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Abstract

An extension of the notion of closure sys-
tem is studied adapting the idea of meet-
subsemilattice to a complete fuzzy lattice.
Results relating closure operators and clo-
sure systems in the classical case are ex-
tended properly to this framework. This def-
inition is proved to be equivalent to the most
used definition given by Bělohlávek on the
fuzzy powerset lattice. A definition of fuzzy
closure system is presented and related to
closure systems.

1 Introduction

Closure operators have an important role in pure, ap-
plied mathematics and computer science [10]. Fuzzy
closure operators [1, 4] appear in several areas of
fuzzy logic and its applications, including fuzzy math-
ematical morphology [13, 18], fuzzy relational equa-
tions [12], approximate reasoning [6, 11] and fuzzy
logic in narrow sense [15], and its applications such as
fuzzy logic programming [17] or formal concept anal-
ysis of data with fuzzy attributes [20].

As in the classical case, there is a bijection which re-
lates the notions of closure operator and closure sys-
tem. We can find distinct definitions of closure sys-
tem depending on the ordered structure on which the
fuzzy closure operator is defined. As a consequence,
the notion of fuzzy closure system has been defined on
L-ordered sets [14], on fuzzy preposets [8] and fuzzy
preordered structures [9].

This paper is a continuation on the study of fuzzy clo-
sure systems done in [19], where the underlying struc-
ture was a Heyting algebra. Our aim is to study the
concept of closure system on complete fuzzy lattices.
One can find several extensions of the notion of lattice

and complete lattice to the fuzzy framework. Basically,
these extensions go in two main ways.

On the one hand, some authors define a fuzzy lattice
as a fuzzy subset of a (classical) lattice L that is com-
patible with the structure of the lattice in some manner
[21, 23]. This particular extension could be called that
of fuzzy sublattices. Closure systems on fuzzy sublat-
tices were introduced in [22].

On the other hand, sometimes a fuzzy lattice is defined
as a (crisp) set endowed with a fuzzy order relation
satisfying certain conditions related to the existence of
generalized infimum and supremum. The concept of
complete fuzzy lattice considered in this work belongs
to this class. It was introduced in [5] with the name of
completely lattice L-ordered set, although it has been
called other names, for instance, fuzzy complete lat-
tice in [16]. A particular case of fuzzy complete lat-
tice is the L-powerset with the so-called subsethood de-
gree relation S. Closure systems on L-powerset lattices
were introduced by Bělohlávek in [1].

The starting point of this paper is the definition of clo-
sure system, in the framework of complete fuzzy lat-
tices, provided in [3]. This extension is inspired by the
notion of closure system in the case of classical com-
plete lattices, where they are ∧-subsemilattices. As
awaited, the relationship between fuzzy closure op-
erators and closure systems is studied. After a first
section of preliminaries, the second section includes
the definition of closure system in a fuzzy framework,
which extends the classical closure system property of
being a ∧-subsemilattice. A one-to-one relation be-
tween closure systems and fuzzy closure operators is
proved, i.e., closure systems induce closure operators
and closure operators induce closure systems in a de-
sirable manner. In addition, a characterization of clo-
sure system in terms of the minimum of certain sets is
proved. The core of the next section is the study of the
relationship between the definition of closure system
and the one of L-closure system given by Bělohlávek
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in [1]. The main result within this section is the equiv-
alence of both definitions on L-powerset lattices. Fur-
thermore, the notion of fuzzy closure system in this
framework, which is not as straightforward as the one
on Heyting algebras provided in [19], is introduced and
its good properties are shown. In the last section, the
conclusions of our research are shown and some hints
of future work are presented.

2 Preliminaries

The framework to which we are going to generalize the
notion of closure system is introduced in this section.
It has been chosen with the idea of being as general as
possible and thus have a wider range of possible ap-
plications. Specifically, we recall the notions of com-
plete residuated lattices [2, 15], fuzzy poset and fuzzy
complete lattice, and some basics results that will be
needed throughout the paper [5, 16].

Throughout this paper, let L=(L,∧,∨,⊗,→,0,1) be a
complete residuated lattice, which is an algebra where

• (L,∧,∨,0,1) is a complete lattice with 0 and 1
being the least and the greatest elements of L, re-
spectively,

• (L,⊗,1) is a commutative monoid (i.e.,⊗ is com-
mutative, associative, and 1 is neutral with respect
to ⊗), and

• ⊗ and → satisfy the so-called adjointness prop-
erty: for all a,b,c ∈ L, we have that a⊗ b ≤ c iff
a≤ b→ c.

This structure is utilized in mathematical fuzzy log-
ics and their applications as structures of truth degrees
with⊗ and→ used as truth functions of fuzzy conjunc-
tion and fuzzy implication, respectively [15]. The unit
interval with the Łukasiewicz, Gödel and Goguen pairs
of t-norms and implications are examples of residuated
complete lattices.

An L-set is a mapping X : U→ L from the universe set
U to the membership values set L, where X(u) means
the degree in which u belongs to X . The set of L-sets
on the universe U is denoted by LU . A crisp set is
considered to be a particular case of L-set by using its
characteristic mapping X : U → {0,1} with X(u) = 1
iff u ∈ X .

Operations with L-sets are defined element-wise. For
instance, A⊗B∈ LU is defined as (A⊗B)(u) = A(u)⊗
B(u) for all u ∈ U . The so-called subsethood degree

relation is defined as S : LU ×LU → L where

S(A,B) =
∧

x∈U

(
A(x)→ B(x)

)
.

Obviously, S(A,B) = 1 if and only if A(x) ≤ B(x) for
all x ∈U . In this case, A is said to be a fuzzy subset of
B and is denoted by A⊆ B.

Binary L-relations (binary fuzzy relations) on a set U
can be thought of as L-sets on the universe U×U . That
is, a binary L-relation on U is a mapping ρ ∈ LU×U

assigning to each x,y ∈U a truth degree ρ(x,y) ∈ L (a
degree to which x and y are related by ρ).

For ρ being a binary L-relation in U , we say that

• ρ is reflexive if ρ(x,x) = 1 for all x ∈U .

• ρ is symmetric if ρ(x,y) = ρ(y,x) for all x,y ∈U .

• ρ is antisymmetric if ρ(x,y)⊗ρ(y,x) = 1 implies
x = y for all x,y ∈U .

• ρ is transitive if ρ(x,y)⊗ρ(y,z) ≤ ρ(x,z) for all
x,y,z ∈U .

Definition 1. Given a non-empty set A and a binary
L-relation ρ on A, the pair A= (A,ρ) is said to be a

• fuzzy preposet if ρ is a fuzzy preorder, i.e. if ρ is
reflexive and transitive;

• fuzzy poset if ρ is a fuzzy order, i.e. if ρ is reflex-
ive, antisymmetric and transitive.

A typical example of fuzzy poset is (LU ,S).

As in the crisp case, any order L-relation implicitly de-
fines an equivalence L-relation that is called symmetric
kernel relation. In the fuzzy case, this equivalence L-
relation usually replaces the notion of equality in the
fuzzy poset.

Definition 2. Given a fuzzy preposet A = (A,ρ), the
symmetric kernel relation is defined as ≈ : A×A→ L
where (a≈ b) = ρ(a,b)∧ρ(b,a) for all a,b ∈ A.

Proposition 3. Given a fuzzy preposet A= (A,ρ), the
symmetric kernel relation ≈ is a fuzzy equivalence re-
lation, that is, it is a reflexive, symmetric and transitive
fuzzy relation.

A usual way to define fuzzy algebras is to consider as
an underlying structure a pair which consists of a set
and a tolerance or equivalence relation on it. Thus, an
alternative definition of fuzzy poset that can be found
in the literature [9] is given by a tuple (A,≈,ρ) where
≈ is a fuzzy equivalence relation on A and ρ is a fuzzy
order that is compatible with ≈. In [24], it is shown
that both definitions of fuzzy poset are equivalent.
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To present the notion of fuzzy lattice we need to gen-
eralize those of upper (lower) bound and supremum
(infimum).

Definition 4. Given a fuzzy preposet A= (A,ρ) and a
fuzzy set X ∈ LA, we define the down-cone of X and the
up-cone of X , respectively, as the fuzzy sets Xρ ,Xρ ∈
LA where, for all a ∈ A,

Xρ(a) =
∧
x∈A

(
X(x)→ ρ(a,x)

)
and

Xρ(a) =
∧
x∈A

(
X(x)→ ρ(x,a)

)
.

Thus, Xρ(a) and Xρ(a) can be seen as the degree to
which a is an upper bound and lower bound of X , re-
spectively.

Notice that for singletons, X = {x}, we will omit the
brackets for simplicity of the notation, thus xρ(a) =
ρ(x,a) and xρ(a) = ρ(a,x).

Definition 5. Let A = (A,ρ) be a fuzzy preposet and
a fuzzy subset X of A.

An element m ∈ A is a p-minimum of X iff

i. X(m) = 1, and

ii. X ⊆ mρ , i.e., X(x)≤ ρ(m,x), for all x ∈ A.

An element M ∈ A is a p-maximum of X iff

i. X(M) = 1, and

ii. X ⊆Mρ , i.e., X(x)≤ ρ(x,M), for all x ∈ A.

The crisp set of p-minima (resp. p-maxima) for X will
be denoted p-min(X) (resp. p-max(X)). Notice that,
due to the absence of antisymmetry, this set could have
more than one element. If A is a poset, then every
non-empty set of p-minima and p-maxima is a single-
ton whose element will be called the minimum (resp.
maximum) of X , denoted by min(X) (resp. max(X)).

Definition 6. Let A = (A,ρ) be a fuzzy preposet and
X ∈ LA. An element a ∈ A is said to be infimum (resp.
supremum) of X if the following conditions hold:

i. Xρ(a) = 1 (resp. Xρ(a) = 1).

ii. Xρ(x) ≤ ρ(x,a) (resp. Xρ(x) ≤ ρ(a,x)), for all
x ∈ A.

The following propositions, which are straightforward,
provide useful characterizations of infimum, supre-
mum, p-minimum and p-maximum.

Proposition 7. Let A= (A,ρ) be a fuzzy preposet and
X ∈ LA. An element a∈ A is infimum (resp. supremum)
of X if and only if, for all x ∈ A,

ρ(x,a) = Xρ(x) (resp. ρ(a,x) = Xρ(x)).

Proposition 8. Let A= (A,ρ) be a fuzzy preposet and
X ∈ LA. An element m ∈ A is a p-minimum (resp. p-
maximum) of X if and only if m is an infimum (resp. a
supremum) of X and X(m) = 1.

Notice that the supremum (resp. infimum) needs not
be unique in an arbitrary preposet, but if A is a poset
and due to antisymmetry, it is not difficult to see that,
if a supremum (resp. infimum) of X exists, it is unique.
In such case, we will denote it by

⊔
X (resp.

d
X).

Definition 9 ([5]). We say that a fuzzy poset (A,ρ) is
a complete fuzzy lattice if every fuzzy subset X ∈ LA

has supremum and infimum.

The pair (LU ,S) is an example of complete fuzzy lat-
tice, which is called the L-powerset lattice of U . This
fact follows easily from [2, Theorem 5.63].

Notice that, if (A,ρ) is a complete fuzzy lattice, then
(A,≤), with a≤ b iff ρ(a,b) = 1, is a complete lattice.
Therefore, there exist elements that are minimum and
maximum, which we denote by ⊥ and > respectively.

We conclude this section with the usual definition of
closure operator on a fuzzy preposet.
Definition 10. Given a fuzzy preposet A = (A,ρ), a
mapping c : A→ A is said to be a closure operator on
A if the following conditions hold:

i. ρ(a,b)≤ ρ(c(a),c(b)), for all a,b ∈ A

ii. ρ(a,c(a)) = 1, for all a ∈ A

iii. ρ(c(c(a)),c(a)) = 1, for all a ∈ A.

Conditions i and ii are well-known and are called
isotony and inflationarity, respectively. Observe
that condition iii could be replaced by (c(c(a)) ≈
c(a)) = 1, and, thus, if A is a fuzzy poset, a clo-
sure operator is idempotent in a classical sense, i.e.,
c(c(a)) = c(a) for all a ∈ A.

3 Closure systems on fuzzy lattices

A generalization of the classical definition of closure
system on complete lattices was proposed in [3], where
they are considered as sets with the ∧-subsemilattice
structure.
Definition 11. Let (A,ρ) be a fuzzy complete lattice.
A crisp subset F ⊆ A is said to be a closure system ifd

X ∈F for any fuzzy subset X of F .
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Notice that the empty set is contained in every set andd
∅=>. Therefore, > is in every closure system.

Example 1. Let L = ({0,0.5,1},∧,∨,⊗,→,0,1)
be the three-valued Łukasiewicz residuated lat-
tice, and (A,ρ) be the fuzzy lattice where
A = {⊥,a,b,c,d,e,>} and ρ : A × A → L is the
fuzzy relation order described by the following table:

ρ ⊥ a b c d e >
⊥ 1 1 1 1 1 1 1
a 0.5 1 0.5 1 1 1 1
b 0.5 0.5 1 1 1 1 1
c 0.5 0.5 0.5 1 1 1 1
d 0 0.5 0 0.5 1 0.5 1
e 0 0 0.5 0.5 0.5 1 1
> 0 0 0 0.5 0.5 0.5 1

The set F = {c,>} is a closure system because, for
any fuzzy subset X of F , we have that

d
X = c when

X(c) = 1, and
d

X => otherwise.

Now we provide a proof for the following theorem that
was stated in [3]. It shows the existence of a bijection
between closure systems and closure operators, as in
the classical case.

Theorem 12. Let A = (A,ρ) be a complete fuzzy lat-
tice.

i. If F is a closure system on A, then the mapping
cF : A→ A defined as cF (x) =

d
(xρ ∩F ) is a

closure operator on A.

ii. If c : A→A is a closure operator on A, then Fc =
{x ∈ A | c(x) = x} is a closure system on A.

iii. If F is a closure system on A, then FcF
= F .

iv. If c : A → A is a closure operator on A, then
cFc

= c.

Proof. First, assume that F is a closure system and,
therefore, cF (x) ∈F for all x ∈ A.

ρ(x,cF (x)) = ρ

(
x,

l
(xρ ∩F )

)
=

= (xρ ∩F )ρ(x) =
∧
a∈A

[(xρ ∩F )(a)→ ρ(x,a)]

Since (xρ ∩F )(a) is ρ(x,a) if a ∈F and 0 otherwise,
we get, ∧

a∈A

[(xρ ∩F )(a)→ ρ(x,a)] =

=
∧

a∈F
[ρ(x,a)→ ρ(x,a)] = 1, for all x ∈ A

Hence, ρ(x,cF (x)) = 1, for all x ∈ A, i.e. cF is infla-
tionary.

By the properties of infima, for all a ∈ A and X ∈ LA,
we have X(a)≤ ρ(

d
X ,a). In particular, for X = xρ ∩

F , we have that

ρ(x,v) = (xρ ∩F )(v)≤ ρ(cF (x),v),

for all x ∈ A,v ∈F .
(1)

Now, for any x,y ∈ A, since cF is inflationary and
cF (y) ∈F , it follows,

ρ(x,y) = ρ(x,y)⊗ρ(y,cF (y))≤
≤ ρ(x,cF (y))≤ ρ(cF (x),cF (y)).

Therefore, cF is isotone.

Let x ∈ A. Since, by hypothesis, cF (x) ∈F , and by
using (1), we get

1 = ρ(cF (x),cF (x))≤ ρ(cF (cF (x)),cF (x)).

Therefore, ρ(cF (cF (x)),cF (x)) = 1, for all x ∈ A,
i.e. cF is idempotent; and we have proced that it is a
closure operator.

For ii, assume c is a closure operator in (A,ρ) and let
Fc = {x ∈ A | c(x) = x}. For every fuzzy subset X ⊆
Fc, we denote m =

d
X and prove m ∈Fc.

By Proposition 7, we have that

ρ (c(m) ,m) = Xρ (c(m)) =

=
∧
a∈A

(X(a)→ ρ (c(m) ,a))

Now, since X ⊆Fc, we have that X(a) = 0 for all a /∈
Fc and, by using it and the fact that c(s) = s for all
s ∈Fc, we obtain

ρ (c(m) ,m) =
∧

s∈Fc

(X(s)→ ρ (c(m) ,s)) =

=
∧

s∈Fc

(X(s)→ ρ (c(m) ,c(s)))

Therefore, ρ (c(m) ,m) = 1 because, since m is the in-
fimum of X and c is isotone, we have X(s)≤ ρ(m,s)≤
ρ (c(m) ,c(s)). Finally, since c is inflationary, and by
antysimmetry, we get m = c(m) ∈Fc.

Item iii is proved by double inclusion. On the one
hand, if s ∈ F , then by the first property of the infi-
mum

1 = ρ(s,s) = (sρ ∩F )(s)≤ ρ(cF (s),s).

Also, by inflationarity of the closure operator we
had ρ(s,cF (s)) = 1. Hence, using antisymmetry
ρ(s,cF (s)) ⊗ ρ(cF (s),s) = 1 implies s = cF (s).
Then, s ∈FcF

and we have proved F ⊆FcF
.

On the other hand, if s ∈ FcF
, this means

ρ(cF (s),s) = 1. By inflationarity we have
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ρ(s,cF (s)) = 1. Hence by antisymmetry s = cF (s)
and by definition of cF , s = cF (s) ∈ F . Thus,
FcF

⊆F .

In order to prove item iv, i.e. c(x) = cFc
(x), it suffices

to show c(x) is the infimum of (xρ ∩Fc).

First, for all y ∈ A, we have

(xρ ∩Fc)ρ(y) =
∧
a∈A

[(xρ ∩Fc)(a)→ ρ(y,a)] =

=
∧

a∈Fc

[ρ(x,a)→ ρ(y,a)]

≤ ρ(x,c(x))→ ρ(y,c(x)) = ρ(y,c(x)).

Moreover, given y ∈ A and a ∈Fc, we obtain

ρ(y,c(x))≤ ρ(c(x),a)→ ρ(y,a)
(1)
≤ ρ(x,a)→ ρ(y,a)

and, since it is true for all a ∈Fc, we have that

ρ(y,c(x))≤
∧

a∈Fc

[ρ(x,a)→ ρ(y,a)] = (xρ ∩Fc)ρ(y).

Thus, by Proposition 7, c(x) =
d
(xρ ∩Fc), for all x ∈

A and c= cFc
is proved.

The previous theorem establishes a bijection between
closure systems and closure operators in complete
fuzzy lattices. Given a closure operator c : A→ A, the
set Fc = {x ∈ A | c(x) = x} is the closure system as-
sociated to c, and, given a closure system F , the map-
ping cF : A→ A defined as cF (x) =

d
(xρ ∩F ) is the

closure operator associated to F . This last construc-
tion leads to a characterization of closure systems in
terms of minima.

Proposition 13. Let A = (A,ρ) be a complete fuzzy
lattice. A crisp set F ⊆ A is a closure system if and
only if the element min(xρ ∩F ) exists for all x ∈ A.

Proof. Assume F is a closure system and let x ∈ A.
Consider the set xρ ∩F , which is a subset of F .
Since F is a closure system,

d
(xρ ∩F ) is an element

of F . Furthermore, from Theorem 12, we have that
ρ(x,

d
(xρ ∩F )) = 1 and (xρ ∩F )(

d
(xρ ∩F )) = 1,

so it is the minimum of the set.

Conversely, assume the set F is such that for all x ∈ A,
min(xρ ∩F ) exists.

Let X ⊆F and consider the set (
d

X)ρ ∩F . Follow-
ing the assumption, the element m=min((

d
X)ρ ∩F )

exists. We claim m =
d

X .

By definition of minimum, ((
d

X)ρ ∩F )(m) = 1,
i.e., ρ(

d
X ,m) = 1 and m ∈F .

By definition of infimum, X(x)≤ ρ(
d

X ,x), for all x ∈
A and Xρ(x)≤ ρ(x,

d
X), for all x ∈ A.

Xρ(m) =
∧
x∈A

X(x)→ ρ(m,x) X⊆F
=

∧
s∈F

X(s)→ ρ(m,s).

Let s ∈F , then

X(s)≤ ρ

(l
X ,s
)
=
(l

Xρ ∩F
)
(s)≤ ρ(m,s)

Hence, Xρ(m) = 1≤ ρ(m,
d

X), so
d

X =m∈F .

4 Equivalence with L-closure systems in
powerset lattices

The most cited definition of closure system in a fuzzy
setting was given by Bělohlávek in [1], where the no-
tions of LK-closure operator and LK-closure system on
L-ordered sets were introduced, K being a filter of
the residuated lattice L. Moreover, the product and
residuum of L have been extended to an external op-
eration on the powerset lattice as follows:

(a⊗A)(x) = a⊗A(x) and
(a→ A)(x) = a→ A(x).

(2)

for all a,x ∈ L, A ∈ LU .

Notice that these operations involve elements of L and
elements of LU , hence they are particularly defined on
the powerset lattice.

Definition 14 ([1]). Let K be a filter in L. A sys-
tem F = {Ai ∈ LX | i ∈ I} is called closed under SK-
intersections iff for each A ∈ LU it holds that⋂

i∈I,S(A,Ai)∈K

(S(A,Ai)→ Ai) ∈F

A system closed under SK-intersections will be called
an LK-closure system. For K = L the subscript will be
omitted.

Remark 1. In general, being closed under arbitrary in-
tersections –i.e.

⋂
i∈J Ai ∈F for all J ⊆ I– is a weaker

condition than being closed under SK-intersections.
See [1, Remark 3.3 (2)].

Our aim in this paper has been to highlight
the definition of closure system on complete
fuzzy lattices, not specifically over an L-
powerset. Accordingly, the use of the external
operations given in (2) are circumvented. To
avoid confusion, we will rename Bělohlávek’s
L-closure systems as S-closure systems.

The following lemma is a technical result which is used
in the proof of the next theorem.
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Lemma 15. Let (LU ,S) be a L-powerset lattice. For
all A,B ∈ LU we have that A ⊆ S(A,B) → B i.e.
S(A,S(A,B)→ B) = 1.

Proof. It is a consequence of S(A,B)⊗A(x)≤ B(x) for
all x ∈U .

Theorem 16. Let (LU ,S) be a L-powerset lattice and
F ⊆ LU . Then, F is a closure system if and only if F
is an S-closure system. In addition, if F is a closure
system then, for all A ∈ LU ,

min(AS∩F ) =
⋂

C∈F
(S(A,C)→C). (3)

Proof. By Proposition 13, it is sufficient to prove that,
in both cases, if F is a closure system or an L-closure
system, the equality (3) holds.

On the one hand, assuming F ⊆ LU is a closure sys-
tem, let us prove (3). By Proposition 13 the element
MA = min(AS∩F ) exists, for all A ∈ LU .

Since MA is a minimum it verifies (AS ∩F )(MA) = 1
and, for all B ∈ LU , (AS ∩F )(B)≤ S(MA,B). That is,
MA ∈ F , S(A,MA) = 1 and, for all C ∈ F , we have
S(A,C)≤ S(MA,C).

Since MA ∈F and S(A,MA) = 1, we have that⋂
C∈F

(S(A,C)→C)⊆ S(A,MA)→MA = MA.

Moreover, by Lemma 15, and since S(A,C)≤ S(MA,C)
for all C ∈F , we have that

MA ⊆
⋂

C∈F
(S(MA,C)→C)⊆

⋂
C∈F

(S(A,C)→C).

Thus,
⋂

C∈F (S(A,C)→C) = MA ∈F , for all A ∈ LU

and F is an S-closure system.

On the other hand, assume F is an S-closure system,
that is,

⋂
C∈F (S(A,C)→ C) ∈F for all A ∈ LU . Let

FA =
⋂

C∈F (S(A,C)→ C) and prove FA = min(AS ∩
F ). First, FA ∈F and by Lemma 15, we have that

S(A,FA) = S

(
A,
⋂

C∈F
(S(A,C)→C)

)
=

=
∧

C∈F
S(A,S(A,C)→C) = 1.

Finally, for all C ∈F , we have that FA ⊆ S(A,C)→C
and, therefore,

S(A,C)≤
∧

x∈U

(
FA(x)→C(x)

)
= S(FA,C).

Thus, for all A ∈ LU , FA = min(AS∩F ), hence F is a
closure system.

Thus, in an L-powerset lattice (LU ,S), a closure sys-
tem is a crisp subset F ⊆ LU which is closed un-
der arbitrary infima of fuzzy subsets (X ∈ LF impliesd

X ∈ F ). This implies that F is closed under ar-
bitrary crisp intersections (X ⊆F implies

⋂
X ∈F ).

Nevertheless, as stated in Remark 1, the reciprocal im-
plication does not hold. We illustrate it with the fol-
lowing example.

Example 2. Consider the universe set U = {a,b},
the lattice L be the three-valued Łukasiewicz struc-
ture and (LU ,S) the L-powerset lattice of U . Then,
the set F = {{a/1,b/0.5},{a/1,b/1}} is a closure sys-
tem. A fuzzy subset of F can be described as X =
{{a/1,b/0.5}/x,{a/1,b/1}/y} where x,y ∈ L.

The infimum
d

X is {a/1,b/0.5} if x = 1 and
d

X =
{a/1,b/1} otherwise. Hence, F is a closure system.

As proved in Theorem 16, closure systems and S-
closure systems are the same concept within L-
powerset lattices. Let us show that F in this example
is indeed an S-closure system .

In this particular case,
⋂

C∈F S(A,C)→ C ∈F since
for all A ∈ LU it is either {a/1,b/0.5} or {a/1,b/0.5}.

Notice that these properties are stronger than being
closed for arbitrary intersections. Consider the set
H = {{a/0,b/0},{a/1,b/1}}, this set is clearly closed
under intersections but it does not satisfy the closure
system nor the S-closure system definition.

Consider A = {a/0.5,b/0.5}, then⋂
C∈H

S(A,C)→C = A /∈H .

Thus, H is not an S-closure system. Moreover,
H is not a closure system either since for B =
{{a/0,b/0}/0.5} ⊆H , we have

d
B = {a/0.5,b/0.5}) /∈H .

Thus, H is not a closure system. The calculations of
the infima and the intersections are left as an exercise
to the reader.

5 Fuzzy closure systems

A natural generalisation of closure systems is to con-
sider, instead of the set of closed elements, the de-
gree to which each element is closed. For this aim,
the equality between the element and its closure is re-
placed by the so-called ⊗-symmetric kernel relation,
which is defined as (a≈⊗ b) = ρ(a,b)⊗ρ(b,a) for all
a,b ∈ A. Thus, the degree in which an element a ∈ A
is closed is (c(a) ≈⊗ a) and, since every closure op-
erator is inflationary, it is equal to ρ(c(a),a). In [19],
where the underlying structure is a Heyting algebra,
the one-to-one relation between closure operators and
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fuzzy closure systems is easily obtained following the
ideas used for closure systems. However, this is not the
case when the underlying structure is a general residu-
ated lattice case.

Theorem 17. Let (A,ρ) be a complete fuzzy lattice
and c be a closure operator on A. For Φc ∈ LA, defined
as Φc(a) = ρ(c(a),a), we have that Core(Φc) =Fc is
the closure system associated to c and, for all x ∈ A,

l
(xρ ⊗Φc) =

l
(xρ ∩Fc) (4)

In addition, for all a ∈ A, one has

Φc(a) =
∨

x∈Fc

(a≈⊗ x) (5)

Proof. Due to Theorem 7, to prove (4), it is enough to
see that, for all x,a ∈ A,∧

y∈A

(
(ρ(x,y)⊗Φc(y))→ ρ(a,y)

)
=
∧

s∈Fc

(
ρ(x,s)→ ρ(a,s)

)
On the one hand, the inequality ≤ is straightforward
because ρ(x,s)⊗Φc(s) = ρ(x,s) for all s ∈ Fc. On
the other hand, for all y ∈ A,

ρ(x,y)⊗Φc(y)⊗
(
ρ(x,c(y))→ ρ(a,c(y))

)
=

= ρ(x,y)⊗ρ(c(y),y)⊗
(
ρ(x,c(y))→ ρ(a,c(y))

)
= ρ(x,y)⊗ρ(y,c(y))⊗ρ(c(y),y)

⊗
(
ρ(x,c(y))→ ρ(a,c(y))

)
≤ ρ(x,c(y))⊗ρ(c(y),y)⊗

(
ρ(x,c(y))→ ρ(a,c(y))

)
≤ ρ(a,c(y))⊗ρ(c(y),y)≤ ρ(a,y)

Therefore, for all a,x,y ∈ A, we have that c(y) ∈ Fc

and

ρ(x,c(y))→ ρ(a,c(y))≤
(
ρ(x,y)⊗Φc(y)

)
→ ρ(a,y)

Finally, we prove (5). For all a ∈ A, For all a ∈ A
and x ∈Fc (i.e. c(x) = x), by isotony of c and tran-
sitivity, we have that (a ≈⊗ x) = ρ(a,x)⊗ ρ(x,a) ≤
ρ(c(a),c(x))⊗ρ(x,a)≤ ρ(c(a),a) = Φc(a).

On the other hand, we have that c(a) ∈ Fc and
Φc(a) = ρ(c(a),a) = (a≈⊗ c(a)).

This leads to the definition of fuzzy closure systems.

Definition 18. Let (A,ρ) be a complete fuzzy lattice.
We say that a fuzzy set Φ ∈ LA is a fuzzy closure sys-
tem if Core(Φ) is a closure system and, for all a ∈ A,
the following condition holds

Φ(a) =
∨

x∈Core(Φ)

(x≈⊗ a).

This additional property ensures that Φ is extensional.

Corollary 19. Let A= (A,ρ) be a complete fuzzy lat-
tice. The following assertions hold:

i. If Φ is a fuzzy closure system on A, the mapping
cΦ : A→ A defined as cΦ(a) =

d
(aρ ⊗Φ) is a

closure operator on A.

ii. If c is a closure operator on A, the fuzzy set Φc

defined as Φc(a) = ρ(c(a),a) is a fuzzy closure
system on A.

iii. If Φ is a fuzzy closure system on A, then Φ=ΦcΦ
.

iv. If c : A → A is a closure operator on A, then
cΦc = c.

6 Conclusions and future work

In this paper, a version of the notion of closure system 
has been provided on general complete fuzzy lattices. 
This definition has been proved to behave properly in 
relation with closure operators, that is, there exists a 
bijection between both notions.

Moreover, the definition presented here has been com-
pared with the original given by Bělohlávek, defined 
on L-powerset lattices, and have been proved to be 
equivalent. Hence, the former definition can be used 
in general complete fuzzy lattices avoiding the explicit 
use of L-powerset tools, namely the external operations 
given in (2).

As prospect of future work, a next step might be the 
extension of the concept of closure operator and con-
sider it as some kind of fuzzy relation instead of a crisp 
mapping, in line with the work in [7], and study the re-
lationship between fuzzy closure systems and closure 
relations.
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