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ABSTRACT
To solve the interval-valued intuitionistic fuzzy decision-making problems with high-dimension data, the fuzzy matrix is
extended to the fuzzy tensor in this paper. Based on the constructed tensor definition, we propose the generalized interval-
valued intuitionistic fuzzy weighted averaging (GIIFWA) and generalized interval-valued intuitionistic fuzzy weighted geomet-
ric (GIIFWG) operators. By exploring the properties of GIIFWA and GIIFWG operators, a new algorithm is presented to solve
the interval-valued intuitionistic fuzzy multiple attribute group decision-making problem. Two typical application examples are
also provided to demonstrate the efficiency and universal applicability of our proposed method.
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1. INTRODUCTION

As an important branch of decision-making fields, the multiple
attribute group decision-making has been paid a close attention in
past decades. Normally, multiple attribute group decision-making
problems is that multiple decision-makers select the optimal alter-
natives or ranking them from a set of feasible alternatives by the
attribute weights and attribute values, for details refers to Xu and
Cai [1]. However in some real applications such as Xu and Cai [1],
Liu et al. [2], Wang et al. [3], Qin et al. [4], He [5], and Hashemi
et al. [6], due to the undetermined decision-making environment,
the multi-attribute group decision-making seems to be useless for
decision-making. One alternative dealing with this difficulty is the
fuzzy set, which was subsequently extended to intuitionistic fuzzy
set by Atanassov [7] for applications in various decision-making
areas, and Atanassov and Gargov [8] presented the concept and
properties of interval-valued intuitionistic fuzzy set based on intu-
itionistic fuzzy set in 1989, which enriched intuitionistic fuzzy set
theory. Especially in recent researches, multiple attribute group
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decision-making with incorporated interval-valued intuitionistic
fuzzy sets has attracted great attentions and yielded plentiful results.
For example, Xu [9] developed a method based on distance mea-
sure for group decision-making with interval-valued intuitionistic
fuzzy matrices. Kabak and Ervural [10] devised a generic concep-
tual framework and a classification scheme for multiple attribute
group decision-making methods. Yang et al. [11] proposed a new
method based on dynamic intuitionistic normal fuzzy aggrega-
tion operators and VIKOR method with time sequence prefer-
ence for the dynamic intuitionistic normal fuzzy multi-attribute
decision-making problems. Liu [12] proposed the interval-valued
intuitionistic fuzzy power Heronian aggregation operator and
interval-valued intuitionistic fuzzy power weight Heronian aggre-
gation operator for the multiple attribute group decision-making.
Chen and Huang [13] proposed a new multi-attribute decision-
makingmethod by the interval-valued intuitionistic fuzzy weighted
geometric average (IIFWGA) operator and the accuracy func-
tion of interval-valued intuitionistic fuzzy values. Wang and
Chen [14] proposed an improved multiple attribute decision-
making method by the score function SWC of interval-valued
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intuitionistic fuzzy values and the linear programming methodol-
ogy. Qiu and Li [15] employed the plant growth simulation algo-
rithm (PGSA) to calculate the optimal preferences of the entire
expert group and proposed a new method to solve the multi-
attribute group decision-making problem.

However the above mentioned models which are based on matrix
frame meet with difficulties in processing higher dimension data
and might lose their efficiency. To tackle this problem, we intro-
duce a new developed tensor model which is a generalization of
matrix. The concepts of higher-order tensor eigenvalues and eigen-
vectors were introduced by [16] and [17]. Subsequently, the theory
and algorithms of some special tensors and the spectra of tensors
with their various applications have attracted wide attention [18–
31]. For example, Ding and Wei [18,19] investigated the solutions
of some structured multi-linear systems whose coefficient tensor is
M-tensor. Qi [20] proved two new spectral properties and a max-
imum property of the largest H-eigenvalue in a symmetric non-
negative tensor system. Ni et al. [21] obtained an upper bound of
different US-eigenvalues and the count of US-eigenpairs corre-
sponding to all nonzero eigenvalues in the symmetric tensors. Ng
et al. [22] proposed an iterative method to calculate the largest
eigenvalue of an irreducible nonnegative tensor. Rajesh Kannan
et al. [23] gained some properties of strong H-tensors and (gen-
eral) H-tensors. Based on the diagonal product dominance and S
diagonal product dominance of tensor, Wang et al. [24] established
some new implementable attribute which can be used for identify-
ing nonsingular H-tensor. By studying the general product of two
n-dimensional tensors𝒜 andwith ordersm ⩾ 2 and k ⩾ 1, Shao
et al. [25,26] found that the product is a generalization of the usual
matrix product and it satisfies the associative law. Bu et al. [27] gave
some basic properties for the left (right) inverse, rank, and product
of tensors. Pumplün [28] studied the tensor product of an associa-
tive and a nonassociative cyclic algebra. Giladi et al. [29] studied the
volume ratio of the projective tensor products ℓnp⊗𝜋 ℓnq⊗𝜋 ℓnr with
1 ⩽ p ⩽ q ⩽ r ⩽ ∞ and obtained asymptotic formulas that are
sharp in almost all cases. Gutiérrez García et al. [30] employed ten-
sor products of complete lattices into fuzzy set theory. Hilberdink
[31] studied operators having (infinite) matrix representations and
gave such operators infinite tensor products over the primes. More-
over, we have defined the concept of fuzzy tensor and established
the general form of the fuzzy synthetic evaluationmodel for solving
multiple attribute group decision-making problems [32].

Based on the research results we have achieved [32], we will pro-
pose two new generalized aggregation operators based on interval-
valued intuitionistic fuzzy tensor for solving the interval-valued
intuitionistic fuzzy multiple attribute group decision-making
problem. Specifically, wewill first establish the generalized interval-
valued intuitionistic fuzzy weighted averaging (GIIFWA) and gen-
eralized interval-valued intuitionistic fuzzy weighted geometric
(GIIFWG) operators. Then some properties about those new gener-
alized aggregation operators are developed and a new algorithm is
presented for the corresponding decision-making problems. Indeed
as shown in numerical experiments, the proposed interval-valued
intuitionistic fuzzy tensor model does provide a new way for solv-
ing multiple attribute group decision-making problems with high-
dimension data.

The whole paper is arranged as follows: In Section 2, we
introduce some concepts and properties of the fuzzy tensor

and interval-valued intuitionistic fuzzy aggregation. Section 3 is
devoted to the derivation of the GIIFWA andGIIFWG operators by
the product of tensor and vector, and gives some properties of two
new generalized aggregation operators. In Section 4, we present an
algorithm for solving the interval-valued intuitionistic fuzzy multi-
ple attribution group decision-making problems. In Section 5, two
different application examples are shown for illustrating the pro-
posed approach. A conclusion is finally drawn in Section 6.

2. PRELIMINARIES

This section provides basic preliminaries about the fuzzy tensor,
interval-valued intuitionistic fuzzy set, and interval-valued intu-
itionistic fuzzy information aggregation theory.

Let R be the real field and F and IVIF be the fuzzy set and interval-
valued intuitionistic fuzzy set defined in universe R, respectively.
The TR (m, n), TF (m, n), and TIVIF (m, n) denote the set of allmth-
order n-dimension real tensors, fuzzy tensors, and interval-valued
intuitionistic fuzzy tensors, respectively, and [n] = {1, 2,⋯ , n}. Fn
and IVIFn denote the n-dimensional fuzzy vector in the F and n-
dimensional interval-valued intuitionistic fuzzy vector in the IVIF,
respectively.

Definition 2.1. [8] Let X be a finite nonempty set. Then

Ã = {⟨x, �̃�Ã (x) , ̃𝜈Ã (x)⟩|x ∈ X}

is called an interval-valued intuitionistic fuzzy set, where �̃�Ã (x) ⊂
[0, 1] and ̃𝜈Ã (x) ⊂ [0, 1], x ∈ X, with the condition:

sup �̃�Ã (x) + sup ̃𝜈Ã (x) ⩽ 1, x ∈ X

Note: For convenience, the interval-valued intuition-
istic fuzzy numbers (IVIFNs) [33] can be denoted as
Ã =

(
[𝜇l

Ã (x) , 𝜇u
Ã (x)] , [𝜈lÃ (x) , 𝜈uÃ (x)]

)
in this paper, where

[𝜇l
Ã, 𝜇u

Ã] ⊂ [0, 1] , [𝜈lÃ, 𝜈uÃ] ⊂ [0, 1] , 𝜇u
Ã + 𝜈uÃ ⩽ 1.

and [𝜇l
Ã, 𝜇u

Ã] and [𝜈lÃ, 𝜈uÃ] represent the supported interval and
opposed interval about an evaluation object, respectively.

Definition 2.2. [33] Let �̃� =
(
[𝜇l

�̃�, 𝜇u
�̃�] , [𝜈l�̃�, 𝜈u�̃�]

)
, �̃�1 =

(
[𝜇l

�̃�1 ,

𝜇u
�̃�1] , [𝜈

l
�̃�1 , 𝜈

u
�̃�1]

)
and �̃�2 =

(
[𝜇l

�̃�2 , 𝜇
u
�̃�2] , [𝜈

l
�̃�2 , 𝜈

u
�̃�2]

)
be IVIFNs.

Then

1. �̃� =
(
[𝜈l�̃�, 𝜈u�̃�] , [𝜇l

�̃�, 𝜇u
�̃�]
)
, where �̃� is the complement of �̃�.

2. �̃�1 ∧ �̃�2 =
(
[min {𝜇l

�̃�1 , 𝜇
l
�̃�2 } ,min {𝜇u

�̃�1 , 𝜇
u
�̃�2 }] ,

[max {𝜈l�̃�1 , 𝜈
l
�̃�2 } ,max {𝜈u�̃�1 , 𝜈

u
�̃�2 }]

)
;

3. �̃�1 ∨ �̃�2 =
(
[max {𝜇l

�̃�1 , 𝜇
l
�̃�2 } ,max {𝜇u

�̃�1 , 𝜇
u
�̃�2 }] ,

[min {𝜈l�̃�1 , 𝜈
l
�̃�2 } ,min {𝜈u�̃�1 , 𝜈

u
�̃�2 }]

)
;

4. �̃�1 + �̃�2 =
(
[𝜇l

�̃�1 + 𝜇l
�̃�2 – 𝜇

l
�̃�1𝜇

l
�̃�2 , 𝜇

u
�̃�1 + 𝜇u

�̃�2 – 𝜇
u
�̃�1𝜇

u
�̃�2] ,

[𝜈l�̃�1𝜈
l
�̃�2 , 𝜈

u
�̃�1𝜈

u
�̃�2 ]

)
;.
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5. �̃�1 ⋅ �̃�2 =
(
[𝜇l

�̃�1𝜇
l
�̃�2 , 𝜇

u
�̃�1𝜇

u
�̃�2 ], [𝜈

l
�̃�1 +𝜈

l
�̃�2 – 𝜈

l
�̃�1𝜈

l
�̃�2 , 𝜈

u
�̃�1 +𝜈

u
�̃�2 –

𝜈u�̃�1𝜈
u
�̃�2 ]

)
.

6. 𝜆�̃� =
(
[1 – (1 – 𝜇l

�̃�)𝜆, 1 – (1 – 𝜇u
�̃�)𝜆], [(𝜈l�̃�)𝜆, (𝜈u�̃�)𝜆]

)
, 𝜆 > 0;

7. �̃�𝜆 =
(
[(𝜇l

�̃�)𝜆, (𝜇u
�̃�)𝜆], [1 – (1 – 𝜈l�̃�)𝜆, 1 – (1 – 𝜈u�̃�)𝜆]

)
, 𝜆 > 0.

Definition 2.3. [16] Let 𝒜 ∈ TR (m, n1 × n2 ×⋯ × nm), and its
elements ai1i2⋯im ∈ R where i1 ∈ [n1] , i2 ∈ [n2] ,⋯ , im ∈ [nm].
Then𝒜 is called amth-order tensor.

Note: According to the Definition 2.3, we know that the matrix is
the 2nd-order tensor.
Definition 2.4. [32] Let ̃𝒜 ∈ TF (m, n1 × n2 ×⋯ × nm), and its
elements ai1i2⋯im ∈ [0, 1] where i1 ∈ [n1] , i2 ∈ [n2] ,⋯ , im ∈
[nm], then ̃𝒜 is called amth-order fuzzy tensor.

Definition 2.5. Let ̃𝒜IVIF =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈
TIVIF (m, n1 ×n2 ×⋯ × nm), and its elements
ai1i2⋯im =

(
[uli1i2⋯im

, 𝜇u
i1i2⋯im] , [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im]

)
where

[𝜇l
i1i2⋯im , 𝜇

u
i1i2⋯im]⊂ [0, 1], [𝜈li1i2⋯im , 𝜈

u
i1i2⋯im] ⊂ [0, 1] satisfy the

condition

𝜇u
i1i2⋯im + 𝜈ui1i2⋯im ⩽ 1,

and the interval [𝜇l
i1i2⋯im , 𝜇

u
i1i2⋯im] and [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im] denote

the supported interval and opposed interval about an evaluation
object, respectively. Then ̃𝒜IVIF is called a mth-order interval-
valued intuitionistic fuzzy tensor.

Definition 2.6. [1] Let �̃�i (i = 1, 2,⋯ , n) be a collection of IVIFNs,
and let IIFWA: FnIVIF → FIVIF. If

IIFWA𝜔 (�̃�1, �̃�2,⋯ , �̃�n) = 𝜔1�̃�1 + 𝜔2�̃�2 +⋯+ 𝜔n�̃�n

where 𝜔 = (𝜔1, 𝜔2,⋯ , 𝜔n)
T is the weight vector of

�̃�i (i = 1, 2,⋯ , n), with𝜔i ∈ [0, 1] (i = 1, 2,⋯ , n), and
n

∑
i=1

𝜔i = 1,

then the function IIFWA is called an interval-valued intuitionistic
fuzzy weighted averaging (IIFWA) operator.

Definition 2.7. [1] Let IIFWG: FnIVIF → FIVIF. If

IIFWG𝜔 (�̃�1, �̃�2,⋯ , �̃�n) = �̃�𝜔1
1 ⋅ �̃�𝜔2

2 ⋅ ⋯ ⋅ �̃�𝜔nn

then the function IIFWG is called an interval-valued intuitionistic
fuzzy weighted geometric (IIFWG) operator.

Definition 2.8. [33] Let �̃� =
(
[𝜇l

�̃�, 𝜇u
�̃�] , [𝜈l�̃�, 𝜈u�̃�]

)
be an IVIFN.

Then we call

s (�̃�) = 1
2
(
𝜇l
�̃� – 𝜈l�̃� + 𝜇u

�̃� – 𝜈u�̃�
)

the score of �̃�, where s is the score function of �̃�, s (�̃�) ∈ [–1, 1].
Definition 2.9. [33] The accuracy function of an IVIFN �̃� is
defined as

h (�̃�) = 1
2
(
𝜇l
�̃� + 𝜇u

�̃� + 𝜈l�̃� + 𝜈u�̃�
)

where h (�̃�) ∈ [0, 1].

Definition 2.10. [33] Let �̃�1 and �̃�2 be any two IVIFNs. Then

1. If s (�̃�1) < s (�̃�2), then �̃�1 < �̃�2.
2. If s (�̃�1) = s (�̃�2), then

(a) If h (�̃�1) < h (�̃�2), then �̃�1 < �̃�2.
(b) If h (�̃�1) > h (�̃�2), then �̃�1 > �̃�2.
(c) If h (�̃�1) = h (�̃�2), then �̃�1 ∼ �̃�2.

Definition 2.11. [16] Suppose that 𝒜 =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈
TR (m, n1 × n2 ×⋯ × nm) is a mth-order tensor, and

Xj =
(
x j
1, x

j
2,⋯ , x j

n

)T
∈ Rnj

(
j ∈ [m – 1]

)
is a nj-dimension vec-

tor, then the imth component of the vector 𝒜 ∘ X1 ∘ X2⋯ ∘ Xm–1
in Rnm is defined as the following:

(𝒜 ∘ X1 ∘ X2⋯ ∘ Xm–1)im

=
n1
∑
i1=1

⋯
nm–1

∑
im–1=1

ai1i2⋯imx
1
i1
x2i2 ⋯ xm–1

im–1
.

Definition 2.12. [34] LetU andV be universes and F (V) be the set
of all fuzzy sets in V (power set).

• f ∶ U → F (V) is a mapping

• f is a fuzzy function iff

𝜇f(u) (v) = 𝜇R̃ (u, v) , ∀ (u, v) ∈ U × V,

where 𝜇R̃ (u, v) is the membership function of a fuzzy relation.

Note: The mapping f inDefinition 2.12 is also a fuzzy mapping.

Definition 2.13. Let ̃𝒜IVIF =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈
TIVIF (m, n1 × n2 ×⋯ × nm), and let the function GIIFWA:
Fn2×⋯×nm
IVIF → Fn1IVIF. If

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

n2
∑
i2

⋯
nm
∑
im

ai1i2⋯im ⋅ x
2
i2
⋅ ⋯ ⋅ xmim

(1)

where X2 =
(
x21,⋯ , x2i2 ,⋯ , x2n2

)T
, ⋯, Xm =(

xm1 ,⋯ , xmim ,⋯ , xmnm
)T

are the weight vectors of
a∶i2∶⋯∶(i2 = 1, 2,⋯ , n2) , ⋯ , a∶⋯∶im (im = 1, 2,⋯ , nm), respec-

tively, and
n2
∑
i2=1

x2i2 = 1, x2i2 ⩾ 0;⋯ ;
nm
∑
im=1

xmim = 1, xmim ⩾ 0, then the

function GIIFWA is called the GIIFWA operator.

Definition 2.14. Suppose that the function GIIFWG: Fn2×⋯×nm
IVIF →

Fn1IVIF. If

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

n2
∏
i2

⋯
nm
∏
im

(
ai1i2⋯im

)x2i2 ⋅⋯⋅xmim

(2)

then the function GIIFWG is called the GIIFWG operator.
Pdf_Folio:582
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3. GENERALIZED INTERVAL-VALUED
INTUITIONISTIC FUZZY AGGREGATION
OPERATORS BASED ON FUZZY TENSOR
TECHNIQUE

Since the interval-valued intuitionistic fuzzy information aggrega-
tion is helpful for dealing with fuzzy multiple attribute decision-
making problem, we will first develop, in this section, the GIIFWA
and GIIFWG operators by the product of themth-order fuzzy ten-
sor with vector. Then both the GIIFWA and the GIIFWG operators
are proved to having properties of idempotency and boundedness,
which lays a theoretical foundation for the algorithm to solve the
fuzzy multiple attribute group decision-making problems in next
section.

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=
(
[1 –

n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim ,

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim ] ,

[
n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim ,

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim ]
)

where X2 =
(
x21,⋯ , x2i2 ,⋯ , x2n2

)T
,⋯, Xm =(

xm1 ,⋯ , xmim ,⋯ , xmnm
)T

are the weight vectors of
a∶i2∶⋯∶ (i2 = 1, 2,⋯ , n2) ,⋯, a∶⋯∶im (im = 1, 2,⋯ , nm), respec-

tively, and
n2
∑
i2=1

x2i2 = 1, x2i2 ⩾ 0;⋯ ;
nm
∑
im=1

xmim = 1, xmim ⩾ 0.

Proof.Weprove theTheorem3.1 by usingmathematical induction
on n2,⋯ , nm.

1. When n2 = ⋯ = nm = 1, we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
= ai11⋯1x21⋯ xm1

=
(
[1 –

(
1 – 𝜇l

i11⋯1

)x21⋯xm1 , 1 –
(
1 – 𝜇u

i11⋯1

)x21⋯xm1 ] ,

[
(
𝜈li11⋯1

)x21⋯xm1 ,
(
𝜈ui11⋯1

)x21⋯xm1 ]
)
.

2. Let I1 = {2, 3,⋯ ,m} and I2 = {n2, n3,⋯ , nm} be indicator
sets. When at least one element in the indicator set I2 add to
“1,” then we consider the following cases:
(a) When j ∈ I1 and nj = 2, then we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

2
∑
ij=1

ai11⋯ij⋯1x21⋯ x j
ij
⋯ xm1

=
⎛⎜⎜⎝[1 –

2
∏
ij=1

(
1 – 𝜇l

i11⋯ij⋯1

)x21⋯x jij
⋯xm1 ,

1 –
2
∏
ij=1

(
1 – 𝜇u

i11⋯ij⋯1

)x21⋯x jij
⋯xm1 ] ,

[
2
∏
ij=1

(
𝜈li11⋯ij⋯1

)x21⋯x jij
⋯xm1 ,

2
∏
ij=1

(
𝜈ui11⋯ij⋯1

)x21⋯x jij
⋯xm1 ]

⎞⎟⎟⎠ .
(b) When j1, j2 ∈ I1

(
j1 ≠ j2

)
and nj1 = nj2 = 2, then we

have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

2
∑
ij1=1

2
∑
ij2=1

ai11⋯ij1⋯ij2⋯1x21⋯ xj1ij1 ⋯ xj2ij2 ⋯ xm1

=
⎛⎜⎜⎝[1 –

2
∏
ij1=1

2
∏
ij2=1

(
1 – 𝜇l

i11⋯ij1⋯ij2⋯1

)x21⋯xj1ij1
⋯xj2ij2

⋯xm1 ,

1 –
2
∏
ij1=1

2
∏
ij2=1

(
1 – 𝜇u

i11⋯ij1⋯ij2⋯1

)x21⋯xj1ij1
⋯xj2ij2

⋯xm1 ] ,

[
2
∏
ij1=1

2
∏
ij2=1

(
𝜈li11⋯ij1⋯ij2⋯1

)x21⋯xj1ij1
⋯xj2ij2

⋯xm1 ,

2
∏
ij1=1

2
∏
ij2=1

(
𝜈ui11⋯ij1⋯ij2⋯1

)x21⋯xj1ij1
⋯xj2ij2

⋯xm1 ]
⎞⎟⎟⎠ .

⋯,

(c) When j1, j2,⋯ , jl ∈ I1
(
j1 ≠ j2 ≠ ⋯ ≠ jl

)
and nj1 =

nj2 = ⋯ = njl = 2, then we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

2
∑
ij1=1

⋯
2
∑
ijl=1

ai11⋯ij1⋯ijl⋯1x21⋯ xj1ij1 ⋯ xjlijl ⋯ xm1

=
⎛⎜⎜⎝[1 –

2
∏
ij1=1

⋯
2
∏
ijl=1

(
1 – 𝜇l

i11⋯ij1⋯ijl⋯1

)x21⋯xj1ij1
⋯xjlijl

⋯xm1 ,

1 –
2
∏
ij1=1

⋯
2
∏
ijl=1

(
1 – 𝜇u

i11⋯ij1⋯ijl⋯1

)x21⋯xj1ij1
⋯xjlijl

⋯xm1 ] ,

[
2
∏
ij1=1

⋯
2
∏
ijl=1

(
𝜈li11⋯ij1⋯ijl⋯1

)x21⋯xj1ij1
⋯xjlijl

⋯xm1 ,

2
∏
ij1=1

⋯
2
∏
ijl=1

(
𝜈ui11⋯ij1⋯ijl⋯1

)x21⋯xj1ij1
⋯xjlijl

⋯xm1 ]
⎞⎟⎟⎠ .

⋯,

(d) When all the elements in the indicator I2 add to “1,” that
is, n2 = ⋯ = nm = 2, then we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
Pdf_Folio:583

Theorem 3.1. Let ̃𝒜IVIF =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈ TIVIF (m, n1 × n2 ×⋯ × nm) be a mth-order interval-
valued intuitionistic fuzzy tensor, and its elements ai1i2⋯im =(
[𝜇l

i1i2⋯im , 𝜇
u
i1i2⋯im] , [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im]

)
. Then the aggregated

value by using Equation (1) is
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=
2
∑
i2=1

⋯
2
∑
im=1

ai1i2⋯imx
2
i2
⋯ xmim

=
(
[1 –

2
∏
i2=1

⋯
2
∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim ,

1 –
2
∏
i2=1

⋯
2
∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim ] ,

[
2
∏
i2=1

⋯
2
∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim ,

2
∏
i2=1

⋯
2
∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim ]
)
.

Therefore, according to the above analysis, when at least
one element in the indicator set I2 add to “1,” the
Theorem 3.1 holds.

3. Suppose that n2 = K2, n3 = K3,⋯ , nm = Km, the Theorem
3.1 holds, that is,

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

K2
∑
i2=1

⋯
Km

∑
im=1

ai1i2⋯imx
2
i2
⋯ xmim

=
(
[1 –

K2
∏
i2=1

⋯
Km

∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim ,

1 –
K2
∏
i2=1

⋯
Km

∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim ] ,

[
K2
∏
i2=1

⋯
Km

∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim ,

K2
∏
i2=1

⋯
Km

∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim ]
)
.

Let I3 = {K2,K3,⋯ ,Km} be an indicator set.When at least one
element in the indicator set I3 add to “1,” then we consider the
following cases:
(a) When j ∈ I1 and nj = Kj + 1, then we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

K2
∑
i2=1

⋯
Kj+1

∑
ij=1

⋯
Km

∑
im=1

ai1i2⋯ij⋯imx
2
1⋯ x j

ij
⋯ xm1

=
⎛⎜⎜⎝[1 –

K2
∏
i2=1

⋯
Kj+1

∏
ij=1

⋯
Km

∏
im=1

(
1 – 𝜇l

i1i2⋯ij⋯im

)x2i2⋯x jij
⋯xmim ,

1 –
K2
∏
i2=1

⋯
Kj+1

∏
ij=1

⋯
Km

∏
im=1

(
1 – 𝜇u

i1i2⋯ij⋯im

)x2i2⋯x jij
⋯xmim ] ,

[
K2
∏
i2=1

⋯
Kj+1

∏
ij=1

⋯
Km

∏
im=1

(
𝜈li1i2⋯ij⋯im

)x2i2⋯x jij
⋯xmim ,

K2
∏
i2=1

⋯
Kj+1

∏
ij=1

⋯
Km

∏
im=1

(
𝜈ui1i2⋯ij⋯im

)x2i2⋯x jij
⋯xmim ]

⎞⎟⎟⎠ .
(b) When j1, j2 ∈ I1

(
j1 ≠ j2

)
 and nj1 = Kj1 + 1, nj2 =

Kj2 + 1, then we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

K2
∑
i2=1

⋯
Kj1+1

∑
ij1=1

⋯
Kj2+1

∑
ij2=1

⋯
Km

∑
im=1

ai1i2⋯ij1⋯ij2⋯imx
2
i2

⋯ xj1ij1 ⋯ xj2ij2 ⋯ xmim
GIIFWA

( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm
)

=
K2
∑
i2=1

⋯
Kj1+1

∑
ij1=1

⋯
Kj2+1

∑
ij2=1

⋯
Km

∑
im=1

ai1i2⋯ij1⋯ij2⋯imx
2
i2

⋯ xj1ij1 ⋯ xj2ij2 ⋯ xmim

=
⎛⎜⎜⎝[1 –

K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kj2+1

∏
ij2=1

⋯

Km

∏
im=1

(
1 – 𝜇l

i1i2⋯ij1⋯ij2⋯im

)x2i2⋯xj1ij1
⋯xj2ij2

⋯xmim ,

1 –
K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kj2+1

∏
ij2=1

⋯

Km

∏
im=1

(
1 – 𝜇u

i1i2⋯ij1⋯ij2⋯im

)x2i2⋯xj1ij1
⋯xj2ij2

⋯xmim ] ,

[
K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kj2+1

∏
ij2=1

⋯

Km

∏
im=1

(
𝜈li1i2⋯ij1⋯ij2⋯im

)x2i2⋯xj1ij1
⋯xj2ij2

⋯xmim ,

K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kj2+1

∏
ij2=1

⋯

Km

∏
im=1

(
𝜈ui1i2⋯ij1⋯ij2⋯im

)x2i2⋯xj1ij1
⋯xj2ij2

⋯xmim ]
)
.

⋯,

(c) When j1, j2,⋯ , jl ∈ I1
(
j1 ≠ j2 ≠ ⋯ ≠ jl

)
and nj1 =

Kj1 + 1, nj2 = Kj2 + 1, ⋯ , njl = Kjl + 1, then we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

K2
∑
i2=1

⋯
Kj1+1

∑
ij1=1

⋯
Kjl+1

∑
ijl=1

⋯
Km

∑
im=1

ai1i2⋯ij1⋯ij2⋯imx
2
i2

⋯ xj1ij1 ⋯ xjlijl ⋯ xmim

=
⎛⎜⎜⎝[1 –

K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kjl+1

∏
ijl=1

⋯

Km

∏
im=1

(
1 – 𝜇l

i1i2⋯ij1⋯ijl⋯im

)x2i2⋯xj1ij1
⋯xjlijl

⋯xmim ,

1 –
K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kjl+1

∏
ijl=1

⋯

Km

∏
im=1

(
1 – 𝜇u

i1i2⋯ij1⋯ijl⋯im

)x2i2⋯xj1ij1
⋯xjlijl

⋯xmim ] ,

[
K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kj1+1

∏
ij1=1

⋯
Km

∏
im=1
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(
vli1i2⋯ij1⋯ijl⋯ijm

)x2i2⋯xj1
j1⋯xjl

jl
⋯xmin ,

K2
∏
i2=1

⋯
Kj1+1

∏
ij1=1

⋯
Kj1+1

∏
ij1=1

⋯
Km

∏
im=1(

vui1i2⋯ij1⋯ijl⋯ijm

)x2i2⋯xj1
j1⋯xjl

jl
⋯xmim]

)
⋯,

(d) When all the elements in the indicator I3 add to “1,” that
is, n2 = K2 + 1, n3 = K3 + 1,⋯, nm = Km + 1, then we
have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

K2+1
∑
i2=1

⋯
Km+1
∑
im=1

ai1i2⋯imx
2
i2
⋯ xmim

=
(
[1 –

K2+1
∏
i2=1

⋯
Km+1
∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim ,

1 –
K2+1
∏
i2=1

⋯
Km+1
∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim ] ,

[
K2+1
∏
i2=1

⋯
Km+1
∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim ,

K2+1
∏
i2=1

⋯
Km+1
∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim ]
)
.

Therefore, for any n2, n3, ⋯, nm, the Theorem 3.1
holds from (1), (2), and (3). This completes the proof of
Theorem 3.1.

Corollary 3.1. [1] Let ̃𝒜IVIF ∈ TIVIF(2, n × m) be an interval-
valued intuitionistic fuzzy matrix, and ̃𝒜IVIF = (aij)n×m where
aij =

(
[𝜇l

ij, 𝜇u
ij] , [𝜈lij, 𝜈uij ]

)
, then their aggregated value by using the

GIIFWA operator is also an IVIFN and

GIIFWA
( ̃𝒜IVIF ∘ X

)
=
(
[1 –∏m

j=1

(
1 – 𝜇l

ij
)xj , 1 –∏m

j=1

(
1 – 𝜇u

ij
)xj] ,

[∏m

j=1

(
𝜈lij
)xj ,∏m

j=1

(
𝜈uij
)xj])

where X = (x1,⋯ , xj,⋯ , xm)T is the weight vector of a∶j(j = 1, 2,

⋯ ,m), with xj ∈ [0, 1] and
m

∑
j=1

xj = 1.

Remark 3.1.

Clearly, the Theorem 3.1 is the extension of Corollary 3.1 which is
the Theorem 2.3.1 in Xu [1].

Theorem 3.2. Let ̃𝒜IVIF =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈ TIVIF (m, n1 × n2 ×⋯ × nm) where its elements
ai1i2⋯im =

(
[𝜇l

i1i2⋯im , 𝜇
u
i1i2⋯im ], [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im]

)
. Then the

aggregated value by using Equation (2) is

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=

(
[

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜇l
i1i2⋯im

)x2i2⋯xmim ,

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜇u
i1i2⋯im

)x2i2⋯xmim ] ,

[1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜈li1i2⋯im

)x2i2⋯xmim ,

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜈ui1i2⋯im

)x2i2⋯xmim ]
)

Proof. The proof of the Theorem 3.2 is similar to the proof of
Theorem 3.1.

Corollary 3.2. [1] Suppose that ̃𝒜IVIF ∈ TIVIF(2, n × m) is an
interval-valued intuitionistic fuzzy matrix, and ̃𝒜IVIF =

(
aij
)
n×m

where aij =
(
[𝜇l

ij, uuij] , [𝜈lij, 𝜈uij ]
)
, then their aggregated value by

using the GIIFWG operator is also an IVIFN, and

GIIFWG
( ̃𝒜IVIF ∘ X

)
=
(
[

m

∏
j=1

(𝜇l
ij)

xj ,
m

∏
j=1

(𝜇u
ij)

xj] ,

[1 –
m

∏
j=1

(1 – vlij)
xj , 1 –

m

∏
j=1

(1 – vuij)
xj]

)

where X =
(
x1,⋯ , xj,⋯ , xm

)T is the exponential weight vector of
a∶j

(
j = 1, 2,⋯ ,m

)
, with xj ∈ [0, 1] and

m

∑
j=1

xj = 1.

Remark 3.2.

The Theorem 3.2 is the general form of Corollary 3.2 which is the
Theorem 2.3.2 in Xu [1].

Theorem 3.3. The operational results in Theorems 3.1 and 3.2 are
n1-dimension IVIF vectors.

Proof. By the Theorems 3.1 and 3.2, we have

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=
(
[1 –

n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim ,

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim ] ,

[
n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim ,

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim ]
)
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and

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=
(
[

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜇l
i1i2⋯im

)x2i2⋯xmim ,

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜇u
i1i2⋯im

)x2i2⋯xmim ] ,

[1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜈li1i2⋯im

)x2i2⋯xmim ,

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜈ui1i2⋯im

)x2i2⋯xmim ]
)

and i1 ∈ [n1], then both GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
and

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
∈ IVIFn1 .

Therefore, the operational results in the Theorems 3.1 and 3.2 are
n1-dimension IVIF vectors.

Theorem 3.4. Let ̃𝒜IVIF =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈ TIVIF (m, n1 × n2 ×⋯ × nm) be a mth-order interval-valued

intuitionistic fuzzy tensor, and X2 =
(
x21,⋯ , x2i2 ,⋯ , x2n2

)T
,

⋯, Xm =
(
xm1 ,⋯ , xmim ,⋯ , xmnm

)T
are the weight vectors of

a∶i2∶⋯∶ (i2 = 1, 2,⋯ , n2), ⋯, a∶⋯∶im (im = 1, 2,⋯ , nm), respec-

tively, that is,
n2
∑
i2=1

x2i2 = 1, x2i2 ⩾ 0; ⋯;
nm
∑
im=1

xmim = 1,

xmim ⩾ 0. Then GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
and

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
are fuzzy mappings.

Proof. ̃𝒜IVIF ∈ TIVIF (m, n1 × n2 ×⋯ × nm) is a mth-order
interval-valued intuitionistic fuzzy tensor.

According to theDefinition 2.5, we have

̃𝒜IVIF =
((
[𝜇l

i1i2⋯im , 𝜇
u
i1i2⋯im] , [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im]

))
n1×n2×⋯×nm

for arbitrary [𝜇l
i1i2⋯im , 𝜇

u
i1i2⋯im] ⊂ [0, 1], [𝜈li1i2⋯im , 𝜈

u
i1i2⋯im] ⊂

[0, 1] and 𝜇u
i1i2⋯im + 𝜈ui1i2⋯im ⩽ 1.

Owing to X2 =
(
x21,⋯ , x2i2 ,⋯ , x2n2

)T
, ⋯, Xm =(

xm1 ,⋯ , xmim ,⋯ , xmnm
)T

are the weight vectors of a∶i2∶⋯∶
(i2 = 1, 2,⋯ , n2) ,⋯, a∶⋯∶im (im = 1, 2,⋯ , nm), respectively, that
is, ∀x2i2 ∈ [0, 1] ,⋯, ∀xmim ∈ [0, 1]. Then we obtain X2 ∈ [0, 1]n2 ,
⋯ ,Xm ∈ [0, 1]nm .
On the basis of the Theorem 3.3, we get
GIIFWA

( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm
)

∈ IVIFn1 and
GIIFWG

( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm
)
∈ IVIFn1 .

Thus GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
and

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
are fuzzy mappings from

[0, 1]n2×n3×⋯×nm to IVIFn1 by theDefinition 2.12.

Theorem 3.5. Let ̃𝒜IVIF = (ai1i2⋯im )n1×n2×⋯×nm∈
TIVIF (m, n1 × n2 ×⋯ × nm) be a mth-order
interval-valued intuitionistic fuzzy tensor, wherePdf_Folio:586

ai1i2⋯im =
(
[𝜇l

i1i2⋯im , 𝜇
u
i1i2⋯im] , [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im]

)
. And

xmnm )
T are the weight vectors of a∶i2∶⋯∶ (i2 = 1, 2,⋯ , n2) ,⋯,

a∶⋯∶im (im = 1, 2,⋯ , nm), respectively, and
n2
∑
i2=1

x2i2 = 1,

x2i2 ⩾ 0;⋯ ;
nm
∑
im=1

xmim = 1, xmim ⩾ 0. Then we have the following

properties of GIIFWA operator:

1. (Idempotency). If all the elements of ̃𝒜IVIF are equal, that is,
ai1i2⋯im = 𝛼, i1 ∈ [n1] , i2 ∈ [n2] ,⋯ , im ∈ [nm] , then

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
= (𝛼, 𝛼,⋯ , 𝛼)T ∈ IVIFn1

Proof.

1. Let 𝛼 =
(
[𝜇l, 𝜇u] , [𝜈l, 𝜈u]

)
. By the Theorem 3.1 and

ai1i2⋯im = 𝛼 (i1 ∈ [n1] , i2 ∈ [n2] ,⋯ , im ∈ [nm]), we have the
i1th component of GIIFWA operator and

GIIFWA
( ̃𝒜IF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
i1

=
(
[1 –∏n2

i2=1
⋯∏nm

im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim ,

1 –∏n2
i2=1

⋯∏nm
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim ] ,

[∏n2
i2=1

⋯∏nm
im=1

(
vli1i2⋯im

)x2i2⋯xmim

∏n2
i2=1

⋯∏nm
im=1

(
vui1i2⋯im

)x2i2⋯xmim ]
)

i1

=
(
[1 –∏n2

i2=1
⋯∏nm

im=1

(
1 – 𝜇l)x2i2⋯xmim ,

1 –∏n2
i2=1

⋯∏nm
im=1

(1 – 𝜇u)x
2
i2
⋯xmim ] ,

[∏n2
i2=1

⋯∏nm
im=1

(
vl
)x2i2⋯xmim ,

∏n2
i2=1

⋯∏nm
im=1

(vu)x
2
i2
⋯xmim ]

)
i1

2. (Boundedness). Let

𝛼– =
(
[ min
i1,i2,⋯,im

{𝜇l
i1i2⋯im } , min

i1,i2,⋯,im
{𝜇u

i1i2⋯im }] ,

[ max
i1,i2,⋯,im

{𝜈li1i2⋯im } , max
i1,i2,⋯,im

{𝜈ui1i2⋯im }]
)
,

𝛼+ =
(
[ max
i1,i2,⋯,im

{𝜇l
i1i2⋯im } , max

i1,i2,⋯,im
{𝜇u

i1i2⋯im }] ,

[ min
i1,i2,⋯,im

{𝜈li1i2⋯im } , min
i1,i2,⋯,im

{𝜈ui1i2⋯im }]
)

and (𝛼–,⋯ , 𝛼–)T, (𝛼+,⋯ , 𝛼+)T ∈ IVIFn1 . Then, for any X2,
X3,⋯ ,Xm, we have

(𝛼–,⋯ , 𝛼–)T ⩽ GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
⩽
(
𝛼+,⋯ , 𝛼+

)T .

X2 =
(
x21,⋯ , x2i2 ,⋯ , x2n2

)T
⋯, Xm = (xm1 ,⋯ , xmim ,⋯ ,,
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=

⎛⎜⎜⎜⎜⎜⎝
⎡
⎢
⎢
⎢
⎢
⎣

1 –
(
1 – 𝜇l)

n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim
,

1 – (1 – 𝜇u)

n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim
⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

(
𝜈l
)

n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim
, (𝜈u)

n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim
⎤
⎥
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎠i1
=
(
[1 –

(
1 – 𝜇l) , 1 – (1 – 𝜇u)] , [𝜈l, 𝜈u]

)
i1

=
(
[𝜇l, 𝜇u] , [𝜈l, 𝜈u]

)
i1

= 𝛼

and i1 ∈ [n1], then we get

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
= (𝛼, 𝛼,⋯ , 𝛼)T ∈ IVIFn1 .

2. Since for any i1, i2,⋯ , im, we have
min

i1,i2,⋯,im
{𝜇l

i1i2⋯im } ⩽ 𝜇l
i1i2⋯im ⩽ max

i1,i2,⋯,im
{𝜇l

i1i2⋯im } ,

min
i1,i2,⋯,im

{𝜇u
i1i2⋯im } ⩽ 𝜇u

i1i2⋯im ⩽ max
i1,i2,⋯,im

{𝜇u
i1i2⋯im } ,

min
i1,i2,⋯,im

{𝜈li1i2⋯im } ⩽ 𝜈li1i2⋯im ⩽ max
i1,i2,⋯,im

{𝜈li1i2⋯im } and

min
i1,i2,⋯,im

{𝜈ui1i2⋯im } ⩽ 𝜈ui1i2⋯im ⩽ max
i1,i2,⋯,im

{𝜈ui1i2⋯im } .
Then

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim

⩾ 1 –∏n2
i2=1

⋯∏nm
im=1

(
1 – min

i1i2⋯im
{𝜇l

i1i2⋯im }
)x2i2⋯xmim

= 1 –
(
1 – min

i1i2⋯im
{𝜇l

i1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= min
i1i2⋯im

{𝜇l
i1i2⋯im } ,

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim

⩾ 1 –∏n2
i2=1

⋯∏nm
im=1

(
1 – min

i1i2⋯im
{𝜇u

i1i2⋯im }
)x2i2⋯xmim

= 1 –
(
1 – min

i1i2⋯im
{𝜇u

i1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= min
i1i2⋯im

{𝜇u
i1i2⋯im } ,

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim

⩾
n2
∏
i2=1

⋯
nm
∏
im=1

(
min

i1i2⋯im
{𝜈li1i2⋯im }

)x2i2⋯xmim

=
(

min
i1i2⋯im

{𝜈li1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= min
i1i2⋯im

{𝜈li1i2⋯im }

and
n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim

⩾
n2
∏
i2=1

⋯
nm
∏
im=1

(
min

i1i2⋯im
{𝜈ui1i2⋯im }

)x2i2⋯xmim

=
(

min
i1i2⋯im

{𝜈ui1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= min
i1i2⋯im

{𝜈ui1i2⋯im } .

Similarly, we get

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇l

i1i2⋯im

)x2i2⋯xmim

⩽ 1 –∏n2
i2=1

⋯∏nm
im=1

(
1 – max

i1i2⋯im
{𝜇l

i1i2⋯im }
)x2i2⋯xmim

= 1 –
(
1 – max

i1i2⋯im
{𝜇l

i1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= max
i1i2⋯im

{𝜇l
i1i2⋯im } ,

1 –
n2
∏
i2=1

⋯
nm
∏
im=1

(
1 – 𝜇u

i1i2⋯im

)x2i2⋯xmim

⩽ 1 –∏n2
i2=1

⋯∏nm
im=1

(
1 – max

i1i2⋯im
{𝜇u

i1i2⋯im }
)x2i2⋯xmim

= 1 –
(
1 – max

i1i2⋯im
{𝜇u

i1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= max
i1i2⋯im

{𝜇u
i1i2⋯im } ,

n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈li1i2⋯im

)x2i2⋯xmim

⩽
n2
∏
i2=1

⋯
nm
∏
im=1

(
max

i1i2⋯im
{𝜈li1i2⋯im }

)x2i2⋯xmim

=
(

max
i1i2⋯im

{𝜈li1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= max
i1i2⋯im

{𝜈li1i2⋯im }
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and
n2
∏
i2=1

⋯
nm
∏
im=1

(
𝜈ui1i2⋯im

)x2i2⋯xmim

⩽
n2
∏
i2=1

⋯
nm
∏
im=1

(
min

i1i2⋯im
{𝜈ui1i2⋯im }

)x2i2⋯xmim

=
(

max
i1i2⋯im

{𝜈ui1i2⋯im }
) n2
∑
i2=1

⋯
nm
∑
im=1

x2i2 ⋯ xmim

= max
i1i2⋯im

{𝜈ui1i2⋯im } .

Without loss of generality, for ∀i1 ∈ [n1], let

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
i1
= 𝛼

where 𝛼 =
(
[𝜇l, 𝜇u] , [𝜈l, 𝜈u]

)
. By theDefinitions 2.8 and 2.10, we

get

s (𝛼) = 1
2
(
𝜇l – 𝜈l + 𝜇u – 𝜈u

)
⩽ 1
2

(
max

i1i2⋯im
{𝜇l

i1i2⋯im } – min
i1i2⋯im

{𝜈li1i2⋯im }

+ max
i1i2⋯im

{𝜇u
i1i2⋯im } – min

i1i2⋯im
{𝜈ui1i2⋯im }

)
= s

(
𝛼+

)
and

s (𝛼) = 1
2
(
𝜇l – 𝜈l + 𝜇u – 𝜈u

)
⩾ 1
2

(
min

i1i2⋯im
{𝜇l

i1i2⋯im } – max
i1i2⋯im

{𝜈li1i2⋯im }

+ min
i1i2⋯im

{𝜇u
i1i2⋯im } – max

i1i2⋯im
{𝜈ui1i2⋯im }

)
= s (𝛼–) .

Next, we will consider the following three cases:

i. When s (𝛼) < s
(
𝛼+

)
and s (𝛼) > s (𝛼–), the conclusion (2) in

Theorem 3.5 holds.

ii. When s (𝛼) = s
(
𝛼+

)
, we have 𝛼 = 𝛼+, that

is, 𝜇l = max
i1,i2,⋯,im

{𝜇l
i1i2⋯im }, 𝜇

u = max
i1,i2,⋯,im

{𝜇u
i1i2⋯im },

𝜈l = min
i1,i2,⋯,im

{𝜈li1i2⋯im }, and 𝜈u = min
i1,i2,⋯,im

{𝜈ui1i2⋯im }.

Hence, by theDefinition 2.9, we get

h (𝛼) = 1
2
(
𝜇l + 𝜇u + 𝜈l + 𝜈u

)
= 1
2

(
max

i1i2⋯im
{𝜇l

i1i2⋯im } + max
i1i2⋯im

{𝜇u
i1i2⋯im }

+ min
i1i2⋯im

{𝜈li1i2⋯im } + min
i1i2⋯im

{𝜈ui1i2⋯im }
)

= h
(
𝛼+

)
.

In this case, according to the Theorem 3.1 and Definition
2.10, we obtain GIIFWA

( ̃𝒜IF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm
)
i1
= 𝛼+.

Due to the arbitrariness of i1, we get

GIIFWA
( ̃𝒜IF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
=
(
𝛼+,⋯ , 𝛼+

)
∈ IVIFn1 .

iii. When s (𝛼) = s (𝛼–), we have 𝛼 = 𝛼–, that is,
𝜇l = min

i1,i2,⋯,im
{𝜇l

i1i2⋯im }, 𝜇
u = min

i1,i2,⋯,im
{𝜇u

i1i2⋯im }, 𝜈
l =

max
i1,i2,⋯,im

{𝜈li1i2⋯im }, and 𝜈
u = max

i1,i2,⋯,im
{𝜈ui1i2⋯im }. Thus

h (𝛼) = 1
2
(
𝜇l + 𝜇u + 𝜈l + 𝜈u

)
= 1
2

(
min

i1i2⋯im
{𝜇l

i1i2⋯im } + min
i1i2⋯im

{𝜇u
i1i2⋯im }

+ max
i1i2⋯im

{𝜈li1i2⋯im } + max
i1i2⋯im

{𝜈ui1i2⋯im }
)

= h (𝛼–) .

In this case, on the basis of the Theorem 3.1 and Definition 2.10,
we have GIIFWA( ̃𝒜IF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm)i1 = 𝛼– for arbitrary
i1 ∈ [n1]. Then

GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
= (𝛼–,⋯ , 𝛼–) ∈ IVIFn1 .

Therefore, based on cases (i), (ii), and (iii), we can see that the con-
clusion (2) in Theorem 3.5 holds.

This completes the proof of Theorem 3.5.

Theorem 3.6. Let ̃𝒜IVIF =
(
ai1i2⋯im

)
n1×n2×⋯×nm

∈ TIVIF (m, n1 × n2 ×⋯ × nm) be a mth-order interval-
valued intuitionistic fuzzy tensor, where ai1i2⋯im =(
[𝜇l

i1i2⋯im , 𝜇
u
i1i2⋯im] , [𝜈

l
i1i2⋯im , 𝜈

u
i1i2⋯im]

)
. And X2 =

the exponential weight vectors of a∶i2∶⋯∶ (i2 = 1, 2,⋯ , n2) ,⋯,

a∶⋯∶im (im = 1, 2,⋯ , nm), respectively, and
n2
∑
i2=1

x2i2 = 1, x2i2 ⩾ 0;

⋯;
nm
∑
im=1

xmim = 1, xmim ⩾ 0. Then we have the following properties of

GIIFWG operator:
1. (Idempotency). If all the elements of ̃𝒜IVIF ∈

TIVIF (m, n1 × n2 ×⋯ × nm) are equal, that is, ai1i2⋯im = 𝛼,
i1 ∈ [n1] , i2 ∈ [n2] ,⋯ , im ∈ [nm] , then

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
= (𝛼, 𝛼,⋯ , 𝛼)T ∈ IVIFn1

2. (Boundedness). For any X2,X3,⋯ ,Xm, we have
(𝛼–,⋯ , 𝛼–)T ⩽ GIIFWG

( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm
)

⩽(
𝛼+,⋯ , 𝛼+

)T, where
𝛼– =

(
[ min
i1i2⋯im

{𝜇l
i1i2⋯im } , min

i1i2⋯im
{𝜇u

i1i2⋯im }] ,

[ max
i1i2⋯im

{𝜈li1i2⋯im } , max
i1i2⋯im

{𝜈ui1i2⋯im }]
)
,

𝛼+ =
(
[ max
i1i2⋯im

{𝜇l
i1i2⋯im } , max

i1i2⋯im
{𝜇u

i1i2⋯im }] ,

[ min
i1i2⋯im

{𝜈li1i2⋯im } , min
i1i2⋯im

{𝜈ui1i2⋯im }]
)

and (𝛼–,⋯ , 𝛼–)T ,
(
𝛼+,⋯ , 𝛼+

)T ∈ IVIFn1 .

Proof. The proof of the Theorem 3.6 is similar to the proof of
Theorem 3.5.
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(
x21,⋯ , x2i2 ,⋯ , x2n2

)T
, Xm =

(
xm1 ,⋯ , xmim ,⋯ , xmnm

)T
,⋯ are
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4. ALGORITHM

In this section, we will employ the generalized GIIFWA and
GIIFWG operators to devise a new approach for solving the
multiple attribute group decision-making problems with high-
dimension data. The concrete steps of the algorithm are listed as
follows:

Step 1. The interval-valued intuitionistic fuzzy decision matri-
ces are transformed into interval-valued intuitionistic fuzzy tensor
̃𝒜IVIF;

Step 2. According to the Theorems 3.1 or 3.2, we utilize the
GIIFWA operator:

̇̃ci1 = GIIFWA
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
i1

or the GIIFWG operator:

̈̃ci1 = GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3 ∘ ⋯ ∘ Xm

)
i1

to aggregate all the elements ai1i2⋯im (i1 ∈ [n1] , i2 ∈ [n2] ,
⋯ , im ∈ [nm]) of the interval-valued intuitionistic fuzzy tensor
̃𝒜IVIF and get the values ̇̃ci1 (or ̈̃ci1 ) corresponding to the alternatives

Ai1 (i1 ∈ [n1]);

Step 3. Calculate the sores s
( ̇̃ci1

) (
or s

( ̈̃ci1
))

and the accuracy
degrees h

( ̇̃ci1
) (

or h
( ̈̃ci1

))
(i1 ∈ [n1]) by the Definitions 2.8

and 2.9.

Step 4. Rank the alternativesAi1 (i1 ∈ [n1]) by theDefinition 2.10,
and then obtain the best desirable alternative.

5. APPLICATION EXAMPLES AND
DISCUSSION

5.1. Interval-Valued Intuitionistic Fuzzy
Multiple Attribute Group
Decision-Making

In this subsection, we apply the GIIFWA and GIIFWG operators
to solving the interval-valued intuitionistic fuzzy multiple attribute
group decision-making problem with the numerical example used
in Qiu [15].

5.1.1. Numerical example

In this example, let us assume that someone intends to buy a car
and consults a set of experts. The car supplier xi1 (i1 = 1, 2,⋯ , 5)
are evaluated by four decision-makers ei2 (i2 = 1, 2, 3, 4), and each
decision-maker evaluates the alternatives based on five different
characteristics ci3 (i3 = 1, 2,⋯ , 5). The interval-valued intuitionis-
tic fuzzy decision matrix proposed by ei2 (i2 = 1, 2, 3, 4) are listed
in the Tables 1–4, and the weighted vector of the four experts
is X2 = (0.3, 0.2, 0.3, 0.2)T, and the weighted vector of the five
characteristics is X3 = (0.2, 0.15, 0.2, 0.3, 0.15)T. Due to space
limitations, the original interval-valued intuitionistic fuzzy deci-
sion matrices are omitted in this paper. For a detailed description,
please see Qiu [15].

We now implement our algorithm to solve this problem.

Step 1. If the interval-valued intuitionistic fuzzy tensor and the
GIIFWA operator are employed for expressing data in Tables
1–4, then ̃𝒜IVIF =

(
ai1i2i3

)
5×4×5

∈ TIVIF (3, 5 × 4 × 5), where

its elements ai1i2i3 =
(
[𝜇l

i1i2i3 , 𝜇
u
i1i2i3] , [𝜈

l
i1i2i3 , 𝜈

u
i1i2i3]

)
, and

ai1∶∶ (i1 = [5]) represent five suppliers, a∶i2∶ (i2 = [4]) represent
four experts and a∶∶i3 (i3 = [5]) represent five different character-
istics. The details are as follows:

a111 = ([0.3, 0.4] , [0.4, 0.6]) , a112 = ([0.5, 0.6] , [0.1, 0.2]) ,
a113 = ([0.6, 0.7] , [0.2, 0.3]) , a114 = ([0.7, 0.8] , [0.0, 0.1]) ,
a115 = ([0.6, 0.7] , [0.2, 0.3]) , a121 = ([0.4, 0.5] , [0.3, 0.4]) ,
a122 = ([0.5, 0.6] , [0.1, 0.2]) , a123 = ([0.6, 0.7] , [0.2, 0.3]) ,
a124 = ([0.7, 0.8] , [0.1, 0.2]) , a125 = ([0.7, 0.8] , [0.0, 0.2]) ,
a131 = ([0.4, 0.6] , [0.3, 0.4]) , a132 = ([0.5, 0.7] , [0.0, 0.2]) ,
a133 = ([0.5, 0.6] , [0.2, 0.4]) , a134 = ([0.6, 0.8] , [0.1, 0.2]) ,
a135 = ([0.4, 0.7] , [0.2, 0.3]) , a141 = ([0.3, 0.4] , [0.4, 0.5]) ,
a142 = ([0.8, 0.9] , [0.1, 0.1]) , a143 = ([0.7, 0.8] , [0.1, 0.2]) ,
a144 = ([0.4, 0.5] , [0.3, 0.5]) , a145 = ([0.2, 0.4] , [0.3, 0.6]) ,
a211 = ([0.6, 0.8] , [0.1, 0.2]) , a212 = ([0.6, 0.7] , [0.2, 0.3]) ,
a213 = ([0.2, 0.3] , [0.4, 0.6]) , a214 = ([0.5, 0.6] , [0.1, 0.3]) ,
a215 = ([0.7, 0.8] , [0.0, 0.2]) , a221 = ([0.6, 0.8] , [0.1, 0.2]) ,
a222 = ([0.5, 0.6] , [0.3, 0.4]) , a223 = ([0.4, 0.5] , [0.3, 0.4]) ,
a224 = ([0.4, 0.6] , [0.3, 0.4]) , a225 = ([0.4, 0.7] , [0.1, 0.3]) ,
a231 = ([0.5, 0.8] , [0.1, 0.2]) , a232 = ([0.3, 0.5] , [0.2, 0.3]) ,
a233 = ([0.3, 0.6] , [0.2, 0.4]) , a234 = ([0.4, 0.5] , [0.2, 0.4]) ,
a235 = ([0.3, 0.6] , [0.2, 0.3]) , a241 = ([0.5, 0.7] , [0.1, 0.3]) ,
a242 = ([0.4, 0.7] , [0.2, 0.3]) , a243 = ([0.4, 0.5] , [0.2, 0.2]) ,
a244 = ([0.6, 0.8] , [0.1, 0.2]) , a245 = ([0.2, 0.3] , [0.0, 0.1]) ,
a311 = ([0.5, 0.8] , [0.1, 0.2]) , a312 = ([0.7, 0.8] , [0.0, 0.1]) ,
a313 = ([0.5, 0.5] , [0.4, 0.5]) , a314 = ([0.2, 0.3] , [0.2, 0.4]) ,
a315 = ([0.4, 0.6] , [0.2, 0.3]) , a321 = ([0.5, 0.6] , [0.3, 0.4]) ,
a322 = ([0.5, 0.7] , [0.1, 0.2]) , a323 = ([0.5, 0.6] , [0.3, 0.4]) ,
a324 = ([0.3, 0.4] , [0.2, 0.5]) , a325 = ([0.6, 0.7] , [0.2, 0.3]) ,
a331 = ([0.5, 0.6] , [0.0, 0.1]) , a332 = ([0.5, 0.8] , [0.1, 0.2]) ,
a333 = ([0.4, 0.7] , [0.2, 0.3]) , a334 = ([0.2, 0.4] , [0.2, 0.3]) ,
a335 = ([0.5, 0.8] , [0.0, 0.2]) , a341 = ([0.2, 0.4] , [0.1, 0.2]) ,
a342 = ([0.4, 0.5] , [0.2, 0.4]) , a343 = ([0.5, 0.8] , [0.0, 0.1]) ,
a344 = ([0.4, 0.6] , [0.2, 0.3]) , a345 = ([0.5, 0.6] , [0.2, 0.3]) ,
a411 = ([0.2, 0.3] , [0.4, 0.5]) , a412 = ([0.5, 0.7] , [0.1, 0.3]) ,
a413 = ([0.6, 0.7] , [0.1, 0.2]) , a414 = ([0.4, 0.5] , [0.1, 0.3]) ,
a415 = ([0.6, 0.9] , [0.0, 0.1]) , a421 = ([0.5, 0.6] , [0.3, 0.4]) ,
a422 = ([0.7, 0.8] , [0.0, 0.1]) , a423 = ([0.4, 0.5] , [0.2, 0.4]) ,
a424 = ([0.5, 0.7] , [0.1, 0.2]) , a425 = ([0.5, 0.7] , [0.2, 0.3]) ,
a431 = ([0.5, 0.7] , [0.1, 0.3]) , a432 = ([0.4, 0.6] , [0.0, 0.1]) ,
a433 = ([0.3, 0.5] , [0.2, 0.4]) , a434 = ([0.7, 0.9] , [0.0, 0.1]) ,
a435 = ([0.3, 0.5] , [0.2, 0.2]) , a441 = ([0.7, 0.8] , [0.0, 0.2]) ,
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Table 1 Interval-valued intuitionistic fuzzy decision matrix proposed by e1.

C1 C2 C3 C4 C5
A1 ([0.3,0.4], [0.4,0.6]) ([0.5,0.6], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.0,0.1]) ([0.6,0.7], [0.2,0.3])
A2 ([0.6,0.8], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.2,0.3], [0.4,0.6]) ([0.5,0.6], [0.1,0.3]) ([0.7,0.8], [0.0,0.2])
A3 ([0.5,0.8], [0.1,0.2]) ([0.7,0.8], [0.0,0.1]) ([0.5,0.5], [0.4,0.5]) ([0.2,0.3], [0.2,0.4]) ([0.4,0.6], [0.2,0.3])
A4 ([0.2,0.3], [0.4,0.5]) ([0.5,0.7], [0.1,0.3]) ([0.6,0.7], [0.1,0.2]) ([0.4,0.5], [0.1,0.3]) ([0.6,0.9], [0.0,0.1])
A5 ([0.6,0.8], [0.1,0.2]) ([0.3,0.5], [0.4,0.5]) ([0.4,0.6], [0.3,0.4]) ([0.6,0.8], [0.1,0.2]) ([0.5,0.6], [0.2,0.3])

Table 2 Interval-valued intuitionistic fuzzy decision matrix proposed by e2.

C1 C2 C3 C4 C5
A1 ([0.4,0.5], [0.3,0.4]) ([0.5,0.6], [0.1,0.2]) ([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.1,0.2]) ([0.7,0.8], [0.0,0.2])
A2 ([0.6,0.8], [0.1,0.2]) ([0.5,0.6], [0.3,0.4]) ([0.4,0.5], [0.3,0.4]) ([0.4,0.6], [0.3,0.4]) ([0.4,0.7], [0.1,0.3])
A3 ([0.5,0.6], [0.3,0.4]) ([0.5,0.7], [0.1,0.2]) ([0.5,0.6], [0.3,0.4]) ([0.3,0.4], [0.2,0.5]) ([0.6,0.7], [0.2,0.3])
A4 ([0.5,0.6], [0.3,0.4]) ([0.7,0.8], [0.0,0.1]) ([0.4,0.5], [0.2,0.4]) ([0.5,0.7], [0.1,0.2]) ([0.5,0.7], [0.2,0.3])
A5 ([0.4,0.7], [0.2,0.3]) ([0.5,0.6], [0.2,0.4]) ([0.3,0.6], [0.3,0.4]) ([0.6,0.8], [0.1,0.2]) ([0.4,0.5], [0.2,0.3])

Table 3 Interval-valued intuitionistic fuzzy decision matrix proposed by e3.

C1 C2 C3 C4 C5
A1 ([0.4,0.6], [0.3,0.4]) ([0.5,0.7], [0.0,0.2]) ([0.5,0.6], [0.2,0.4]) ([0.6,0.8], [0.1,0.2]) ([0.4,0.7], [0.2,0.3])
A2 ([0.5,0.8], [0.1,0.2]) ([0.3,0.5], [0.2,0.3]) ([0.3,0.6], [0.2,0.4]) ([0.4,0.5], [0.2,0.4]) ([0.3,0.6], [0.2,0.3])
A3 ([0.5,0.6], [0.0,0.1]) ([0.5,0.8], [0.1,0.2]) ([0.4,0.7], [0.2,0.3]) ([0.2,0.4], [0.2,0.3]) ([0.5,0.8], [0.0,0.2])
A4 ([0.5,0.7], [0.1,0.3]) ([0.4,0.6], [0.0,0.1]) ([0.3,0.5], [0.2,0.4]) ([0.7,0.9], [0.0,0.1]) ([0.3,0.5], [0.2,0.2])
A5 ([0.7,0.8], [0.0,0.1]) ([0.4,0.6], [0.0,0.2]) ([0.4,0.7], [0.2,0.3]) ([0.3,0.5], [0.1,0.3]) ([0.6,0.7], [0.1,0.2])

Table 4 Interval-valued intuitionistic fuzzy decision matrix proposed by e4.

C1 C2 C3 C4 C5
A1 ([0.3,0.4], [0.4,0.5]) ([0.8,0.9], [0.1,0.1]) ([0.7,0.8], [0.1,0.2]) ([0.4,0.5], [0.3,0.5]) ([0.2,0.4], [0.3,0.6])
A2 ([0.5,0.7], [0.1,0.3]) ([0.4,0.7], [0.2,0.3]) ([0.4,0.5], [0.2,0.2]) ([0.6,0.8], [0.1,0.2]) ([0.2,0.3], [0.0,0.1])
A3 ([0.2,0.4], [0.1,0.2]) ([0.4,0.5], [0.2,0.4]) ([0.5,0.8], [0.0,0.1]) ([0.4,0.6], [0.2,0.3]) ([0.5,0.6], [0.2,0.3])
A4 ([0.7,0.8], [0.0,0.2]) ([0.5,0.7], [0.1,0.2]) ([0.6,0.7], [0.1,0.3]) ([0.4,0.5], [0.1,0.2]) ([0.7,0.8], [0.1,0.2])
A5 ([0.5,0.6], [0.2,0.4]) ([0.5,0.8], [0.0,0.2]) ([0.4,0.7], [0.2,0.3]) ([0.3,0.6], [0.2,0.3]) ([0.7,0.8], [0.0,0.1])

a442 = ([0.5, 0.7] , [0.1, 0.2]) , a443 = ([0.6, 0.7] , [0.1, 0.3]) ,
a444 = ([0.4, 0.5] , [0.1, 0.2]) , a445 = ([0.7, 0.8] , [0.1, 0.2]) ,
a511 = ([0.6, 0.8] , [0.1, 0.2]) , a512 = ([0.3, 0.5] , [0.4, 0.5]) ,
a513 = ([0.4, 0.6] , [0.3, 0.4]) , a514 = ([0.6, 0.8] , [0.1, 0.2]) ,
a515 = ([0.5, 0.6] , [0.2, 0.3]) , a521 = ([0.4, 0.7] , [0.2, 0.3]) ,
a522 = ([0.5, 0.6] , [0.2, 0.4]) , a523 = ([0.3, 0.6] , [0.3, 0.4]) ,
a524 = ([0.6, 0.8] , [0.1, 0.2]) , a525 = ([0.4, 0.5] , [0.2, 0.3]) ,
a531 = ([0.7, 0.8] , [0.0, 0.1]) , a532 = ([0.4, 0.6] , [0.0, 0.2]) ,
a533 = ([0.4, 0.7] , [0.2, 0.3]) , a534 = ([0.3, 0.5] , [0.1, 0.3]) ,
a535 = ([0.6, 0.7] , [0.1, 0.2]) , a541 = ([0.5, 0.6] , [0.2, 0.4]) ,
a542 = ([0.5, 0.8] , [0.0, 0.2]) , a543 = ([0.4, 0.7] , [0.2, 0.3]) ,
a544 = ([0.3, 0.6] , [0.2, 0.3]) , a545 = ([0.7, 0.8] , [0.0, 0.1]) .

Step 2. By the Theorem 3.1, and ̃𝒜IVIF ∈ TIVIF (3, 5 × 4 × 5),
according to the experts weight X2 and the characteristics weight
X3 in Qiu [15], we have

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3

)
=
(
[1 –

4
∏
i2=1

5
∏
i3=1

(
1 – 𝜇l

i1i2i3

)x2i2 x
3
i3 ,

1 –
4
∏
i2=1

5
∏
i3=1

(
1 – 𝜇u

i1i2i3

)x2i2 x
3
i3 ] ,

[
4
∏
i2=1

5
∏
i3=1

(
vli1i2i3

)x2i2 x
3
i3 ,

4
∏
i2=1

5
∏
i3=1

(
vui1i2i3

)x2i2 x
3
i3 ]

)
= (([0.551, 0.651] , [0.000, 0.269]) , ([0.460, 0.657] ,
[0.000, 0.290]) , ([0.431, 0.570] , [0.000, 0.264]) ,
([0.511, 0.661] , [0.000, 0.224]) , ([0.487, 0.645] ,
[0.000, 0.255]))T .

that is, x1 = ([0.551, 0.651] , [0.000, 0.267]) ,
x2 = ([0.460, 0.657] , [0.000, 0.290]) ,
x3 = ([0.431, 0.570] , [0.000, 0.264]) ,
x4 = ([0.511, 0.661] , [0.000, 0.224]) ,
x5 = ([0.487, 0.645] , [0.000, 0.255]) .

Step 3. To rank the IVIFNs xi1 (i1 = [5]), we calculate the scores
s(xi1 )(i1 = [5]) by theDefinition 2.8. s(x1) = 0.466, s(x2) = 0.414,
s(x3) = 0.369, s(x4) = 0.474, s(x5) = 0.438.
Step 4. By the scores s(xi1 ) result, the ranking order of all the alter-
natives is generated as x4 > x1 > x5 > x2 > x3. Therefore, the best
car supplier is x4.

We can also replace the GIIFWA with the GIIFWG to resolve this
problem. The difference starts from step 2.

Step 2’. By the Theorem 3.2, we have

GIIFWG
( ̃𝒜IVIF ∘ X2 ∘ X3

)
=
(
[

4
∏
i2=1

5
∏
i3=1

(
𝜇l
i1i2i3

)x2i2 x
3
i3 ,

4
∏
i2=1

5
∏
i3=1

(
𝜇u
i1i2i3

)x2i2 x
3
i3 ] ,

[1 –
4
∏
i2=1

5
∏
i3=1

(
1 – 𝜈li1i2i3

)x2i2 x
3
i3 ,

1 –
4
∏
i2=1

5
∏
i3=1

(
1 – 𝜈ui1i2i3

)x2i2 x
3
i3 ]

)
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= (([0.503, 0.641] , [0.186, 0.323]) , ([0.421, 0.598] ,
[0.178, 0.349]) , ([0.387, 0.560] , [0.171, 0.307]) ,
([0.466, 0.623] , [0.125, 0.280]) , ([0.450, 0.659] ,
[0.158, 0.282])) .

Then, we get

x1 = ([0.503, 0.641] , [0.186, 0.323]) ,
x2 = ([0.421, 0.598] , [0.178, 0.349]) ,
x3 = ([0.387, 0.560] , [0.171, 0.307]) ,
x4 = ([0.466, 0.623] , [0.125, 0.280]) ,
x5 = ([0.450, 0.659] , [0.158, 0.282]) .

Step 3’. In order to rank the IVIFNs xi1 (i1 = [5]), we calculate the
scores s(xi1 )(i1 = 1, 2,⋯ , 5) by the Definition 2.8, then we get
s(x1) = 0.318, s(x2) = 0.246, s(x3) = 0.234, s(x4) = 0.342, s(x5) =
0.334.
Step 4’. Then, by the scores s(xi) result, the ranking order of all the
alternatives is generated as x4 > x5 > x1 > x2 > x3. Therefore, the
optimal car supplier is x4.

5.1.2. Discussion

In this subsection, we try to explain the difference between our
results with GIIFWA and GIIFWG operators and those in Qiu [15].
1. The comparison of the results is shown in Table 5. By using

the same data and weight information, the results calculated by
GIIFWGoperator are the same as the results in Qiu [15]. How-
ever, the results calculated by GIIFWA operator are slightly
different from that in Qiu [15].

2. The reason for the slightly different results calculated by the
GIIFWA and GIIFWG operators is that the ranking result
of GIIFWG operator is more accurate because zero-valued
elements in expert preferences do not affect the calculation
process; the GIIFWG operator ensure the reasonable of the
alternative ranking in this numerical example.

3. Compared with themethod in Qiu [15], we get the same calcu-
lation result with the GIIFWG operator which is more simple
in establishing and computing model.

5.2. Dynamic Interval-Valued Intuitionistic
Fuzzy Multiple Attribute Group
Decision-Making

In this subsection, we will use a practical example which is a slightly
revised version of Case illustration in Xu and Yager [35] to illustrate
the efficiency and universal applicability of the presented algorithm.

5.2.1. Practical example

Located in Central China and themiddle reaches of the Changjiang
(Yangtze) River, Hubei Province is distributed in a transitional
belt where physical conditions and landscapes are on the tran-
sition from north to south and from east to west. Thus, Hubei
Province is well known as a land of rice and fish since the region

enjoys some of the favorable physical conditions, with a diver-
sity of natural resources and the suitability for growing various
crops. At the same time, however, there are also some restric-
tive factors for developing agriculture, such as a tight man-land
relation between a constant degradation of natural resources and
a growing population pressure on land resource reserve. Despite
cherishing a burning desire to promote their standard of living,
people living in the area are frustrated because they have no
ability to enhance their power to accelerate economic develop-
ment because of a dramatic decline in quantity and quality of
natural resources and a deteriorating environment. Based on the
distinctness and differences in environment and natural resources,
Hubei Province can be roughly divided into seven agroecologi-
cal regions: Y1-Wuhan-Ezhou-Huanggang; Y2-Northeast of Hubei;
Y3-Southeast of Hubei; Y4-Jianghan region; Y5-North of Hubei;
Y6-Northwest of Hubei; Y7-Southwest of Hubei. In order to pri-
oritize these agroecological regions Yi (i = 1, 2,⋯ , 7) with respect
to their comprehensive functions, a committee comprised of three
experts El (l = 1, 2, 3) has been set up to provide assessment infor-
mation on Yi (i = 1, 2,⋯ , 7). The attributes which are considered
here in assessment of Yi (i = 1, 2,⋯ , 7) are (1) G1 is ecological
benefit, (2) G2 is economic benefit, and (3) G3 is social bene-
fit. The committee evaluates the performance of agroecological
regions Yi (i = 1, 2,⋯ , 7) in the years 2004–2006 according to the
attributesGj

(
j = 1, 2, 3

)
, and constructs, respectively, the interval-

valued intuitionistic fuzzy decision matrices R
(
tlk
)
(l, k = 1, 2, 3)

(here, tl1 denotes the year “2004,” tl2 denotes the year “2005,”
and tl3 denotes the year “2006”) as listed in Tables 6–14. Let
𝜔 = (1/6, 2/6, 3/6)T be the weight vector of the years tlk (k = 1, 2, 3),
𝜆 = (0.5, 0.2, 0.3)T be theweight vector of the expertsEl(l = 1, 2, 3),
and 𝜉 = (0.3, 0.4, 0.3)T be the weight vector of the attributes
Gj

(
j = 1, 2, 3

)
.

Step 1. If the interval-valued intuitionistic fuzzy tensor and the
GIIFWA operator are employed for expressing data in Tables 6–14,
then ̃𝒜IVIF =

(
ai1i2i3i4

)
7×3×3×3

∈ TIVIF(4, 7 × 3 × 3 × 3), where

its elements ai1i2i3i4 =
(
[𝜇l

i1i2i3i4 , 𝜇
u
i1i2i3i4] , [𝜈

l
i1i2i3i4 , 𝜈

u
i1i2i3i4]

)
,

and ai1∶∶∶ (i1 ∈ [7]) represent seven agroecological regions,
a∶i2∶∶ (i2 ∈ [3]) represent three years, a∶∶i3∶ (i3 ∈ [3]) represent
three experts, and a∶∶∶i4 (i4 ∈ [3]) represent three attributes. The
details are as follows:

a1111 = ([0.8, 0.9] , [0.0, 0.1]) , a1112 = ([0.7, 0.8] , [0.1, 0.2]) ,
a1113 = ([0.6, 0.8] , [0.0, 0.2]) , a1121 = ([0.5, 0.6] , [0.2, 0.3]) ,
a1122 = ([0.2, 0.6] , [0.1, 0.2]) , a1123 = ([0.3, 0.6] , [0.2, 0.3]) ,
a1131 = ([0.3, 0.6] , [0.1, 0.3]) , a1132 = ([0.2, 0.5] , [0.2, 0.5]) ,
a1133 = ([0.2, 0.5] , [0.3, 0.4]) , a1211 = ([0.7, 0.8] , [0.1, 0.2]) ,
a1212 = ([0.8, 0.9] , [0.0, 0.1]) , a1213 = ([0.7, 0.9] , [0.0, 0.1]) ,
a1221 = ([0.2, 0.6] , [0.3, 0.4]) , a1222 = ([0.2, 0.5] , [0.3, 0.4]) ,
a1223 = ([0.4, 0.5] , [0.2, 0.5]) , a1231 = ([0.4, 0.6] , [0.1, 0.3]) ,
a1232 = ([0.2, 0.6] , [0.1, 0.2]) , a1233 = ([0.2, 0.5] , [0.2, 0.4]) ,
a1311 = ([0.6, 0.7] , [0.1, 0.3]) , a1312 = ([0.7, 0.9] , [0.0, 0.1]) ,
a1313 = ([0.8, 0.9] , [0.0, 0.1]) , a1321 = ([0.4, 0.6] , [0.2, 0.3]) ,
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Table 5 The comparison among the results of the GIIFWA and GIIFWG operators in this paper and the results of Qiu.

Sort Function The Optimal
Method Results Values Preference order Car supplier

Qiu’s [15] x1 = ([0.350, 0.774] , [0.226, 0.349]) s
(
x1
)
= 0.203 x4 ≻ x5 ≻ x1 ≻ x2 ≻ x3 x4

method x2 = ([0.423, 0.692] , [0.171, 0.227]) s
(
x2
)
= 0.181

x3 = ([0.318, 0.698] , [0.272, 0.302]) s
(
x3
)
= 0.169

x4 = ([0.259, 0.740] , [0.191, 0.200]) s
(
x4

)
= 0.235

x5 = ([0.392, 0.646] , [0.185, 0.193]) s
(
x5
)
= 0.222

GIIFWA x1 = ([0.551, 0.650] , [0.000, 0.269]) s
(
x1
)
= 0.466 x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3 x4

operator x2 = ([0.460, 0.657] , [0.000, 0.290]) s
(
x2
)
= 0.414

x3 = ([0.431, 0.570], [0.000, 0.264]) s
(
x3
)
= 0.369

x4 = ([0.511, 0.661], [0.000, 0.224]) s
(
x4

)
= 0.474

x5 = ([0.487, 0.645], [0.000, 0.255]) s
(
x5
)
= 0.438

GIIFWG x1 = ([0.503, 0.641] , [0.186, 0.323]) s
(
x1
)
= 0.318 x4 ≻ x5 ≻ x1 ≻ x2 ≻ x3 x4

operator x2 = ([0.421, 0.598] , [0.178, 0.349]) s
(
x2
)
= 0.246

x3 = ([0.387, 0.560] , [0.171, 0.307]) s
(
x3
)
= 0.234

x4 = ([0.466, 0.623] , [0.125, 0.280]) s
(
x4

)
= 0.342

x5 = ([0.450, 0.659] , [0.158, 0.282]) s
(
x5
)
= 0.334

GIIFWA, generalized interval-valued intuitionistic fuzzy weighted averaging; GIIFWG, generalized interval-valued intuitionistic fuzzy weighted geo-
metric .

Table 6 Interval-valued intuitionistic fuzzy decision matrix R
(
t11
)
.

G1 G2 G3
Y1 ([0.8,0.9], [0.0,0.1]) ([0.7,0.8], [0.1,0.2]) ([0.6,0.8], [0.0,0.2])
Y2 ([0.6,0.7], [0.2,0.3]) ([0.5,0.7], [0.2,0.3]) ([0.5,0.6], [0.2,0.3])
Y3 ([0.4,0.5], [0.2,0.4]) ([0.5,0.6], [0.2,0.3]) ([0.4,0.6], [0.1,0.2])
Y4 ([0.7,0.8], [0.1,0.2]) ([0.6,0.8], [0.0,0.1]) ([0.6,0.7], [0.1,0.2])
Y5 ([0.5,0.7], [0.1,0.3]) ([0.7,0.8], [0.1,0.2]) ([0.4,0.5], [0.2,0.4])
Y6 ([0.2,0.3], [0.5,0.6]) ([0.3,0.5], [0.4,0.5]) ([0.4,0.6], [0.3,0.4])
Y7 ([0.4,0.5], [0.3,0.4]) ([0.2,0.5], [0.3,0.5]) ([0.4,0.7], [0.2,0.3])

Table 7 Interval-valued intuitionistic fuzzy decision matrix R
(
t21
)
.

G1 G2 G3
Y1 ([0.5,0.6], [0.2,0.3]) ([0.2,0.6], [0.1,0.2]) ([0.3,0.6], [0.2,0.3])
Y2 ([0.4,0.5], [0.1,0.3]) ([0.2,0.6], [0.1,0.4]) ([0.4,0.5], [0.3,0.5])
Y3 ([0.4,0.5], [0.2,0.3]) ([0.7,0.8], [0.1,0.2]) ([0.5,0.7], [0.2,0.3])
Y4 ([0.4,0.5], [0.2,0.3]) ([0.2,0.6], [0.1,0.3]) ([0.2,0.8], [0.1,0.2])
Y5 ([0.3,0.5], [0.2,0.3]) ([0.3,0.6], [0.1,0.3]) ([0.3,0.6], [0.1,0.2])
Y6 ([0.3,0.6], [0.2,0.3]) ([0.2,0.7], [0.1,0.2]) ([0.2,0.6], [0.1,0.4])
Y7 ([0.4,0.6], [0.2,0.3]) ([0.4,0.5], [0.1,0.2]) ([0.4,0.5], [0.2,0.3])

Table 8 Interval-valued intuitionistic fuzzy decision matrix R
(
t31
)
.

G1 G2 G3
Y1 ([0.3,0.6], [0.1,0.3]) ([0.2,0.5], [0.2,0.5]) ([0.2,0.5], [0.3,0.4])
Y2 ([0.3,0.5], [0.2,0.5]) ([0.3,0.5], [0.3,0.4]) ([0.2,0.6], [0.2,0.3])
Y3 ([0.4,0.6], [0.1,0.3]) ([0.3,0.4], [0.2,0.3]) ([0.3,0.6], [0.1,0.2])
Y4 ([0.3,0.5], [0.1,0.3]) ([0.3,0.5], [0.2,0.3]) ([0.2,0.7], [0.1,0.2])
Y5 ([0.2,0.6], [0.1,0.2]) ([0.2,0.5], [0.1,0.4]) ([0.4,0.5], [0.2,0.3])
Y6 ([0.3,0.5], [0.2,0.3]) ([0.3,0.5], [0.1,0.2]) ([0.3,0.5], [0.2,0.4])
Y7 ([0.4,0.7], [0.1,0.3]) ([0.2,0.7], [0.2,0.3]) ([0.4,0.8], [0.1,0.2])

a1322 = ([0.3, 0.6] , [0.1, 0.3]) , a1323 = ([0.3, 0.6] , [0.2, 0.4]) ,
a1331 = ([0.3, 0.5] , [0.2, 0.4]) , a1332 = ([0.3, 0.5] , [0.1, 0.2]) ,
a1333 = ([0.3, 0.6] , [0.2, 0.3]) , a2111 = ([0.6, 0.7] , [0.2, 0.3]) ,
a2112 = ([0.5, 0.7] , [0.2, 0.3]) , a2113 = ([0.5, 0.6] , [0.2, 0.3]) ,
a2121 = ([0.4, 0.5] , [0.1, 0.3]) , a2122 = ([0.2, 0.6] , [0.1, 0.4]) ,
a2123 = ([0.4, 0.5] , [0.3, 0.5]) , a2131 = ([0.3, 0.5] , [0.2, 0.5]) ,
a2132 = ([0.3, 0.5] , [0.3, 0.4]) , a2133 = ([0.2, 0.6] , [0.2, 0.3]) ,

Table 9 Interval-valued intuitionistic fuzzy decision matrix R
(
t12
)
.

G1 G2 G3
Y1 ([0.7,0.8], [0.1,0.2]) ([0.8,0.9], [0.0,0.1]) ([0.7,0.9], [0.0,0.1])
Y2 ([0.5,0.7], [0.1,0.2]) ([0.6,0.7], [0.1,0.3]) ([0.4,0.5], [0.2,0.4])
Y3 ([0.3,0.5], [0.1,0.3]) ([0.4,0.5], [0.1,0.3]) ([0.3,0.6], [0.3,0.4])
Y4 ([0.6,0.7], [0.1,0.2]) ([0.7,0.8], [0.1,0.2]) ([0.5,0.7], [0.1,0.3])
Y5 ([0.5,0.7], [0.2,0.3]) ([0.5,0.7], [0.1,0.3]) ([0.4,0.6], [0.2,0.3])
Y6 ([0.3,0.4], [0.4,0.6]) ([0.2,0.4], [0.5,0.6]) ([0.4,0.5], [0.4,0.5])
Y7 ([0.3,0.5], [0.3,0.5]) ([0.4,0.6], [0.3,0.4]) ([0.4,0.5], [0.2,0.4])

Table 10 Interval-valued intuitionistic fuzzy decision matrix R
(
t22
)
.

G1 G2 G3
Y1 ([0.2,0.6], [0.3,0.4]) ([0.2,0.5], [0.3,0.4]) ([0.4,0.5], [0.2,0.5])
Y2 ([0.3,0.5], [0.2,0.3]) ([0.3,0.5], [0.1,0.2]) ([0.3,0.5], [0.2,0.4])
Y3 ([0.4,0.5], [0.1,0.2]) ([0.2,0.4], [0.2,0.3]) ([0.1,0.5], [0.2,0.3])
Y4 ([0.2,0.7], [0.1,0.3]) ([0.2,0.7], [0.1,0.3]) ([0.3,0.6], [0.2,0.4])
Y5 ([0.4,0.5], [0.2,0.3]) ([0.3,0.5], [0.1,0.2]) ([0.4,0.5], [0.1,0.3])
Y6 ([0.3,0.6], [0.2,0.3]) ([0.3,0.7], [0.1,0.2]) ([0.3,0.6], [0.1,0.4])
Y7 ([0.3,0.5], [0.1,0.2]) ([0.3,0.5], [0.2,0.4]) ([0.1,0.8], [0.1,0.2])

Table 11 Interval-valued intuitionistic fuzzy decision matrix R
(
t32
)
.

G1 G2 G3
Y1 ([0.4,0.6], [0.1,0.3]) ([0.2,0.6], [0.1,0.2]) ([0.2,0.5], [0.2,0.4])
Y2 ([0.4,0.5], [0.3,0.5]) ([0.4,0.5], [0.1,0.2]) ([0.2,0.8], [0.1,0.2])
Y3 ([0.2,0.6], [0.2,0.3]) ([0.2,0.7], [0.1,0.2]) ([0.3,0.7], [0.2,0.3])
Y4 ([0.1,0.6], [0.2,0.3]) ([0.1,0.7], [0.2,0.3]) ([0.3,0.6], [0.1,0.4])
Y5 ([0.4,0.7], [0.1,0.2]) ([0.2,0.6], [0.2,0.3]) ([0.3,0.7], [0.1,0.2])
Y6 ([0.4,0.5], [0.2,0.3]) ([0.2,0.5], [0.1,0.2]) ([0.3,0.5], [0.2,0.3])
Y7 ([0.4,0.5], [0.2,0.1]) ([0.2,0.7], [0.1,0.3]) ([0.3,0.6], [0.1,0.2])

a2211 = ([0.5, 0.7] , [0.1, 0.2]) , a2212 = ([0.6, 0.7] , [0.1, 0.3]) ,
a2213 = ([0.4, 0.5] , [0.2, 0.4]) , a2221 = ([0.3, 0.5] , [0.2, 0.3]) ,
a2222 = ([0.3, 0.5] , [0.1, 0.2]) , a2223 = ([0.3, 0.5] , [0.2, 0.4]) ,
a2231 = ([0.4, 0.5] , [0.3, 0.5]) , a2232 = ([0.4, 0.5] , [0.1, 0.2]) ,
a2233 = ([0.2, 0.8] , [0.1, 0.2]) , a2311 = ([0.4, 0.6] , [0.1, 0.2]) ,
a2312 = ([0.5, 0.7] , [0.1, 0.2]) , a2313 = ([0.6, 0.7] , [0.1, 0.3]) ,
a2321 = ([0.1, 0.7] , [0.2, 0.3]) , a2322 = ([0.2, 0.7] , [0.1, 0.2]) ,
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Table 12 Interval-valued intuitionistic fuzzy decision matrix R
(
t13
)
.

G1 G2 G3
Y1 ([0.6,0.7], [0.1,0.3]) ([0.7,0.9], [0.0,0.1]) ([0.8,0.9], [0.0,0.1])
Y2 ([0.4,0.6], [0.1,0.2]) ([0.5,0.7], [0.1,0.2]) ([0.6,0.7], [0.1,0.3])
Y3 ([0.2,0.4], [0.2,0.3]) ([0.3,0.6], [0.2,0.3]) ([0.4,0.6], [0.2,0.4])
Y4 ([0.7,0.8], [0.0,0.1]) ([0.8,0.9], [0.0,0.1]) ([0.4,0.7], [0.2,0.3])
Y5 ([0.5,0.6], [0.2,0.3]) ([0.4,0.5], [0.1,0.2]) ([0.6,0.7], [0.2,0.3])
Y6 ([0.2,0.3], [0.5,0.6]) ([0.3,0.5], [0.3,0.4]) ([0.3,0.6], [0.2,0.4])
Y7 ([0.5,0.6], [0.3,0.4]) ([0.2,0.3], [0.4,0.5]) ([0.7,0.8], [0.1,0.2])

Table 13 Interval-valued intuitionistic fuzzy decision matrix R
(
t23
)
.

G1 G2 G3
Y1 ([0.4,0.6], [0.2,0.3]) ([0.3,0.6], [0.1,0.3]) ([0.3,0.6], [0.2,0.4])
Y2 ([0.1,0.7], [0.2,0.3]) ([0.2,0.7], [0.1,0.2]) ([0.5,0.6], [0.1,0.3])
Y3 ([0.5,0.7], [0.2,0.3]) ([0.5,0.6], [0.1,0.3]) ([0.4,0.5], [0.1,0.2])
Y4 ([0.1,0.7], [0.2,0.3]) ([0.2,0.7], [0.1,0.3]) ([0.3,0.6], [0.1,0.2])
Y5 ([0.4,0.5], [0.1,0.3]) ([0.2,0.6], [0.1,0.4]) ([0.1,0.7], [0.2,0.3])
Y6 ([0.5,0.6], [0.1,0.3]) ([0.4,0.6], [0.2,0.4]) ([0.2,0.6], [0.1,0.3])
Y7 ([0.2,0.7], [0.1,0.2]) ([0.2,0.8], [0.1,0.2]) ([0.1,0.8], [0.1,0.2])

Table 14 Interval-valued intuitionistic fuzzy decision matrix R
(
t33
)
.

G1 G2 G3
Y1 ([0.3,0.5], [0.2,0.4]) ([0.3,0.5], [0.1,0.2]) ([0.3,0.6], [0.2,0.3])
Y2 ([0.3,0.7], [0.2,0.3]) ([0.3,0.5], [0.1,0.4]) ([0.2,0.5], [0.2,0.4])
Y3 ([0.4,0.7], [0.2,0.3]) ([0.4,0.5], [0.1,0.3]) ([0.5,0.7], [0.1,0.2])
Y4 ([0.2,0.8], [0.1,0.2]) ([0.2,0.8], [0.1,0.2]) ([0.2,0.7], [0.1,0.2])
Y5 ([0.2,0.8], [0.1,0.2]) ([0.2,0.5], [0.1,0.3]) ([0.1,0.7], [0.2,0.3])
Y6 ([0.2,0.7], [0.1,0.3]) ([0.1,0.7], [0.2,0.3]) ([0.2,0.6], [0.3,0.4])
Y7 ([0.2,0.8], [0.1,0.2]) ([0.4,0.5], [0.2,0.3]) ([0.1,0.6], [0.2,0.4])

a2323 = ([0.5, 0.6] , [0.1, 0.3]) , a2331 = ([0.3, 0.7] , [0.2, 0.3]) ,
a2332 = ([0.3, 0.5] , [0.1, 0.4]) , a2333 = ([0.2, 0.5] , [0.2, 0.4]) ,
a3111 = ([0.4, 0.5] , [0.2, 0.4]) , a3112 = ([0.5, 0.6] , [0.2, 0.3]) ,
a3113 = ([0.4, 0.6] , [0.1, 0.2]) , a3121 = ([0.4, 0.5] , [0.2, 0.3]) ,
a3122 = ([0.7, 0.8] , [0.1, 0.2]) , a3123 = ([0.5, 0.7] , [0.2, 0.3]) ,
a3131 = ([0.4, 0.6] , [0.1, 0.3]) , a3132 = ([0.3, 0.4] , [0.2, 0.3]) ,
a3133 = ([0.3, 0.6] , [0.1, 0.2]) , a3211 = ([0.3, 0.5] , [0.1, 0.3]) ,
a3212 = ([0.4, 0.5] , [0.1, 0.3]) , a3213 = ([0.3, 0.6] , [0.3, 0.4]) ,
a3221 = ([0.4, 0.5] , [0.1, 0.2]) , a3222 = ([0.2, 0.4] , [0.2, 0.3]) ,
a3223 = ([0.1, 0.5] , [0.2, 0.3]) , a3231 = ([0.2, 0.6] , [0.2, 0.3]) ,
a3232 = ([0.2, 0.7] , [0.1, 0.2]) , a3233 = ([0.3, 0.7] , [0.2, 0.3]) ,
a3311 = ([0.2, 0.4] , [0.2, 0.3]) , a3312 = ([0.3, 0.6] , [0.2, 0.3]) ,
a3313 = ([0.4, 0.6] , [0.2, 0.4]) , a3321 = ([0.5, 0.7] , [0.2, 0.3]) ,
a3322 = ([0.5, 0.6] , [0.1, 0.3]) , a3323 = ([0.4, 0.5] , [0.1, 0.2]) ,
a3331 = ([0.4, 0.7] , [0.2, 0.3]) , a3332 = ([0.4, 0.5] , [0.1, 0.3]) ,
a3333 = ([0.5, 0.7] , [0.1, 0.2]) , a4111 = ([0.7, 0.8] , [0.1, 0.2]) ,
a4112 = ([0.6, 0.8] , [0.0, 0.1]) , a4113 = ([0.6, 0.7] , [0.1, 0.2]) ,
a4121 = ([0.4, 0.5] , [0.2, 0.3]) , a4122 = ([0.2, 0.6] , [0.1, 0.3]) ,
a4123 = ([0.2, 0.8] , [0.1, 0.2]) , a4131 = ([0.3, 0.5] , [0.1, 0.3]) ,
a4132 = ([0.3, 0.5] , [0.2, 0.3]) , a4133 = ([0.2, 0.7] , [0.1, 0.2]) ,
a4211 = ([0.6, 0.7] , [0.1, 0.2]) , a4212 = ([0.7, 0.8] , [0.1, 0.2]) ,
a4213 = ([0.5, 0.7] , [0.1, 0.3]) , a4221 = ([0.2, 0.7] , [0.1, 0.3]) ,
a4222 = ([0.2, 0.7] , [0.1, 0.3]) , a4223 = ([0.3, 0.6] , [0.2, 0.4]) ,

a4231 = ([0.1, 0.6] , [0.2, 0.3]) , a4232 = ([0.1, 0.7] , [0.2, 0.3]) ,
a4233 = ([0.3, 0.6] , [0.1, 0.4]) , a4311 = ([0.7, 0.8] , [0.0, 0.1]) ,
a4312 = ([0.8, 0.9] , [0.0, 0.1]) , a4313 = ([0.4, 0.7] , [0.2, 0.3]) ,
a4321 = ([0.1, 0.7] , [0.2, 0.3]) , a4322 = ([0.2, 0.7] , [0.1, 0.3]) ,
a4323 = ([0.3, 0.6] , [0.1, 0.2]) , a4331 = ([0.2, 0.8] , [0.1, 0.2]) ,
a4332 = ([0.2, 0.8] , [0.1, 0.2]) , a4333 = ([0.2, 0.7] , [0.1, 0.2]) ,
a5111 = ([0.5, 0.7] , [0.1, 0.3]) , a5112 = ([0.7, 0.8] , [0.1, 0.2]) ,
a5113 = ([0.4, 0.5] , [0.2, 0.4]) , a5121 = ([0.3, 0.5] , [0.2, 0.3]) ,
a5122 = ([0.3, 0.6] , [0.1, 0.3]) , a5123 = ([0.3, 0.6] , [0.1, 0.2]) ,
a5131 = ([0.2, 0.6] , [0.1, 0.2]) , a5132 = ([0.2, 0.5] , [0.1, 0.4]) ,
a5133 = ([0.4, 0.5] , [0.2, 0.3]) , a5211 = ([0.5, 0.7] , [0.2, 0.3]) ,
a5212 = ([0.5, 0.7] , [0.1, 0.3]) , a5213 = ([0.4, 0.6] , [0.2, 0.3]) ,
a5221 = ([0.4, 0.5] , [0.2, 0.3]) , a5222 = ([0.3, 0.5] , [0.1, 0.2]) ,
a5223 = ([0.4, 0.5] , [0.1, 0.3]) , a5231 = ([0.4, 0.7] , [0.1, 0.2]) ,
a5232 = ([0.2, 0.6] , [0.2, 0.3]) , a5233 = ([0.3, 0.7] , [0.1, 0.2]) ,
a5311 = ([0.5, 0.6] , [0.2, 0.3]) , a5312 = ([0.4, 0.5] , [0.1, 0.2]) ,
a5313 = ([0.6, 0.7] , [0.2, 0.3]) , a5321 = ([0.4, 0.5] , [0.1, 0.3]) ,
a5322 = ([0.2, 0.6] , [0.1, 0.4]) , a5323 = ([0.1, 0.7] , [0.2, 0.3]) ,
a5331 = ([0.2, 0.8] , [0.1, 0.2]) , a5332 = ([0.2, 0.5] , [0.1, 0.3]) ,
a5333 = ([0.1, 0.7] , [0.2, 0.3]) , a6111 = ([0.2, 0.3] , [0.5, 0.6]) ,
a6112 = ([0.3, 0.5] , [0.4, 0.5]) , a6113 = ([0.4, 0.6] , [0.3, 0.4]) ,
a6121 = ([0.3, 0.6] , [0.2, 0.3]) , a6122 = ([0.2, 0.7] , [0.1, 0.2]) ,
a6123 = ([0.2, 0.6] , [0.1, 0.4]) , a6131 = ([0.3, 0.5] , [0.2, 0.3]) ,
a6132 = ([0.3, 0.5] , [0.1, 0.2]) , a6133 = ([0.3, 0.5] , [0.2, 0.4]) ,
a6211 = ([0.3, 0.4] , [0.4, 0.6]) , a6212 = ([0.2, 0.4] , [0.5, 0.6]) ,
a6213 = ([0.4, 0.5] , [0.4, 0.5]) , a6221 = ([0.3, 0.6] , [0.2, 0.3]) ,
a6222 = ([0.3, 0.7] , [0.1, 0.2]) , a6223 = ([0.3, 0.6] , [0.1, 0.4]) ,
a6231 = ([0.4, 0.5] , [0.2, 0.3]) , a6232 = ([0.2, 0.5] , [0.1, 0.2]) ,
a6233 = ([0.3, 0.5] , [0.2, 0.3]) , a6311 = ([0.2, 0.3] , [0.5, 0.6]) ,
a6312 = ([0.3, 0.5] , [0.3, 0.4]) , a6313 = ([0.3, 0.6] , [0.2, 0.4]) ,
a6321 = ([0.5, 0.6] , [0.1, 0.3]) , a6322 = ([0.4, 0.6] , [0.2, 0.4]) ,
a6323 = ([0.2, 0.6] , [0.1, 0.3]) , a6331 = ([0.2, 0.7] , [0.1, 0.3]) ,
a6332 = ([0.1, 0.7] , [0.2, 0.3]) , a6333 = ([0.2, 0.6]] , [0.3, 0.4],
a7111 = ([0.4, 0.5] , [0.3, 0.4]) , a7112 = ([0.2, 0.5] , [0.3, 0.5]) ,
a7113 = ([0.4, 0.7] , [0.2, 0.3]) , a7121 = ([0.4, 0.6] , [0.2, 0.3]) ,
a7122 = ([0.4, 0.5] , [0.1, 0.2]) , a7123 = ([0.4, 0.5] , [0.2, 0.3]) ,
a7131 = ([0.4, 0.7] , [0.1, 0.3]) , a7132 = ([0.2, 0.7] , [0.2, 0.3]) ,
a7133 = ([0.4, 0.8] , [0.1, 0.2]) , a7211 = ([0.3, 0.5] , [0.3, 0.5]) ,
a7212 = ([0.4, 0.6] , [0.3, 0.4]) , a7213 = ([0.4, 0.5] , [0.2, 0.4]) ,
a7221 = ([0.3, 0.5] , [0.1, 0.2]) , a7222 = ([0.3, 0.5] , [0.2, 0.4]) ,
a7223 = ([0.1, 0.8] , [0.1, 0.2]) , a7231 = ([0.4, 0.5] , [0.2, 0.1]) ,
a7232 = ([0.2, 0.7] , [0.1, 0.3]) , a7233 = ([0.3, 0.6] , [0.1, 0.2]) ,
a7311 = ([0.5, 0.6] , [0.3, 0.4]) , a7312 = ([0.2, 0.3] , [0.4, 0.5]) ,
a7313 = ([0.7, 0.8] , [0.1, 0.2]) , a7321 = ([0.2, 0.7] , [0.1, 0.2]) ,
a7322 = ([0.2, 0.8] , [0.1, 0.2]) , a7323 = ([0.1, 0.8] , [0.1, 0.2]) ,
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a7331 = ([0.2, 0.8] , [0.1, 0.2]) , a7332 = ([0.4, 0.5] , [0.2, 0.3]) ,
a7333 = ([0.1, 0.6] , [0.2, 0.4]) .

Step 2. By Theorem 3.1, ̃𝒜IVIF ∈ TIVIF (4, 7 × 3 × 3 × 3). Let X2 =
𝜔 (the years weight), X3 = 𝜆 (the decision-makers weight), and
X4 = 𝜉 (the attributes weight), we have

GIIFWA
( ̃𝒜IF ∘ X2 ∘ X3 ∘ X4

)
=
(
[1 –

3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
1 – 𝜇l

i1i2i3i4

)x2i2 x
3
i3
x4i4 ,

1 –
3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
1 – 𝜇u

i1i2i3i4

)x2i2 x
3
i3
x4i4 ] ,

[
3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
𝜈li1i2i3i4

)x2i2 x
3
i3
x4i4 ,

3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
𝜈ui1i2i3i4

)x2i2 x
3
i3
x4i4 ]

)
= (([0.556, 0.754] , [0.000, 0.207]) , ([0.415, 0.630] ,

[0.134, 0.283]) , ([0.363, 0.581] , [0.153, 0.290]) ,
([0.479, 0.749] , [0.000, 0.208]) , ([0.391, 0.632] ,
[0.135, 0.273]) , ([0.279, 0.542] , [0.233, 0.384]) ,
([0.349, 0.626] , [0.183, 0.304]))T .

Then, we get

Y1 = ([0.556, 0.754] , [0.000, 0.207]) ,
Y2 = ([0.415, 0.630] , [0.134, 0.283]) ,
Y3 = ([0.363, 0.581] , [0.153, 0.290]) ,
Y4 = ([0.479, 0.749] , [0.000, 0.208]) ,
Y5 = ([0.391, 0.632] , [0.135, 0.273]) ,
Y6 = ([0.279, 0.542] , [0.233, 0.384]) ,
Y7 = ([0.349, 0.626] , [0.183, 0.304]) .

Step 3. To rank the IVIFNs Yi1 (i1 ∈ [7]), we calculate the scores
s
(
Yi1

)
(i1 ∈ [7]) by the Definition 2.8. Then, we have s (Y1) =

0.552, s (Y2) = 0.314, s (Y3) = 0.251, s (Y4) = 0.510, s (Y5) =
0.307, s (Y6) = 0.102, s (Y7) = 0.244.
Step 4. By the scores s

(
Yi1

)
result, the ranking order of all the alter-

natives is generated as Y1 > Y4 > Y2 > Y5 > Y3 > Y7 > Y6.
Therefore, the agroecological region with the most comprehensive
functions is Y1-Wuhan-Ezhou-Huanggang.

We can also replace the GIIFWA with the GIIFWG to resolve this
problem. The difference starts from step 2.

Step 2’. By the Theorem 3.2, we have

GIIFWG
( ̃𝒜IF ∘ X2 ∘ X3 ∘ X4

)
=
(
[

3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
𝜇l
i1i2i3i4

)x2i2 x
3
i3
x4i4 ,

3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
𝜇u
i1i2i3i4

)x2i2 x
3
i3
x4i4 ] ,

[1 –
3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
1 – 𝜈li1i2i3i4

)x2i2 x
3
i3
x4i4 ,

1 –
3
∏
i2=1

3
∏
i3=1

3
∏
i4=1

(
1 – 𝜈ui1i2i3i4

)x2i2 x
3
i3
x4i4 ]

)

= (([0.444, 0.684] , [0.107, 0.249]) , ([0.369, 0.610] ,
[0.147, 0.302]) , ([0.334, 0.562] , [0.165, 0.299]) ,
([0.346, 0.724] , [0.104, 0.231]) , ([0.332, 0.610] ,
[0.145, 0.282]) , ([0.258, 0.514] , [0.285, 0.419]) ,
[0.290, 0.575] , [0.214, 0.338]))T

Then, we get

Step 3’. To rank the IVIFNs Yi1 (i1 ∈ [7]), we calculate the
scores s

(
Yi1

)
(i1 ∈ [7]) by the Definition 2.8, then we get

s (Y1) = 0.386,s (Y2) = 0.266,s (Y3) = 0.216,s (Y4) = 0.367,
s (Y5) = 0.258,s (Y6) = 0.034,s (Y7) = 0.156.
Step 4’. By the scores s

(
Yi1

)
result, the ranking order of all the alter-

natives is generated as Y1 ≻ Y4 ≻ Y2 ≻ Y5 ≻ Y3 ≻ Y7 ≻ Y6.
Therefore, the agroecological region with the most comprehensive
functions is also Y1-Wuhan-Ezhou-Huanggang.

5.2.2. Discussion

1. The comparison of the results is shown in Table 15. By using
the same data and weight information, we get the same results
calculated by the GIIFWA and GIIFWG operators. That is, the
agroecological region with the most comprehensive functions
is Y1-Wuhan-Ezhou-Huanggang.

2. The GIIFWA and GIIFWG operators proposed in this paper
can effectively solve the dynamic multiple attribute group
decision-making problem (four-dimensional data) through
analyzing the above practical decision-making problem.
Therefore, in order to solve the actual decision problem of
high-dimensional data, the proposed methods have bet-
ter adaptability. For example, it can effectively deal with
multiple attribute group decision-making problem (three-
dimensional data), dynamic multiple attribute group decision-
making problem (four-dimensional data), and practical
decision problems with higher dimension data.

6. CONCLUSION

As a generalization of fuzzy decision matrix, this paper has pre-
sented the concept ofmth-order interval-valued intuitionistic fuzzy
tensor and related properties. The GIIFWA and GIIFWG operators
by the product of tensor with vector have been obtained and found
effective to deal with the multiple attribute group decision-making
and dynamic multiple attribute group decision-making problems
in an interval-valued intuitionistic condition. Two typical examples
have also been provided to demonstrate the efficiency and univer-
sal applicability of the proposed method.
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Y1 = ([0.444, 0.684] , [0.107, 0.249]) ,
Y2 = ([0.369, 0.610] , [0.147, 0.302]) ,
Y3 = ([0.334, 0.562] , [0.165, 0.299]) ,
Y4 = ([0.346, 0.724] , [0.104, 0.231]) ,
Y5 = ([0.332, 0.610] , [0.145, 0.282]) ,
Y6 = ([0.258, 0.514] , [0.285, 0.419]) ,
Y7 = ([0.290, 0.575] , [0.214, 0.338]) .
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Table 15 The comparison between the results of the GIIFWA and GIIFWG operators in this paper.

Method Results Sort Function Values Preference Order

The
Agroecological
Region with the

Most
Comprehensive

Functions

GIIFWA Y1 = ([0.556, 0.754] , [0.000, 0.207]) s
(
Y1

)
= 0.552 Y1 ≻ Y4 ≻ Y2 ≻ Y5 ≻ Y3 ≻ Y7 ≻ Y6 Y1

operator Y2 = ([0.415, 0.630] , [0.134, 0.283]) s
(
Y2

)
= 0.314

Y3 = ([0.363, 0.581] , [0.153, 0.290]) s
(
Y3

)
= 0.251

Y4 = ([0.479, 0.749] , [0.000, 0.208]) s
(
Y4

)
= 0.510

Y5 = ([0.391, 0.632] , [0.135, 0.273]) s
(
Y5

)
= 0.307

Y6 = ([0.279, 0.542] , [0.233, 0.384]) s
(
Y6

)
= 0.102

Y7 = ([0.349, 0.626] , [0.183, 0.304]) s
(
Y7

)
= 0.244

GIIFWG Y1 = ([0.444, 0.684] , [0.107, 0.249]) s
(
Y1

)
= 0.386 Y1 ≻ Y4 ≻ Y2 ≻ Y5 ≻ Y3 ≻ Y7 ≻ Y6 Y1

operator Y2 = ([0.369, 0.610] , [0.147, 0.302]) s
(
Y2

)
= 0.266

Y3 = ([0.334, 0.562] , [0.165, 0.299]) s
(
Y3

)
= 0.216

Y4 = ([0.346, 0.724] , [0.104, 0.231]) s
(
Y4

)
= 0.367

Y5 = ([0.332, 0.610] , [0.145, 0.282]) s
(
Y5

)
= 0.258

Y6 = ([0.258, 0.514] , [0.285, 0.419]) s
(
Y6

)
= 0.034

Y7 = ([0.290, 0.575] , [0.214, 0.338]) s
(
Y7

)
= 0.156

GIIFWA, generalized interval-valued intuitionistic fuzzy weighted averaging; GIIFWG, generalized interval-valued intuitionistic fuzzy weighted geometric.
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