWA and GIIFWG operators in this paper and the results of Qiu.

Sort Function The Optimal
Method Results Values Preference order Car supplier
Qiu’s [15] x1 = ([0.350,0.774] ,[0.226, 0.349]) s(x1) = 0203 x4 > x5 > x1 > x3 > x3 X4
method x5 = ([0.423,0.692],[0.171,0.227]) s(x2) = 0.181
x3 = ([0.318,0.698],[0.272, 0.302]) s (x3) = 0.169
x4 = ([0.259,0.740],[0.191, 0.200]) s(xg) = 0.235
x5 = ([0.392,0.646],[0.185,0.193]) s(xs) = 0222
GIIFWA x1 = ([0.551,0.650],[0.000, 0.269]) s(x1) = 0466 x4 > x1 > x5 > xp > x3 X4
operator x5 = ([0.460, 0.657],[0.000, 0.290]) s(xp) = 0.414
x3 = ([0.431,0.570],[0.000, 0.264]) s(x3) = 0.369
x4 = ([0.511,0.661],[0.000, 0.224]) s(x4) = 0.474
x5 = ([0.487,0.645],[0.000, 0.255)) s(x5) = 0.438
GIIFWG x1 = ([0.503,0.641],[0.186, 0.323]) s(x1) = 0318  xg4>x5>x1] > x3 > x3 X4
operator xp = ([0.421,0.598],[0.178, 0.349]) s (xz) = 0.246
x3 = ([0.387,0.560],[0.171,0.307]) s(x3) = 0.234
x4 = ([0.466,0.623],[0.125,0.280]) s(xq) = 0.342
x5 = ([0.450, 0.659],[0.158, 0.282]) s(x5) = 0.334

GIIFWA, generalized interval-valued intuitionistic fuzzy weighted averaging; GIIFWG, generalized interval-valued intuitionistic fuzzy weighted geo-

metric .

Table 6 Interval-valued intuitionistic fuzzy decision matrix R (t% )

Table 9 Interval-valued intuitionistic fuzzy decision matrix R (té )

G Gy G3 G Gy G3
Y;  ([08,0.9],[0.0,0.1])  ([0.7,0.8], [0.1,0.2 ([0.6,0.8], [0.0,0.2]) Y;  ([0.7,0.8],[0.1,02])  ([0.8,0.9],[0.0,0.1])  ([0.7,0.9], [0.0,0.1])
Y, ([0.6,0.7],[0.2,03])  ([0.5,0.7], [0.2,0.3 ([0.5,0.6], [0.2,0.3]) Y, ([050.7],[0.1,02])  ([0.6,0.7],[0.1,0.3])  ([0.4,0.5],[0.2,0.4])
Y3 ([0.4,0.5],[0.2,04])  ([0.5,0.6], [0.2,0.3 ([0.4,0.6], [0.1,0.2]) Yz ([0.3,0.5],[0.1,0.3])  ([0.4,0.5],[0.1,0.3])  ([0.3,0.6], [0.3,0.4])
Yy ([0.7,0.8],[0.1,02])  ([0.6,0.8],[0.0,0.1 ([0.6,0.7], [0.1,0.2]) Yy ([06,0.7],[0.1,02])  ([0.7,0.8],[0.1,0.2])  ([0.5,0.7], [0.1,0.3])
Ys  ([0.50.7],[0.1,0.3])  ([0.7,0.8], [0.1,0.2 ([0.4,0.5], [0.2,0.4]) Ys  ([050.7],[0.2,03])  ([0.50.7],[0.1,0.3])  ([0.4,0.6], [0.2,0.3])
Ye  ([0.2,0.3],[0.50.6])  ([0.3,0.5], [0.4,0.5 ([0.4,0.6], [0.3,0.4]) Yo  ([0.3,0.4],[0.40.6])  ([0.2,0.4],[0.50.6])  ([0.4,0.5], [0.4,0.5])
Y7 ([0.4,0.5],[0.3,04])  ([0.2,0.5],[0.3,0.5 ([0.4,0.7], [0.2,0.3]) Y7 ([03,0.5],[0.3,05])  ([0.4,0.6],[0.3,04])  ([0.4,0.5],[0.2,0.4])

Table 7 Interval-valued intuitionistic fuzzy decision matrix R (t% ) .

Table 10 Interval-valued intuitionistic fuzzy decision matrix R (tg ) .

Gy Gy G3 Gy Gy G3
Y] ([0506],[0203])  ([0206],[0.1,02) ((03,06],[02,03) Y7 ((02,06],[0304]) ((02,05],[0.304])  ([0.40.5],[0.2,05])
Y,  ([0405],[0.1,03]))  ([0.2,06],[0.1,04])  ([0.405],[03,05]) Y,  ([0.3,05],[0203])  ([0.3,05],[0.,02])  ([0.3,0.5],[0.2,0.4])
Y ([0405],[0203])  ([0.7,0.8],[0.1,02]))  ([0.50.7],[0203])) Y3  ([0.405],[0.,02])  ([0.20.4], [02,03])  ([0.1,0.5],[0.2,0.3])
Yy ([0405],[0203]))  ([0.206],[0.1,03))  ([0.2,08],[0.1,02]) Yz  ([020.7],[0.,0.3]))  ([0.2,0.7],[0.1,0.3])  ([0.3,0.6], [0.2,0.4])
Yy ([0.3,0.5], [0.2,0.3]) ([0.3,0.6], [0.1,0.3]) ([0.3,0.6], [0.1 O 2]) Yy ([0.4,0.5], [0.2,0.3]) ([0.3,0.5], [0.1,0.2]) ([0.4,0.5], [0.1 () 3]
Yg ([0.3,0.6], [0.2,0.3]) ([0.2,0.7], [0.1,0.2]) ([0.2,0.6], [0.1,0.4]) Yg ([0.3,0.6], [0.2,0.3]) ([0.3,0.7], [0.1,0.2]) ([0.3,0.6], [0.1,0.4])
Yy ([0.4,0.6], [0.2,0.3]) ([0.4,0.5], [0.1,0.2]) ([0.4,0.5], [0.2,0.3]) Yy ([0.3,0.5], [0.1,0.2]) ([0.3,0.5], [0.2,0.4]) ([0.1,0.8], [0.1,0.2])

Table 8 Interval-valued intuitionistic fuzzy decision matrix R (ti )

)

Table 11 Interval-valued intuitionistic fuzzy decision matrix R (t

G1 Gy G3 Gy Gy G3
Y1 ([0.3,0.6], [0.1,0.3]) ([0.2,0.5], [0.2,0.5 ([0.2,0.5], [0.3,0.4]) Y1 ([0.4,0.6], [0.1,0.3]) ([0.2,0.6], [0.1,0.2]) ([0.2,0.5], [0.2,0.4])
Y, ([0.3,0.5], [0.2,0.5]) ([0.3,0.5], [0.3,0.4 ([0.2,0.6], [0.2,0.3]) Y, ([0.4,0.5], [0.3,0.5]) ([0.4,0.5], [0.1,0.2]) ([0.2,0.8], [0.1,0.2])
Y3 ([0.4,0.6], [0.1,0.3]) ({0.3,0.4], [0.2,0.3 ([0.3,0.6], [0.1,0.2]) Y3 ([0.2,0.6], [0.2,0.3]) ({0.2,0.7], [0.1,0.2]) ([0.3,0.7], [0.2,0.3])
Yy ([03,05],{0.1,0.3])  ([0.3,0.5], [0.2,0.3 (102,071, [0.1,02)) Yz  ([0.1,0.6], [0.2,0.3])  ([0.1,0.7], [02,03])  ([0.3,0.6], [0.1,0.4])
Ys  ([02,06),[0.,0.2])  ([0.2,0.5], [0.1,0.4 ((04,05],[0.203]) Y5  ([040.7],[0.1,02])  ([0.20.6], [02,03]))  ([0.3,0.7], [0.1,0.2])
Yo ([03,05],[020.3])  ([0.3,0.5], [0.1,0.2 ((03,05],[0.204])  Ys  ([040.5],(0203])  ([0.20.5],[0.1,02])  ([0.3,0.5], [0.2,0.3])
Y, ([040.7],[0.1,03]))  ([0.2,0.7], [0.2,0.3 ([04,08],[0.1,02)) Y7  ([0.405],[0201])  ([0.2,07],[0.1,03])  ([0.3,0.6], [0.1,0.2])
ayzpy = ([03, 06] , [01, 03]) aizz3z = 0.3,0. 6] [0 2,0. 4]) azi1 = ([05, 07] , [01, 02]) » 2212 ([06, 07] , [01, 03]) )
a1z = ([0.3,0.5],[0.2,0.4]), ayz3, = ([0.3,0.5],[0.1,0.2]), asy13 = ([0.4,0.5],[0.2,0.4]), azpn1 = ([0.3,0.5],[0.2,0.3]),
a1333 = ([03, 06] , [02, 03]) aziil = 06, 0. 7] [0 2 0. 3] azpo2 = ([03, 05] , [01, 02]) az23 = ([03, 05] , [02, 04]) N
aziig = ([OS, 07] N [02, 03]) az113 = 05, 0. 6] [0 2 0. 3] azz31 = ([04, 05] N [03, 05]) azn3z = ([04, 05] . [01, 02]) N
aziz1 = ([04, 05] N [01, 03]) az122 = 02, 0. 6] [0 1 0. 4]) az733 = ([02, 08] . [01, 02]) az3l] = ([04, 06] . [01, 02]) ,
az123 = ([04, 05] B [03, 05]) az131 = 0.3,0. 5] [0 2,0. 5]) az31y = ([05, 07] s [01, 02]) ajz313 = ([06, 07] s [01, 03]) B
a2132 = ([03’ 05] > [03’ 04]) » 2133 = 02’ 0. 6] [0 2 0. 3]) 321 = ([01’ 07] 5 [02’ 03]) » 2322 = ([02’ 07] 5 [017 02]) 5
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Table 12 Interval-valued intuitionistic fuzzy decision matrix R (t; )

Gy G, Gs
Y7 ([0.60.7],[0.,03])  ([0.7,0.9],[0.0,0.1])  ([0.8,0.9], [0.0,0.1])
Y, ([04,0.6],[0.1,02])  ([0.50.7],[0.1,0.2])  ([0.6,0.7], [0.1,0.3])
Y3 ([02,04],[02,03])  ([0.3,0.6],[02,03])  ([0.4,0.6],[0.2,0.4])
Ya  ([0.7,0.8],[0.0,0.1])  ([0.8,0.9],[0.0,0.1])  ([0.4,0.7], [0.2,0.3])
Ys  ([0.50.6],[02,03])  ([0.4,0.5],[0.1,02])  ([0.6,0.7], [0.2,0.3])
Yo  ([02,03],[0.506])  ([0.3,0.5],[0.3,04])  ([0.3,0.6], [0.2,0.4])
Y;  ([0.50.6],[0.3,04])  ([0.2,03],[04,05])  ([0.7,0.8], [0.1,0.2])

Table 13 Interval-valued intuitionistic fuzzy decision matrix R (tg ) .

G G G3
Y] ([04,0.6],[0.2,03])  ([0.3,0.6],[0.1,0.3])  ([0.3,0.6], [0.2,0.4])
Y,  ([0.1,0.7],[0.2,03]))  ([0.2,0.7],[0.1,0.2])  ([0.5,0.6], [0.1,0.3])
Y3 ([0.50.7],[0.2,03])  ([0.5,0.6], [0.1,0.3])  ([0.4,0.5],[0.1,0.2])
Yy ([0.1,07],[0.2,03])  ([0.2,0.7],[0.1,0.3])  ([0.3,0.6], [0.1,0.2])
Ys  ([04,0.5],[0.1,03])  ([0.2,0.6], [0.1,0.4])  ([0.1,0.7], [0.2,0.3])
Ye  ([0.50.6],[0.1,0.3])  ([0.4,0.6],[0.2,04])  ([0.2,0.6], [0.1,0.3])
Y7 ([02,0.7],[0.1,02])  ([0.2,0.8],[0.1,0.2])  ([0.1,0.8], [0.1,0.2])

Table 14 Interval-valued intuitionistic fuzzy decision matrix R (tg )

Gy Gy G3
Y;  ([03,0.5],[0.2,04])  ([0.3,0.5],[0.1,0.2])  ([0.3,0.6], [0.2,0.3])
Y, ([03,0.7],[0.2,03])  ([0.3,0.5],[0.1,04])  ([0.2,0.5], [0.2,0.4])
Yz ([04,0.7],[02,03])  ([0.4,0.5],[0.1,03])  ([0.5,0.7],[0.1,0.2])
Yy ([0.2,0.8],[0.1,02])  ([0.2,0.8],[0.1,0.2])  ([0.2,0.7], [0.1,0.2])
Ys  ([0.2,0.8],[0.1,02])  ([0.2,0.5],[0.1,0.3])  ([0.1,0.7], [0.2,0.3])
Yo o ([0207],[0.1,03]))  ([0.1,0.7].[0.2.0.3])  ([0.2,0.6], [0.3,0.4])
Y7 ([0.2,0.8],[0.1,02])  ([0.4,0.5],[0.2,03])  ([0.1,0.6], [0.2,0.4])
a3z = ([0.5,0.6],[0.1,0.3]),a5331 = ([0.3,0.7],[0.2,0.3]),
ay33; = ([0.3,0.5],[0.1,0.4]), ay333 = ([0.2,0.5],[0.2,0.4]),
as11; = ([0.4,0.5],[0.2,0.4]), as;15 = ([0.5,0.6],[0.2,0.3]),
az113 = ([0.4,0.6],[0.1,0.2]), as;2 = ([0.4,0.5],[0.2,0.3]),
3122 = ([0.7,0.8],[0.1,0.2]), as123 = ([0.5,0.7],[0.2,0.3]),
az131 = ([0.4,0.6],[0.1,0.3]), as;3, = ([0.3,0.4],[0.2,0.3]),
az133 = ([0.3,0.6],[0.1,0.2]), asp1; = ([0.3,0.5],[0.1,0.3]),
azz12 = ([0.4,0.5],[0.1,0.3]), asz13 = ([0.3,0.6],[0.3,0.4]),
a3y = ([0.4,0.5],[0.1,0.2]), asszy = ([0.2,0.4],[0.2,0.3]),
a3y = ([0.1,0.5],[0.2,0.3]), asp3; = ([0.2,0.6],[0.2,0.3]),
3232 = ([0.2,0.7],[0.1,0.2]), asp33 = ([0.3,0.7],[0.2,0.3]),
assy; = ([0.2,0.4],[0.2,0.3]), asz15 = ([0.3,0.6],[0.2,0.3]),
3313 = ([0.4,0.6],[0.2,0.4]), as3; = ([0.5,0.7],[0.2,0.3]),
3320 = ([0.5,0.6],[0.1,0.3]), as323 = ([0.4,0.5],[0.1,0.2]),
az331 = ([0.4,0.7],[0.2,0.3]), as33, = ([0.4,0.5],[0.1,0.3]),
3333 = ([0.5,0.7],[0.1,0.2]), az11; = ([0.7,0.8],[0.1,0.2]),
112 = ([0.6,0.8],[0.0,0.1]), as113 = ([0.6,0.7],[0.1,0.2]),
g1 = ([0.4,0.5],[0.2,0.3]), as12, = ([0.2,0.6],[0.1,0.3]),
4123 = ([0.2,0.8],[0.1,0.2]), az13; = ([0.3,0.5],[0.1,0.3]),
a3z = ([0.3,0.5],[0.2,0.3]), as133 = ([0.2,0.7],[0.1,0.2]),
a1 = ([0.6,0.7],[0.1,0.2]), asz12 = ([0.7,0.8],[0.1,0.2]),
a3 = ([0.5,0.7],[0.1,0.3]), asz2; = ([0.2,0.7],[0.1,0.3]),
azzz = ([0.2,0.7],[0.1,0.3]), azz03 = ([0.3,0.6],[0.2,0.4]),

ag231 = ([0.1,0.6],[0.2,0.3]), aaz35 = (
433 = ([0.3,0.6],[0.1,0.4]), as31; = (
as312 = ([0.8,0.9],[0.0,0.1]), 44313 = (
ag301 = ([0.1,0.7],

0.1,0.7
0.7,0.8

[ [0.2,0.3]),
[

[0.4,0.7

[

[

[0.0,0.1]),
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[0.1,0.3]),
[0.1,0.2]),
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as111 = ([0.5,0.7],[0.1,0.3]), as11, = ([0.7,0.8],[0.1,0.2]),
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as1ay = ([0.3,0.6],[0.1,0.3]), as123 = ([0.3,0.6],[0.1,0.2]),

as131 = ([0.2,0.6],[0.1,0.2]), asy3, = ([0.2,0.5],[0.1,0.4]),

as133 = ([0.4,0.5],[0.2,0.3]), asp1; = ([0.5,0.7],[0.2,0.3]),
[
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[
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a6123 = ( 0.2,0.3)),

ag132 = ([0.3,0.5],[0.1,0.2]), ag133 = ([0.3,0.5],[0.2,0.4]),

ae211 =(O3,04 , 04,06) a6212=([02 04], 05 06),
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ae213 = (
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0.3,0.5],[0.2,0.3]), ag311 = ([0.2,0.3],[0.5,0.6]),

ae233 = (

agarz = ([0.3,0.5],[0.3,0.4]), ag313 = ([0.3,0.6],[0.2,0.4]),
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[
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agsa1 = ([0.5,0.6],[0.1,0.3]), ags2s = ([0.4,0.6],[0.2,0.4]),
ag3a3 = ([0.2,0.6],[0.1,0.3]), ag33; = ([0.2,0.7],[0.1,0.3]),
ag332 = ([0.1,0.7],[0.2,0.3]), ag333 = ([0.2,0.6]],[0.3,0.4],
azn = ([0.4,0.5],[0.3,0.4]),a7112 = ([0.2,0.5],[0.3,0.5]),
a1 = ([0.4,0.7],[0.2,0.3]), a7121 = ([0.4,0.6],[0.2,0.3]),
a2 = ([0.4,0.5],[0.1,0.2]) , 7123 = ([0.4,0.5] ,[0.2,0.3]),
a3 = ([0.4,0.7],[0.1,0.3]), ay132 = ([0.2,0.7],[0.2,0.3]),
az133 = ([0.4,0.8],[0.1,0.2]), a7211 = ([0.3,0.5],[0.3,0.5]),
g1 = ([04,0.6],[0.3,0.4]), az215 = ([0.4,0.5],[0.2,0.4]),
a1 = ([0.3,0.5],[0.1,0.2]), a7205 = ([0.3,0.5],[0.2,0.4]),
7223 = ([0.1,0.8],[0.1,0.2]) , 7231 = ([0.4,0.5],[0.2,0.1]),
732 = ([0.2,0.7],[0.1,0.3]), ay233 = ([0.3,0.6] ,[0.1,0.2]),
a1 = ([0.5,0.6],[0.3,0.4]), a7315 = ([0.2,0.3],[0.4,0.5]),
az313 = ([0.7,0.8],[0.1,0.2]), ay301 = ([0.2,0.7],[0.1,0.2]),
7320 = ([0.2,0.8],[0.1,0.2]), ay353 = ([0.1,0.8] ,[0.1,0.2]),
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a331 = ([02, 08] , [01, 02]) » 47332 = ([04, 05] , [02, 03]) ,
aj33z = ([01, 06] s [02, 04]) .

Step 2. BY Theorem 3.1, ﬁIVIF S TIVIF (4, 7X3X3X 3) Let X2 =
w (the years weight), X3 = A (the decision-makers weight), and
X4 = £ (the attributes weight), we have

GIIFWA (A 0 X5 0 X3 0 X,)

3 3 3 xizx?x?
:<[1_HHH<1_MZI'1"2i3i4) PR,
4

iy=lizg=liy=

(Vzlzzz 14)
12—1 13—1 14—1

= (([0.556,0.754] , [0.000, 0.207]) , ([0.415, 0.630] ,
[0.134,0.283]), ([0.363,0.581] , [0.153,0.290]),
([0.479,0.749] , [0.000, 0.208]), ([0.391, 0.632] ,
[0.135,0.273]), ([0.279, 0.542] , [0.233, 0.384]),
([0.349, 0.626] , [0.183,0.304]))" .

Then, we get

= ([0.556,0.754] , [0.000, 0.207]) ,

= ([0.415,0.630] , [0.134,0.283]),
Y5 = ([0.363,0.581], [0.153,0.290])
Y, = ([0.479,0.749] ,[0.000, 0.208]) ,
Ys = ([0.391,0.632] , [0.135,0.273]),
Y = ([0.279,0.542] ,[0.233,0.384]) ,
Y, = ([0.349,0.626] , [0.183,0.304]) .

Step 3. To rank the IVIENs Y; (i; € [7]), we calculate the scores
s (Yi1) (i € [7]) by the Definition 2.8. Then, we have s(Y;)
0.552, s(Y,) = 0.314, s(Y3) = 0.251, s(Y,) = 0.510, s(Ys)
0.307, s (Yg) = 0.102, s (Y5) = 0.244.

Step 4. By the scores s (Yi1 ) result, the ranking order of all the alter-
natives is generated as Y; > Y, > Y, > Y5 > Y3 > Y; > Y.
Therefore, the agroecological region with the most comprehensive
functions is Y;-Wuhan-Ezhou-Huanggang.

We can also replace the GIIFWA with the GIIFWG to resolve this
problem. The difference starts from step 2.

Step 2’ By the Theorem 3.2, we have
GIIFWG (Ajp 0 X5 0 X3 0 Xy)

3 3 3 2 3 4
I xizxisx[4
= H H H Hiyiigiy ’
i2—1i3—1i4—1
3 2.3 4
lle x14
H H #’1’2’314 ’
ih=liz=1liy=

3 3 3 20 i
ll H (1 Vi1i2i3i4> T,
3 X.Z X;; )C‘.‘
H (1 Vi i4) 2 ,4]>

= (([0.444,0.684] ,
[0.147,0.302]),
([0.346,0.724]

0.107,0.249]), ([0.369,0.610] ,
[0.334,0.562],[0.165,0.299])
0.104,0.231]), ([0.332,0.610] ,

_ A~ r—

[0.145,0.282]), (|0.258,0.514] , [0.285,0.419]),
[0.290, 0.575] , [0.214, 0.338]))"
Then, we get

([0.444,0.684] ,[0.107, 0.249]),
([0.369, 0.610] , [0.147, 0.302]) ,
=( ]
]

11

11

0.334,0.562] , [0.165,0.299]) ,

= ([0.346,0.724] ,[0.104,0.231]),
= ([0.332,0.610], [0.145,0.282])
= ([0.258,0.514], [0.285,0.419])

Y, = ([0.290,0.575] , [0.214,0.338]).

Step 3. To rank the IVIFNs Y; (i} € [7]), we calculate the
scores s(Yil)(il € [7]) by the Definition 2.8, then we get
s(Yy) = 0.386,5(Y,) = 0.266,5(Y3) = 0.216,5(Y,) = 0.367,
s(Ys) = 0.258,s(Yg) = 0.034,5(Y7) = 0.156.

Step 4’ By the scores s (Y,-1 ) result, the ranking order of all the alter-
natives is generated as Y; > Y4 > Y, > Y5 > Y3 > V; > Y.
Therefore, the agroecological region with the most comprehensive
functions is also Y;-Wuhan-Ezhou-Huanggang.

5.2.2. Discussion

1. The comparison of the results is shown in Table 15. By using
the same data and weight information, we get the same results
calculated by the GIIFWA and GIIFWG operators. That is, the
agroecological region with the most comprehensive functions
is Y1-Wuhan-Ezhou-Huanggang.

2. The GIIFWA and GIIFWG operators proposed in this paper
can effectively solve the dynamic multiple attribute group
decision-making problem (four-dimensional data) through
analyzing the above practical decision-making problem.
Therefore, in order to solve the actual decision problem of
high-dimensional data, the proposed methods have bet-
ter adaptability. For example, it can effectively deal with
multiple attribute group decision-making problem (three-
dimensional data), dynamic multiple attribute group decision-
making problem (four-dimensional data), and practical
decision problems with higher dimension data.

6. CONCLUSION

As a generalization of fuzzy decision matrix, this paper has pre-
sented the concept of mth-order interval-valued intuitionistic fuzzy
tensor and related properties. The GIIFWA and GIIFWG operators
by the product of tensor with vector have been obtained and found
effective to deal with the multiple attribute group decision-making
and dynamic multiple attribute group decision-making problems
in an interval-valued intuitionistic condition. Two typical examples
have also been provided to demonstrate the efficiency and univer-
sal applicability of the proposed method.
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Table 15 The comparison between the results of the GIIFWA and GIIFWG operators in this paper.
The
Agroecological
Region with the
Most
Comprehensive
Method Results Sort Function Values Preference Order Functions
GIIFWA Y7 = ([0.556,0.754], [0.000, 0.207]) s(Y7) = 0552 Yy >Yg>Yy>Ys>Y3> Yy > Y Y1
operator Y, = ([0.415,0.630], [0.134,0.283]) s (Yz =0.314
Y3 = ([0.363,0.581],[0.153, 0.290]) s(Y3) = 0.251
Y4 = ([0.479,0.749],[0.000, 0.208]) s(Y4) = 0.510
Ys = ([0.391,0.632],[0.135, 0.273]) s(Ys) = 0.307
Ye = ([0.279,0.542],[0.233,0.384]) s(Yg) = 0.102
Y7 = ([0.349, 0.626] , [0.183,0.304]) s(Y7) = 0.244
GIIFWG Y7 = ([0.444,0.684],[0.107, 0.249]) s(Y]) = 0386 Yy >Yg>Yy>Ys> V3> Vs> Y Y1
operator Y, = ([0.369, 0.610],[0.147, 0.302]) s(Yp) = 0.266
Y3 = ([0.334,0.562], [0.165, 0.299]) s(v3) = 0.216
Y4 = ([0.346,0.724] ,[0.104, 0.231]) s(Y4) = 0367
Ys = ([0.332,0.610],[0.145, 0.282]) s(Ys5) = 0.258
Ye = ([0.258,0.514] ,[0.285, 0.419]) s(Yg) = 0.034
Y7 = ([0.290, 0.575],[0.214, 0.338]) s(Y7) = 0.156

GITFWA, generalized interval-valued intuitionistic fuzzy weighted averaging; GIIFWG, generalized interval-valued intuitionistic fuzzy weighted geometric.
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