
Mix-subdivision Dynamic Terrain Visualization Algorithm
 

Xiaohui Zhao, Baodi Xie, Depeng Wan, Qingyun Wang 
Department of Computer Sciences, Beijing Institute of Technology 

Beijing, 100081, China 
E-mail:kingzhaoliu@gmail.com 

 
 

Abstract—Dynamic Terrain is becoming more and more 
important in ground-based simulation systems. In military 
simulation systems, craters and ruts can improve the reality. In 
this paper, a dynamic terrain visualization method based on 
quadtree and multi-resolution voxel is presented in order to 
realize the real-time rendering for realistic craters in 
battlefield. Quadtree is selected as our basic data structure and 
mix-subdivided according to the size of the terrain. Scene tree 
is recursive subdivided according to both the distance between 
the node and camera and error criterion. Vertex is removed to 
solve the cracks and linear interpolation to solve popping in 
the algorithm. We also implement the visualization of craters 
through combining our algorithm with the physical model of 
craters based on multi-resolution voxel. The implementation 
results prove that the method are feasible and efficient. 
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I.  INTRODUCTION 

As an important part of Terrain Simulation, Dynamic 
Terrain has become an increasingly important requirement in 
many fields, such as battlefield simulation, military training 
system, games. For Example, in battlefield simulation, we 
usually need simulate craters, tracks of tank, footprints and 
so on. Some simulation systems use picture of crater instead 
of real deformation of terrain surface, it’s simple but it’s 
useless to improve the realistic effect of simulation. So we 
present a method to implement dynamic terrain, especially 
the simulation of crater. 

Based on quadtree, our algorithm part the terrain into a 
series of patches, then subdivide the patch into different 
LOD triangles. Then compute the number of patches the 
terrain has per side. According to the distance from the 
camera eye position to the current patch’s center, every patch 
has corresponding LOD and is broken down into several 
triangles. At the same time, every triangle need keep 
neighbor information, by comparing the LOD of current 
triangle and its neighbor, we omit some vertices to eliminate 
crack between different LOD patch. In order to reduce 
popping, we interpolate several values from old value to the 
current true value. Furthermore, we compute terrain 
deformation by combining multi-resolution voxel with the 
physical model of craters to visualize the craters in the 
terrain. 

In this paper, we mainly introduce optimized CLOD 
terrain algorithm and model of crater-terrain interaction and 
implement the visualization of craters. 

II. PREVIOUS WORK 

Some methods for dynamic terrain have been presented, 
such as ROAM(Real-time Optionally Adapting Meshes), 
QuadTree, GeoMipmap[1], View-Dependent Progressive 
Mesh, DEXTER-ROAM. These algorithms render terrain 
with multi-resolution regular meshes based on some error 
metric criteria.   

Duchaineau[2] present an algorithm for constructing 
triangle meshes that optimizes flexible view-dependent error 
metrics, produces guaranteed error bounds, achieves 
specified triangle counts directly, and uses frame-to-frame 
coherence to operate at high frame rates for thousands of 
triangles per frame. The algorithm uses two priority queues 
to drive split and merge operations that maintain continuous 
triangulations built from pre-processed bintree triangles. The 
algorithm also introduces two additional performance 
optimizations: incremental triangle stripping and priority 
computation deferral lists. ROAM execution time is 
proportionate to the number of triangle changes per frame, 
which is typically a few percent of the output mesh size, so 
ROAM performance is insensitive to the resolution and 
extent of the input terrain. Dynamic terrain and simple vertex 
morphing are supported. But the algorithm is designed to put 
most of the workload on the CPU, so it is not adapted to the 
development of GPU. 

Hoppe[3] presents the progressive mesh representation, 
it’s a new scheme for storing and transmitting arbitrary 
triangle meshes. The representation addresses several 
practical problems in graphics: smooth geo-morphing of 
level-of-detail approximations, progressive transmission, 
mesh compression, and selective refinement. Hoppe also 
presents a new mesh simplification procedure for 
constructing a PM representation from an arbitrary mesh. 

He[4] et al present a method for multi-resolution  view-
dependent real-time display of terrain undergoing on-line 
modification by extending ROAM (Real-time Optimally 
Adapting Meshes) with efficient hierarchy updates as terrain 
deforms, and using DEXTER (Dynamic Extension of 
Resolution) to provide only-where-needed memory efficient 
resolution extension. But their approach only united with 
fake properties of terrain deformation and did not combine 
the physical-based-model of terrain in the real world. They 
only dealt with relatively small scale terrain inputs. 

III. CLOD TERRAIN ALGORITHM 

In order to render terrain fast, we present a multi-
resolution algorithm, based on the data structure of quadtree. 
We combine view-dependent with view-independent 
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Figure 1 Pre-subdivision of the terrain 

 

 
Figure 2 Pre-constructed level tree 

 
Figure 3 Quadtree matrix of a patch 

methods to decide which LOD the terrain block should select 
and subdivide the block to the finest level of detail. Next, we 
remove the Cracks by omitting vertex along the render 
region boundaries and reduce poppings by interpolating 
several values from old value to the current true value. 

A. Data Structure 
We choose quadtree as the basic data structure because 

the tree structure is good for frustum culling. For 
Convenience, we only consider the special case of terrain of 
size (2n+1)*(2n+1), the horizontal and vertical number of 
vertices in the terrain block must be 2n+1.  

We pre-subdivide the total terrain to a series of patches 
evenly. Figure 1 shows the situation when the terrain is 
composed of 4x4 patches(5x5 vertices). The number of the 
patches is concerned with the total terrain size but it had 
better not exceed 17x17 in order to avoid excessive 
subdivision. The preprocessing construct the quadtree from 
root node to log2N level (N is the number of the patches), the 
levels are necessary and static, so the time for constructing 
the tree is reduced because we needn’t construct these levels 
every frame. For example, Figure 2 shows the level 0 to level 
2 are pre-constructed. 

Then, we continue to subdivide every patch unevenly 
according to which level of detail the patch need. The patch 
is represented by part of a 0-1 matrix which is composed of 
every little block’s center entry set. 1 means the block needs 

subdivision, 0 means the oppsite, -1 means nothing. The 
quadtree matrix of a sample triangulation generated is shown 
in Figure 3. 

B. LOD Selection and Rendering 
At run time, we choose appropriate subdivision level for 

every block that represents each part of the terrain to meet 
desired visual effect. In the paper, view-dependent and view-
independent LOD algorithms are both used for terrain 
subdivision and coarsening.  

View-dependent method is related with the distance from 
the center of block to the camera point. The longer the 
distance is, the lower the level is. Formula 1 shows the 
criterion. L is the distance, and d is the edge length of the 
block. C controls the global resolution. 

 
l C
d

<  (1) 

View-independent method is related with the terrain 
surface roughness. The abrupt region has high level while the 
flat region has relative low level. Formula 2 shows the 
criterion. D is the edge length of the block. dh is the 
difference in height between the true elevation and the 
current height of the vertex. i is 1 to 6, represents the six 
points: the four midpoints of the block’s edges and the two 
midpoints of the diagonals. The sum of the six errors 
determines the level of the block. When error > Dn, 
subdivide the block until to the desired resolution. 

 1..6i
dhi

error
d

==


 (2) 

C. Crack and Popping Removal 
During the generation of the triangles we need to decide 

whether adjacent nodes are subdivided to the same level or 
not. When there are different levels between current node 
and its neighboring node, crack appears as Figure 4 shows. 
Instead of adding vertex or line, we use a relative simple 
method by omitting the center vertex at shared edges to 
remove the crack. Figure 5 shows the result. But at the same 
time we must guarantee that the levels of adjacent nodes 
differ by no more than 1. So we use the method in Rottger’s 
paper to get it. 
 

 
Figure 4 Crack 
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Figure 7  Initialization of the voxel 

 

1τ

1τ

1τ

1τ

1τ

1τ1τ

1τ

1τ1τ1τ1τ1τ

1τ

1τ

1τ

1τ

1τ 1τ 1τ 1τ 1τ 1τ

2τ
2τ

3τ
3τ

3τ

3τ3τ

3τ

 
Figure 8 Multi-resolution voxel 

D. Frustum Culling 
The main advantage of the tree data structure relies on 

the fact that if the parent node is culled so the child node 
needn’t be examined any more when frustum culling as 
Figure 6 shows. 

IV. CRATER-TERRAIN MODEL AND VISUALIZATION 

Real terrain usually has many complex properties[5], 
such as rigidity, flowability, compressibility. So we take 
these elements into account when computing the deformation 
of the terrain surface. And we present a terrain model of 
multi-resolution voxel by using a series of voxel to represent 
the terrain. 

The algorithm is: 
a. Get the terrain height data. Initialization the voxel as 

Figure 7 shows. 
b. Detect collision between the object and terrain surface, 

mark the direct and indirect affected block. Subdivide 
the voxel. 

c. Compute the Deformation of the direct affected blocks 
according to different terrain properties. 

d. Distribute certain deformation to indirect affected 
blocks what are in the collision edge. 

e. Using Corrosion calculation to smoothing the surface of 
the transformative edge. 

In step b, we detect collision between the object and 
terrain surface using bounding box. If bounding box of the 
terrain block and bounding box of the object are interactive, 
we mark the terrain block. And then update the height data of 
the block’s vertex according to the deformation computation. 

We classify the blocks into three types according to the 
projection of the object’s bounding box on the terrain block. 
If the projection covers the whole voxel, it’s fully collision 
voxel; if the projection cover the part of the voxel, it’s partly 
collision voxel; as to the no collision voxel, if there are partly 
collision voxel as its neighbor, the voxel is edge voxel. 
Different types of voxel have different resolution as Figure 8 
shows. 

τ2 is the resolution of the fully collision voxel, τ3is partly 
collision voxel’s, τ1is edge voxel’s. 

Travese all the voxel of resolution τ2, get the deformation 
of every voxel,∆y2. The new height of the voxel is computed 
by Formula 3. 

 '
2 2 2y y y= − Δ  (3) 

As to the voxel of resolution τ3, their deformation is 
influenced by both the partly collision of the object and the 
distribution of the neighboring voxel of resolution τ2. So 
their deformation is as Formula 4. 

 '
3 3 3 2y y y k y= − Δ + Δ  (4) 

As to the voxel of resolution τ1, their deformation is 
influenced by the distribution of the neighboring voxel of 
resolution τ3. So their deformation is as Formula 5. 

 '
1 1 3y y k y= + Δ  (5) 

 
Figure 5 The removal of cracks 

 
Figure 6 Frustum Culling 
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Figure 9 Generated terrain 

 
Figure 10 Gireframe presentation 

 
Figure 11 Wireframe crater 

 
Figure 12 Wireframe crater 

After Deformation Distribution, the edge voxel maybe a 
little rough, we smooth the terrain by Corrosion calculation. 
Corrosion calculation reduces the height of the edge voxel 
and distributes them to out neighboring voxel to maintain the 
angle of tilt between neighboring voxels in certain range. 
Angle of tilt between two neighboring voxel V1 and V2 can 
be get by Formula 6. y1 and y2 is the height data, and d is 
the horizontal distance between the center of the two voxel. 

 1 2arctan( )
y y

d
θ −=  (6) 

We set different threshold, θt , for different kind of 
terrain, shown in chart 1. 

TABLE I.  THRESHOLD FOR TERRAIN 

Rock field Sandfield Grassland Snowfield 
0.01 0.8 0.88 1.57 

Repeat to do corrosion calculation until θ≤θt. 

V. RESULT 

All screen shots shown here have been taken from the 
application running on a Intel Core i5 3.10G computer, 2GB 
RAM and NVIDIA GeForce GT 220 graphics card, under 
Windows 7, Visual Studio 2008, OpenGL environment, 
while running smoothly in real time. 

One grassland and crater are simulated on the field 
caused by attack on it. Figure 9 shows the terrain generated 
by the mix-subdivision algorithm, and Figure 10 is the 
corresponding wireframe presentation. We show the crater in 
Figure 11 and Figure 12. The simulation of the application is 
fluent, and it’s realistic. 

The result indicates our method is more accurate and 
efficient the general algorithm based on quadtree. 

VI. CONCLUSION AND FUTURE WORK 

An efficient mix-division terrain CLOD method is 
proposed based on quadtree what enables real-time 
visualization of large-scale terrain. An efficient terrain model  
is also given base on real terrain properties for crater 
interaction.  

As a future possibility, we will balance the overhead 
between CPU and GPU, and optimize our dynamic terrain 
algorithm and physical-based-terrain-model to get more 
realistic simulation. 
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