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Abstract

The adoption of triangular fuzzy sets to define
Strong Fuzzy Partitions (SFPs) is a common prac-
tice in the research community: due to their inher-
ent simplicity, triangular fuzzy sets can be easily de-
rived from data by applying suitable clustering algo-
rithms. However, the choice of triangular fuzzy sets
may be limiting for the modeling process. In this
paper we focus on SFPs built up starting from cuts
(points of separation between cluster projections on
data dimensions), showing that a SFP based on
cuts can always be defined by trapezoidal fuzzy sets.
Different mechanisms to derive SFPs from cuts are
presented and compared by employing DC*, an al-
gorithm for extracting fuzzy information granules
from classified data.

Keywords: Strong fuzzy partitions, a-cut, trian-
gular fuzzy sets, trapezoidal fuzzy sets

1. Introduction

The key factor for the success of fuzzy logic is
its ability of modeling perceptions rather than
measurements. In many cases, perceptions can
be expressed in natural language terms: this
makes knowledge expressed in fuzzy logic highly co-
intensive with linguistic concepts; hence, it is easily
interpretable by users. Nevertheless, interpretabil-
ity does not come with fuzzy logic ipso facto: it
must be ensured by a number of structural and se-
mantic constraints. More specifically, while design-
ing an interpretable fuzzy model the data domain
is represented through linguistic variables (usually
one for each data feature); given a linguistic vari-
able, the fuzzy sets associated to each linguistic
term form a fuzzy partition of the data feature. To
ensure interpretability, a number of constraints are
imposed on the fuzzy sets of each fuzzy partition,
like distinguishability, coverage, special elements,
and so on [1].

The fulfillment of many interpretability con-
straints is guaranteed if Strong Fuzzy Partitions
(SFPs) are adopted. Actually, SFPs are not strictly
necessary for satisfying the above mentioned inter-
pretability constraints; however, they are widely
used because they simplify the modeling process as
they usually require few parameters for their defini-
tion.
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Triangular SFPs (TSFPs) are widely used for
modeling interpretable fuzzy systems. They are
characterized by the use of triangular fuzzy sets
to define a fuzzy partition. Triangular fuzzy sets
have a number of desirable properties, which are
useful for interpretability (they are normal, convex
and continuous) as well as for modeling [2]. How-
ever, triangular fuzzy sets have some non-derivable
points: this prevents their use in modeling tech-
niques that use some gradient-based learning tech-
nique to adapt fuzzy sets to available data. In such
cases, usually completely differentiable fuzzy sets
are used, like Gaussian fuzzy sets [3]; however, these
fuzzy sets may not preserve some interpretability
constraints (in particular, the proper ordering of
linguistic concepts). As a consequence, triangular
fuzzy sets are preferred when the modeling process
does not require any gradient-based learning algo-
rithm.

The definition of a TSFP with n fuzzy sets is com-
pletely characterized by n values that correspond
to the prototypes of each fuzzy set: this makes the
design of TSFPs very simple. Usually, the proto-
types are computed by some algorithm that tries to
locate prototypes in order to better represent the
available data. As an example, Hierarchical Fuzzy
Partitioning (HFP) operates an iterative merging
process of triangular fuzzy sets in order to better
fit available data and, simultaneously, reduce the
number of fuzzy sets in a partition [4]. The merg-
ing process of two fuzzy sets is essentially computed
by a weighted mean of the prototypes of the fuzzy
sets to be merged; in this way the number of fuzzy
sets is dynamically determined during the design
process. Other approaches fix the number of trian-
gular fuzzy sets; then the location of prototypes is
determined according to some optimization process
[5] or through evolutionary algorithms [6, 7].

In some cases, fuzzy partitions are designed af-
ter a clustering analysis of multidimensional data.
This approach enables the discovery of multidimen-
sional relationships among data, which can be con-
veniently represented as fuzzy rules [8]. To ensure
interpretability, clusters are usually projected on
each input feature, where fuzzy sets are defined so
as to resemble as much as possible the projected
clusters [9, 10]. Often, prototype-based clustering is
used (like fuzzy c-means or similar): in these cases
the prototypes of multidimensional clusters are pro-
jected on each input feature and could serve as pro-
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Figure 1: Example of fuzzy partition obtained from
cuts ¢y, co, 3, 4.

totypes of the fuzzy sets in a partition [11]. How-
ever, the simple use of multidimensional prototypes
does not give enough information about the span
of clusters within the data domain. For such rea-
son, an alternative approach makes use of cuts, i.e.
points of separation between clusters projected onto
input features [12].

Cuts can be conveniently used to define the
bounds of the 0.5-cuts of the fuzzy sets in a fuzzy
partition!. More specifically, given a collection of
cuts, a SFP can be defined so that the 0.5-cuts of
the fuzzy sets in the partition coincide with the in-
tervals bounded by the cuts (see fig. 1). Since the
0.5-cut of a fuzzy set is the set of elements that
are most representative for the fuzzy set, then a
SFP based on cuts is a robust representation of the
projections of multidimensional clusters on an input
feature.

In this paper we show that a SFP based on cuts
cannot be always defined by triangular fuzzy sets.
The consequences of this result impact on the flex-
ibility of modeling approaches based on triangular
fuzzy sets: imposing the use of this type of fuzzy
sets restricts the possibilities of representing multi-
dimensional relationships in an interpretable way.

In fact, the use of triangular fuzzy sets repre-
sents a further bias —which is not motivated by any
interpretability requirement— to be added to the
structural constraints that are already taken into
account while designing a fuzzy model (as known,
such constraints ultimately impose the requirement
of a balance between interpretability and accuracy).
In other words, the flexibility connected to a model-
ing process based on the employment of SFPs may
be restricted by confining the choice of fuzzy sets to
the triangular category.

As a consequence, interest should be shifted to-
wards a more relevant issue concerning the possi-
bility to define SFPs based on cuts. In this pa-
per we show that this is feasible by resorting to
trapezoidal fuzzy sets. Trapezoidal fuzzy sets are
widely used for modeling interpretable fuzzy sys-
tems [7, 3, 13, 14, 15]; however, in most cases trape-
zoidal fuzzy sets require more parameters than tri-
angular fuzzy sets. Such parameters need to be
tuned according to some heuristic optimization pro-

IThe 0.5-cut of a fuzzy set is the (crisp) set of all elements
with membership degree greater or equal to 0.5.
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cess like genetic algorithms. The procedures we
show in this paper do not need free parameters be-
cause trapezoidal fuzzy sets are defined given a col-
lection of cuts only. In this way there is no need of
further optimization processes beyond the cluster-
ing process that produced the cuts.

In the next Section, we provide a formal proof
that triangular fuzzy sets cannot always be used to
define SFPs given a set of cuts. Then we define
a procedure to define SFPs based on trapezoidal
fuzzy sets. In Section 3 we illustrate some examples
of SFPs based on trapezoidal fuzzy sets that are
derived through DC* —an algorithm for generating
interpretable fuzzy partitions by using cuts— and
we compare them with triangular SFPs. Some final
notes are reported in Section 4.

2. Generation of Strong Fuzzy Partitions
from cuts

A SFP is a collection? of fuzzy sets Ay, Aa, ..., Api1
defined on a Universe of Discourse X = [m, M] C R
such that:

n+1
VxeX:ZAi(x)zl

=1

(1)

A triangular fuzzy set is denoted by
Tl p,7]
where:

e [ is the leftmost bound of its support;

e p is the element of its core (also called proto-
type);

e 7 is the rightmost bound of its support.

The membership function of a triangular fuzzy set
can be conveniently defined as a case-based func-
tion:

T[l,p,r)(z) = (2)

A triangular fuzzy set is well-formed if and only if

(3)

A Triangular Strong Fuzzy Partition (TSFP) is a
SFP made with triangular fuzzy sets only®. A TSFP
made of n+ 1 fuzzy sets is completely characterized
by n — 1 parameters p; for i = 2,3,...,n. In fact,
the triangular fuzzy sets of a TSFP can be defined
as

I<p<r

T[pi—1,Di, Pit1)

2We assume that the collection is sorted, so that it is
legitimate to refer to the i-th fuzzy set in a SFP.

3Exceptionally, trapezoidal fuzzy sets can be defined as
leftmost and rightmost fuzzy sets. However, this case can be
safely ignored in the present argumentation.



fori=1,2,...,n+1 with the convention that pg =
p1=m and ppy1 = Ppy2 = M.

Given an element x € X, at most two fuzzy sets
have non-zero membership in a TSFP: these fuzzy
sets are said adjacent. Furthermore, since triangu-
lar fuzzy sets are convex, their a-cuts are intervals.
Given the constraint (1) of a SFP, it is immediate
to verify that the 0.5-cuts of two adjacent fuzzy sets
in a TSFP are also adjacent (in the sense of sharing
one and only one intersection point).

Let t1,t2,...,t, € X a sequence of cuts, where
t; < tiyp fori =1,2,...,n — 1. In order to design
a SFP based on cuts, each cut corresponds to an
intersection point between two adjacent fuzzy sets
in a SFP; as a consequence, n cuts correspond to the
intersection points of n + 1 fuzzy sets in a SFP. (An
intersection point between two fuzzy sets is a point
in X where both fuzzy sets have the same non-zero
membership, see also fig. 1.)

In the following we show that it is not always
possible to build a TSFP of n + 1 fuzzy sets given
an arbitrary set of n cuts. We prove this by at-
tempting to build a TSFP and then we highlight
the conditions that prevent the definition of well-
formed triangular fuzzy sets. The reader can refer
to fig. 2 as an illustrative example of the proof.

We suppose that a triangular fuzzy set
T[li—1,pi—1,7i—1] is defined so that

T[li—1,pi—1,7i-1](ti—1) = 0.5

and
T(li—1,pi—1,7i—1)(t;) = 0.5

The membership values on t;_; and ¢; constrain the
parameters [;_1 and r;_1. In particular, the param-
eter r;_1 can be obtained by applying the case-based
definition of a triangular fuzzy set, resulting in
7151‘ — T =05=r,_1 =2t — Pi—1
Pi—1 —Ti-1

The next triangular fuzzy set T'[l;, p;, r;] must be
defined so as to satisfy the constraints (1) of a SFP.
The parameters of the membership function must
be therefore defined as

li =pi—1
and
Di =71 =2l; —pi_1
while r; is defined such that

liy1 — 14
Pi =T

0.5 =

ie.
ry =2 (ti-i-l — tl’) +Di—1
In order to assure well-formedness (3), the rela-
tion
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Figure 2: A sequence of cuts that prevents the gen-
eration of a well-formed triangular fuzzy set (red
dashed line).

must hold. It is easy to show that this relation is
true if and only if

tit1 22t —pic1 =Ti1 (4)

Therefore, if the cuts used for partitioning do not
verify (4), it is not possible to define well-formed
triangular fuzzy sets.

This result has a strong impact on interpretable
fuzzy modeling. In fact, if we denote by T the col-
lection of all possible sets of cuts on X, and by P
the set of all TSFPs, then relation (4) states that it
is not possible to define a bijective mapping from T
to P. On the other hand an injective mapping from
P to T is trivial: given a TSFP, the set of cuts can
be defined by selecting all the intersection points
between triangular fuzzy sets. Therefore, the set T
is richer that P, thus any algorithm that carries out
a collection of cuts is potentially more flexible and
less biased than an algorithm that produces triangu-
lar SF'Ps.

2.1. Generation of Trapezoidal SFPs

Is it possible to derive a SE'P given a set of cuts, i.e.
given an element of T? The answer is affirmative if
we resort to trapezoidal fuzzy sets instead of trian-
gular fuzzy sets. In the following we show some pro-
cedures to derive a SFP made of trapezoidal fuzzy
sets given a collection of cuts on X.

First, we recall the definition of a trapezoidal
fuzzy set:

=2z €la,bf
1
Tlabed(@=1{", *<kd (5)
=9 z€led
0 r<aVz>d

A trapezoidal fuzzy set is well formed if the rela-
tions
a<b<e<d

hold. Any triangular fuzzy set is a trapezoidal fuzzy
set when

a=INb=c=pAd=r

therefore it is possible to qualify a fuzzy set as trape-
zoidal even if its actual shape is triangular.



A SFP made of trapezoidal fuzzy sets A; =
T la;, biyciydi], i =1,2,...,n+ 1, requires that

Air1 = C;
and

biy1 =d;
fori=1,2,...,n, as well as

a1:b1:m

(6)

Cny1 = dn+1 =M

In this paper we present three approaches for
designing trapezoidal SFPs. The first one (called
“Constant Slope”) defines trapezoidal fuzzy sets
with the same slope (in absolute value). This is the
simplest approach as it does not require additional
knowledge for the design of a SFP. The second ap-
proach, called “Variable Fuzziness” is based on the
idea that fuzzy sets with a large support are more
imprecise than fuzzy sets with a small support. Asa
consequence, the slope of the trapezoidal fuzzy sets
is defined according to the distance between two ad-
jacent cuts. Finally, the third approach extends the
second one by requiring an additional set of “Core
Points”, i.e. points in the domain that must belong
to the core of a fuzzy set. This approach can be used
when it is a-priori known that some points are rep-
resentative of some concepts to be fully represented
by linguistic terms.

2.1.1. Constant slope

Given a set of cuts ty,ts2,...,t, € X it is possible
to define a SFP made of trapezoidal fuzzy sets by
applying the following procedure. First, the differ-
ences between cuts

Aj=tiy1—t;
are computed for ¢ = 0,1,...,n, with the conven-
tion that

to =2m — tq
and

o1 = 2M —t,

Then, the smallest difference

A, =min{A;]i=0,1,...,n}

imin
is selected with the corresponding index iyi,. (More
than one index may verify this relation: in such a
case the first index is selected.)

By definition, the interval [t;,.,%im+1] IS the
most specific among all intervals [t;,¢;41]. There-
fore, the most specific fuzzy set is defined, which is
triangular and defined by the following parameters:

b = = Dmntl Fling

Tmin tmin 2
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and
. _ 2t b _ 3timin B timin""1
a‘7fmin - tmin  Jlmin
2
and
4 — 9 B L
imin = “Vimin+1l = Cimin = 2

The slopes of the oblique segments in the trian-
gular fuzzy set have the same magnitude but oppo-
site signs. In particular, the ascending segment has
slope

. 1 B 1

=y =

Tmin

Vimin+1 = ligin

imin
while the descending segment has slope

1 1
- _ — _+
P d P

Cimin —

Tmin imin Tmin+1

We use the slopes pt and p~ to define the remain-
ing fuzzy sets. By construction, the use of these
slopes assures that all trapezoidal fuzzy sets are
well-formed. In fact, higher slopes (in magnitude)
could be also used, while lower slopes may hamper
the well-formedness of the trapezoidal fuzzy sets.

Given a cut t;, i = 1,2,...,n, the following pa-
rameters are defined:

. 1
iyl =4 — 5
+1 2"
1
bz‘+1:ti+2’j
t; + L
CGi=ti+ 5= =a;
2p~ 1
1
di:ti—izbi
2 +1

Finally, the leftmost and rightmost fuzzy sets are
defined so as to be trunked at the extreme points of
X. Therefore

a1:b1:m

and
Cn1 =dpy1 =M

It is easy to verify that a; < b; and ¢; < d; for
each i = 1,2,...,n + 1. Well-formedness of the
trapezoidal fuzzy sets can be thus checked by veri-
fying that b; < ¢; for each i = 1,2,...,n+ 1. We
suppose, by contradiction, that b; > ¢;. By con-
struction, this means that

t + 1 >t + L = L
1—1 2p+ 7 2p_ — U3 2p+
which is equivalent to
1
+
pr< 0
ti —ti—1
ie.
A > Ay

which is absurd by definition of A

tmin *



2.1.2. Variable fuzziness

This approach is based on the idea that the fuzzi-
ness of a fuzzy set in a partition is dependent on the
amplitude of the interval between two cuts. In par-
ticular, the smaller is such amplitude, the sharper
are the related fuzzy sets. Fuzziness can be quan-
tified through the notion of entropy measure [16];
however it is easy to verify that fuzziness is related
to the slopes of the trapezoidal fuzzy sets, so that
high slopes lead to sharp fuzzy sets and vice versa.

The procedure for generating the trapezoidal
fuzzy sets works as follows: for eachi =0,1,...,n—
1 the values A; and A;;; are compared and the
shortest is selected. (Here, ty is set to m and t,41
is set to M to make the selection coherent with the
idea underlying this approach.)

If A; < Aj41 then the descending part of the
fuzzy set A;11 is defined by a membership function
that is highest at the center of A; and gets the value
0.5 at t;41. Formally this requires that

ti +tiv

Ci+1 = B)

and
dit1 = 2tit1 — ciy1

As a consequence, the ascending part of the fuzzy
set A;yo is defined accordingly:

Qi42 = Cit1

and

bive = dit1
By construction, it is verified that b;4o will be
smaller than the midpoint of A;y;, thus guaran-
teeing well-formedness of the trapezoidal fuzzy set.

If A; > A;41 the scheme is inverted and the as-
cending part of A;,9 is first defined by setting

tig1 +tigo

bityo = 5

and
Qiyo = 2t — bigo
Then, the descending part of A, 1 is defined accord-
ingly:
Ci+1 = Qi42
and
diy1 = bit2

Finally, the undefined parts of the leftmost and
rightmost fuzzy set are set as in (6).

2.1.3. Core points

This approach exploits additional information to de-
fine the SFP. In particular, it is assumed that in
each interval between two cuts a finite and non-
empty set of points P; C [t;,t;11] is available, with

428

the constraint that such points must belong to the
core of the corresponding fuzzy set in the partition?.
The procedure for generating the trapezoidal
fuzzy sets is similar to that defined for variable
fuzziness. More specifically, for each P; the mini-
mum and maximum elements are considered, i.e.

min

P =min P;
and
P = max P;

Furthermore, the distances between such points and
the cuts are considered:

max

51 = ¢, — pi

and
right min
o =p;

fori=1,2,...,n. .
For each i the values of 61 and 6" are com-
pared: if 6 < 578" then

max
Ai+1 = Ci = Pi—q

and
bip1 =d; =2t —¢;
otherwise '
di = bit1 =pi™"
and

Ci = ;41 = 2t; — b1
3. Example: DC*

One of the algorithms that uses cuts to generate
fuzzy partitions from data is DC* (Double Cluster-
ing with A*) [17, 18]. In this Section we give a brief
outline of DC* and then we present some results on
the use of DC* along with the different approaches
for generating SFPs.

3.1. Outline of DC*

DC* (Double Clustering with A*) is an algorithm
conceived for extracting interpretable fuzzy infor-
mation granules from classified data. Such informa-
tion granules are represented through interpretable
fuzzy partitions and can be used to define a set of
fuzzy classification rules.

In essence, DC* works in three consecutive steps.
In the first step, a collection D of classified data in
a multi-dimensional domain

X = [ml,Ml] X e X [md,Md]

is compressed through a vector quantization algo-
rithm. (LVQ1 [19] is used in the current version of
DC*.) The resulting codebook

p17p27"'pc€X

4The core of a fuzzy set is the (crisp) set of all elements
with full membership.



consists of ¢ multi-dimensional classified prototypes.
(The parameter c is user-selected.) All the proto-
types are projected onto each dimension, so that for :
dimension h, c classified one-dimensional prototypes

Phi,Ph2s - - - Phe € [, Mp] R

are available.

In the second step, DC* operates a clustering pro- o2
cess of one-dimensional prototypes in all dimensions
simultaneously. The objective of this clustering pro-
cess is to carry out a set of cuts SD1

thi,tho, .- thn € [mp, Mp) .

for each dimension so that any interval [ty i, th,i+1] o0
includes one-dimensional prototypes of the same
class. Furthermore, the hyper-bozes

[t1ins b +1] X [F2gs tasin 1] X oo X [tasigs tdyig+1]

include multi-dimensional prototypes of the same o
class only. (The number of such prototypes can be
zero.) Finally, the number of hyper-boxes contain-
ing prototypes is minimal. To achieve this com-
plex objective, the clustering of the projections ad-
dressed in the second step is defined as a combina-
torial optimization problem, which is faced by re-
sorting to the A* search algorithm [20].

DC*, therefore, stands as a convenient approach
to produce data clustering making use of cuts,
represented by the midpoints between two adja-
cent projections of prototypes belonging to differ-
ent classes. Furthermore, DC* produces a num-
ber of core-points, which correspond to the one-
dimensional prototypes and are directly related to
the compressed representation of data.

The optimal configuration of cuts identified by
DC* represents the starting point for a modeling
procedure devoted to define a SFP for each input
feature based on trapezoidal fuzzy sets®, which cor-
responds the the last step of DC*. Furthermore,
the inherent working engine of DC* is oriented to
produce additional pieces of information, namely
the prototypes identified by the LVQ1 algorithm.

Therefore, DC* represents a suitable procedure to Sh4
design SFP based on cuts and core points (in line
with the approach described in Section 2.1.3). : T
y o i
3.2. Simulation on numerical data . ‘:Agﬁ ﬁ“:‘ o
s

We recently evaluated DC* with HFP on a num-
ber of benchmark datasets for the sake of com-
parison; we observed that, on the average, DC*
exhibits a superior behaviour in terms of accu-
racy /interpretability tradeoff [21]. The objective
of this simulation, instead, is to evaluate the DC* SD5
behaviour when different strategies for generating
SEPs are adopted. Actually, the current version of

Figure 3: The synthetically generated datasets
adopted for the numerical simulation.

5The original version of DC* produced Gaussian fuzzy
sets.
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Table 1: DC* classification error (percentage val-
ues) when different strategies are applied to gener-
ate fuzzy partitions for each of the five datasets.

SD1  SD2 SD3 SD4  SD5

CS 17.50 11.75 16.50 13.50 8.00
VF 11.00 7.00 11.00 6.50 3.50
CP 9.00 700 875 475 3.00
TSFP 44.00 9.50 17.75 9.00 4.50
TO.5-cuts | 20.50 16.50 18.00 19.50 18.50

DC* adopts the variable fuzziness approach to de-
rive trapezoidal SFPs, but it can be easily modified
to generate SFPs with all the strategies that have
been presented in the previous section.

To this aim, we used a set of synthetically gener-
ated datasets: one of them (SD1) consists of 200 bi-
dimensional examples, the other four datasets (SD2,
SD3, SD4, SD5) consist of 400 bi-dimensional exam-
ples. In each case, the samples belong to 3 different
classes. The datasets are depicted in fig. 3.

DC* has been employed to process the data. The
initial clustering has been performed considering 24
multi-dimensional prototypes for SD1 and 48 multi-
dimensional prototypes for SD2-SD5. (The proto-
types are proportionally distributed according to
the number of samples for each class.) The final
fuzzy partitions have been derived by alternatively
applying the previously described procedures: Con-
stant Slope (CS), Variable Fuzziness (VF) and Core
Points (CP). Additionally, two more strategies have
also been tested, oriented to the generation of tri-
angular fuzzy partitions. In the first case (TSFP),
SEPs have been obtained by partially exploiting the
information coming from cuts: the design of the tri-
angular fuzzy sets is such that their core points cor-
respond to the midpoints of the intervals defined by
the cuts. In the second case (T0.5-cuts), the trian-
gular fuzzy sets are shaped so that the membership
values in {1, ...,t, are set at 0.5. (As shown in sec-
tion 2, the latter mechanism leaves no guarantee to
derive a SFP for sure.)

Table 1 reports the performance (in terms of
percentage of classification error) of DC* for each
adopted strategy. It can be verified that for each
dataset the best performance is attained by apply-
ing the Core Points strategy. In general, resorting
to triangular fuzzy partitions means a deterioration
in the classification error values.

More interestingly, fig. 4 depicts the different
fuzzy partitions produced by DC* when the above
mentioned strategies are applied. We show here
the configurations related to the clustering pro-
cesses performed over one of the synthetic datasets
(namely, SD4); for the sake of conciseness, only one
input feature is considered in the figures. It is im-
portant to highlight how the choice for a triangu-
lar fuzzy partition forced to express a 0.5 value at
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the cuts points gives rise to a configuration which
does not satisfy the SFP conditions. On the other
hand, the fuzzy partion provided through the CP
approach gives a tangible idea on the fuzziness of the
linguistic terms in accordance with the core points
provided by DC*: it is apparent that fuzziness is
acceptable in the right side of the Universe of Dis-
course, while crisper linguistic terms are required to
discriminate data in the center and left side.

4. Conclusions

The definition of fuzzy partition represents a key
issue for designing interpretable fuzzy models since
fuzzy partitions are often required to fulfill several
interpretability constraints. In this sense, Strong
Fuzzy Partitions (SFPs) are commonly adopted as a
reliable tool to design interpretable models, and tri-
angular SFPs are often preferred because they can
be easily derived through some clustering mecha-
nism performed over the available data.

In this paper we considered a particular approach
for defining SFPs which is based on cuts, that are
points of separation between cluster projections on
data dimensions. We dealt with the problem of
identifying the proper shape of fuzzy sets while gen-
erating SFPs from cuts, highlighting how the choice
of triangular fuzzy sets represents an additional bias
for the modeling process which can be conveniently
removed by resorting to trapezoidal fuzzy sets.

Through some numerical simulations that make
use of DC* a cut-based algorithm for generating
fuzzy partitions, we showed that the use of trape-
zoidal fuzzy sets enables the derivation of highly
interpretable fuzzy partitions that are more accu-
rate than triangular fuzzy partitions in classification
tasks.
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