
Mix-subdivision Dynamic Terrain Visualization Algorithm

Xiaohui Zhao, Baodi Xie, Depeng Wan, Qingyun Wang
Department of Computer Sciences, Beijing Institute of Technology

Beijing, 100081, China
E-mail:kingzhaoliu@gmail.com

Abstract—Dynamic Terrain is becoming more and more
important in ground-based simulation systems. In military
simulation systems, craters and ruts can improve the reality. In
this paper, a dynamic terrain visualization method based on
quadtree and multi-resolution voxel is presented in order to
realize the real-time rendering for realistic craters in
battlefield. Quadtree is selected as our basic data structure and
mix-subdivided according to the size of the terrain. Scene tree
is recursive subdivided according to both the distance between
the node and camera and error criterion. Vertex is removed to
solve the cracks and linear interpolation to solve popping in
the algorithm. We also implement the visualization of craters
through combining our algorithm with the physical model of
craters based on multi-resolution voxel. The implementation
results prove that the method are feasible and efficient.

Keywords-quadtreet; multi-resolution voxel; mix-subdivision;
dynamic terrain

I. INTRODUCTION

As an important part of Terrain Simulation, Dynamic
Terrain has become an increasingly important requirement in
many fields, such as battlefield simulation, military training
system, games. For Example, in battlefield simulation, we
usually need simulate craters, tracks of tank, footprints and
so on. Some simulation systems use picture of crater instead
of real deformation of terrain surface, it’s simple but it’s
useless to improve the realistic effect of simulation. So we
present a method to implement dynamic terrain, especially
the simulation of crater.

Based on quadtree, our algorithm part the terrain into a
series of patches, then subdivide the patch into different
LOD triangles. Then compute the number of patches the
terrain has per side. According to the distance from the
camera eye position to the current patch’s center, every patch
has corresponding LOD and is broken down into several
triangles. At the same time, every triangle need keep
neighbor information, by comparing the LOD of current
triangle and its neighbor, we omit some vertices to eliminate
crack between different LOD patch. In order to reduce
popping, we interpolate several values from old value to the
current true value. Furthermore, we compute terrain
deformation by combining multi-resolution voxel with the
physical model of craters to visualize the craters in the
terrain.

In this paper, we mainly introduce optimized CLOD
terrain algorithm and model of crater-terrain interaction and
implement the visualization of craters.

II. PREVIOUS WORK

Some methods for dynamic terrain have been presented,
such as ROAM(Real-time Optionally Adapting Meshes),
QuadTree, GeoMipmap[1], View-Dependent Progressive
Mesh, DEXTER-ROAM. These algorithms render terrain
with multi-resolution regular meshes based on some error
metric criteria.

Duchaineau[2] present an algorithm for constructing
triangle meshes that optimizes flexible view-dependent error
metrics, produces guaranteed error bounds, achieves
specified triangle counts directly, and uses frame-to-frame
coherence to operate at high frame rates for thousands of
triangles per frame. The algorithm uses two priority queues
to drive split and merge operations that maintain continuous
triangulations built from pre-processed bintree triangles. The
algorithm also introduces two additional performance
optimizations: incremental triangle stripping and priority
computation deferral lists. ROAM execution time is
proportionate to the number of triangle changes per frame,
which is typically a few percent of the output mesh size, so
ROAM performance is insensitive to the resolution and
extent of the input terrain. Dynamic terrain and simple vertex
morphing are supported. But the algorithm is designed to put
most of the workload on the CPU, so it is not adapted to the
development of GPU.

Hoppe[3] presents the progressive mesh representation,
it’s a new scheme for storing and transmitting arbitrary
triangle meshes. The representation addresses several
practical problems in graphics: smooth geo-morphing of
level-of-detail approximations, progressive transmission,
mesh compression, and selective refinement. Hoppe also
presents a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh.

He[4] et al present a method for multi-resolution view-
dependent real-time display of terrain undergoing on-line
modification by extending ROAM (Real-time Optimally
Adapting Meshes) with efficient hierarchy updates as terrain
deforms, and using DEXTER (Dynamic Extension of
Resolution) to provide only-where-needed memory efficient
resolution extension. But their approach only united with
fake properties of terrain deformation and did not combine
the physical-based-model of terrain in the real world. They
only dealt with relatively small scale terrain inputs.

III. CLOD TERRAIN ALGORITHM

In order to render terrain fast, we present a multi-
resolution algorithm, based on the data structure of quadtree.
We combine view-dependent with view-independent

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0352

Figure 1 Pre-subdivision of the terrain

Figure 2 Pre-constructed level tree

Figure 3 Quadtree matrix of a patch

methods to decide which LOD the terrain block should select
and subdivide the block to the finest level of detail. Next, we
remove the Cracks by omitting vertex along the render
region boundaries and reduce poppings by interpolating
several values from old value to the current true value.

A. Data Structure
We choose quadtree as the basic data structure because

the tree structure is good for frustum culling. For
Convenience, we only consider the special case of terrain of
size (2n+1)*(2n+1), the horizontal and vertical number of
vertices in the terrain block must be 2n+1.

We pre-subdivide the total terrain to a series of patches
evenly. Figure 1 shows the situation when the terrain is
composed of 4x4 patches(5x5 vertices). The number of the
patches is concerned with the total terrain size but it had
better not exceed 17x17 in order to avoid excessive
subdivision. The preprocessing construct the quadtree from
root node to log2N level (N is the number of the patches), the
levels are necessary and static, so the time for constructing
the tree is reduced because we needn’t construct these levels
every frame. For example, Figure 2 shows the level 0 to level
2 are pre-constructed.

Then, we continue to subdivide every patch unevenly
according to which level of detail the patch need. The patch
is represented by part of a 0-1 matrix which is composed of
every little block’s center entry set. 1 means the block needs

subdivision, 0 means the oppsite, -1 means nothing. The
quadtree matrix of a sample triangulation generated is shown
in Figure 3.

B. LOD Selection and Rendering
At run time, we choose appropriate subdivision level for

every block that represents each part of the terrain to meet
desired visual effect. In the paper, view-dependent and view-
independent LOD algorithms are both used for terrain
subdivision and coarsening.

View-dependent method is related with the distance from
the center of block to the camera point. The longer the
distance is, the lower the level is. Formula 1 shows the
criterion. L is the distance, and d is the edge length of the
block. C controls the global resolution.

l C
d

< (1)

View-independent method is related with the terrain
surface roughness. The abrupt region has high level while the
flat region has relative low level. Formula 2 shows the
criterion. D is the edge length of the block. dh is the
difference in height between the true elevation and the
current height of the vertex. i is 1 to 6, represents the six
points: the four midpoints of the block’s edges and the two
midpoints of the diagonals. The sum of the six errors
determines the level of the block. When error > Dn,
subdivide the block until to the desired resolution.

 1..6i
dhi

error
d

==


 (2)

C. Crack and Popping Removal
During the generation of the triangles we need to decide

whether adjacent nodes are subdivided to the same level or
not. When there are different levels between current node
and its neighboring node, crack appears as Figure 4 shows.
Instead of adding vertex or line, we use a relative simple
method by omitting the center vertex at shared edges to
remove the crack. Figure 5 shows the result. But at the same
time we must guarantee that the levels of adjacent nodes
differ by no more than 1. So we use the method in Rottger’s
paper to get it.

Figure 4 Crack

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0353

Figure 7 Initialization of the voxel

1τ

1τ

1τ

1τ

1τ

1τ1τ

1τ

1τ1τ1τ1τ1τ

1τ

1τ

1τ

1τ

1τ 1τ 1τ 1τ 1τ 1τ

2τ
2τ

3τ
3τ

3τ

3τ3τ

3τ

Figure 8 Multi-resolution voxel

D. Frustum Culling
The main advantage of the tree data structure relies on

the fact that if the parent node is culled so the child node
needn’t be examined any more when frustum culling as
Figure 6 shows.

IV. CRATER-TERRAIN MODEL AND VISUALIZATION

Real terrain usually has many complex properties[5],
such as rigidity, flowability, compressibility. So we take
these elements into account when computing the deformation
of the terrain surface. And we present a terrain model of
multi-resolution voxel by using a series of voxel to represent
the terrain.

The algorithm is:
a. Get the terrain height data. Initialization the voxel as

Figure 7 shows.
b. Detect collision between the object and terrain surface,

mark the direct and indirect affected block. Subdivide
the voxel.

c. Compute the Deformation of the direct affected blocks
according to different terrain properties.

d. Distribute certain deformation to indirect affected
blocks what are in the collision edge.

e. Using Corrosion calculation to smoothing the surface of
the transformative edge.

In step b, we detect collision between the object and
terrain surface using bounding box. If bounding box of the
terrain block and bounding box of the object are interactive,
we mark the terrain block. And then update the height data of
the block’s vertex according to the deformation computation.

We classify the blocks into three types according to the
projection of the object’s bounding box on the terrain block.
If the projection covers the whole voxel, it’s fully collision
voxel; if the projection cover the part of the voxel, it’s partly
collision voxel; as to the no collision voxel, if there are partly
collision voxel as its neighbor, the voxel is edge voxel.
Different types of voxel have different resolution as Figure 8
shows.

τ2 is the resolution of the fully collision voxel, τ3is partly
collision voxel’s, τ1is edge voxel’s.

Travese all the voxel of resolution τ2, get the deformation
of every voxel,∆y2. The new height of the voxel is computed
by Formula 3.

 '
2 2 2y y y= − Δ (3)

As to the voxel of resolution τ3, their deformation is
influenced by both the partly collision of the object and the
distribution of the neighboring voxel of resolution τ2. So
their deformation is as Formula 4.

 '
3 3 3 2y y y k y= − Δ + Δ (4)

As to the voxel of resolution τ1, their deformation is
influenced by the distribution of the neighboring voxel of
resolution τ3. So their deformation is as Formula 5.

 '
1 1 3y y k y= + Δ (5)

Figure 5 The removal of cracks

Figure 6 Frustum Culling

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0354

Figure 9 Generated terrain

Figure 10 Gireframe presentation

Figure 11 Wireframe crater

Figure 12 Wireframe crater

After Deformation Distribution, the edge voxel maybe a
little rough, we smooth the terrain by Corrosion calculation.
Corrosion calculation reduces the height of the edge voxel
and distributes them to out neighboring voxel to maintain the
angle of tilt between neighboring voxels in certain range.
Angle of tilt between two neighboring voxel V1 and V2 can
be get by Formula 6. y1 and y2 is the height data, and d is
the horizontal distance between the center of the two voxel.

 1 2arctan()
y y

d
θ −= (6)

We set different threshold, θt , for different kind of
terrain, shown in chart 1.

TABLE I. THRESHOLD FOR TERRAIN

Rock field Sandfield Grassland Snowfield
0.01 0.8 0.88 1.57

Repeat to do corrosion calculation until θ≤θt.

V. RESULT

All screen shots shown here have been taken from the
application running on a Intel Core i5 3.10G computer, 2GB
RAM and NVIDIA GeForce GT 220 graphics card, under
Windows 7, Visual Studio 2008, OpenGL environment,
while running smoothly in real time.

One grassland and crater are simulated on the field
caused by attack on it. Figure 9 shows the terrain generated
by the mix-subdivision algorithm, and Figure 10 is the
corresponding wireframe presentation. We show the crater in
Figure 11 and Figure 12. The simulation of the application is
fluent, and it’s realistic.

The result indicates our method is more accurate and
efficient the general algorithm based on quadtree.

VI. CONCLUSION AND FUTURE WORK

An efficient mix-division terrain CLOD method is
proposed based on quadtree what enables real-time
visualization of large-scale terrain. An efficient terrain model
is also given base on real terrain properties for crater
interaction.

As a future possibility, we will balance the overhead
between CPU and GPU, and optimize our dynamic terrain
algorithm and physical-based-terrain-model to get more
realistic simulation.

ACKNOWLEDGMENT

We would like to thank those who give us some advice
and help. We would like to thank Virtual Terrain Project
Website where we get good collections of terrain resources.

REFERENCES
[1] Willem H. de Boer. Fast Terrain Rendering Using Geometrical

MipMapping, 2000

[2] Duchaineau M, Wolinsky M, et al. ROAMing Terrain: Real-time
Optimally Adapting Meshes. In Proceedings of IEEE Visualization
1997, 1997: 81-88

[3] Hoppe H. View-dependent refinement of progressive meshes. In
Proceedings of SIGGRAPH 1997, 1997: 189-198

[4] Huaiqing He, Chong Wang, et al. An Improved Approach on
Visualization of Large-Scale Terrain Surface. In Proceedings of
CGIV, 2007. 2007:481-488

[5] Xingquan,Cai, Jinhong Li, A-Real-time Visualization of Dynamic
Terrain in Off-road Driving Simulation

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0355

