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Abstract. As the relative humidity varies from high to
low values in the atmosphere, particles containing organic
species and inorganic salts may undergo liquid–liquid phase
separation. The majority of the laboratory work on this sub-
ject has used ammonium sulfate as the inorganic salt. In the
following we studied liquid–liquid phase separation in parti-
cles containing organics mixed with the following salts: am-
monium sulfate, ammonium bisulfate, ammonium nitrate and
sodium chloride. In each experiment one organic was mixed
with one inorganic salt and the liquid–liquid phase separa-
tion relative humidity (SRH) was determined. Since we stud-
ied 23 different organics mixed with four different salts, a
total of 92 different particle types were investigated. Out of
the 92 types, 49 underwent liquid–liquid phase separation.
For all the inorganic salts, liquid–liquid phase separation was
never observed when the oxygen-to-carbon elemental ratio
(O : C) ≥ 0.8 and was always observed for O : C < 0.5. For
0.5≤ O : C < 0.8, the results depended on the salt type. Out
of the 23 organic species investigated, the SRH of 20 or-
ganics followed the trend: (NH4)2SO4 ≥ NH4HSO4 ≥ NaCl
≥ NH4NO3. This trend is consistent with previous salting
out studies and the Hofmeister series. Based on the range of
O : C values found in the atmosphere and the current results,
liquid–liquid phase separation is likely a frequent occurrence
in both marine and non-marine environments.

1 Introduction

A large fraction of atmospheric particles contain both or-
ganic material and inorganic salts (Murphy et al., 1998, 2006;
Zhang et al., 2007; Pratt and Prather, 2010). The number of
possible inorganic salts is relatively small with ammonium
sulfate, ammonium bisulfate, ammonium nitrate and sodium
chloride thought to be important (Finlayson-Pitts and Pitts,
2000; Seinfeld and Pandis, 2006). In contrast, the number of
organic species can be in the 100s to 1000s (Hamilton et al.,
2004; Goldstein and Galbally, 2007) while only around 10 %
of these organic species have been identified at the molecular
level (Hallquist et al., 2009).

As the relative humidity cycles in the atmosphere, par-
ticles containing a mixture of organic material and inor-
ganic salts can undergo a range of phase transitions includ-
ing deliquescence, efflorescence and liquid–liquid phase sep-
aration (Martin, 2000; Clegg et al., 2001; Brooks et al.,
2002; Pankow, 2003; Braban and Abbatt, 2004; Erdakos and
Pankow, 2004; Marcolli and Krieger, 2006; Erdakos et al.,
2006a; Chang and Pankow, 2006; Anttila et al., 2007; Bua-
jarern et al., 2007a; Ciobanu et al., 2009; Zuend et al., 2010;
Bertram et al., 2011; Reid et al., 2011; Song et al., 2012a).
Knowledge of these phase transitions is required for predict-
ing the roles of aerosol particles in air quality and climate.
For example partitioning of organic molecules between the
gas and particle can depend on the phase of atmospheric par-
ticles (Chang and Pankow, 2006; Zuend et al., 2010). Parti-
cle phase can also influence the reactive uptake of gas-phase
species, the optical properties of particles, and ice nucleation
properties of particles, all of which can influence air quality
or climate (Martin, 2000; Adams et al., 2001; Zuberi et al.,
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2002; Folkers et al., 2003; Thornton et al., 2003; Martin et
al., 2004; Abbatt et al., 2006; Anttila et al., 2006; Forster et
al., 2007; Riemer et al., 2009; Escoreia et al., 2010; Wise et
al., 2010; You et al., 2012).

Many studies on phase transitions of mixed organic-
inorganic salt particles of atmospheric relevance have fo-
cused on deliquescence and efflorescence (see for example
Brooks et al., 2002, 2003; Choi and Chan, 2002; Chan and
Chan, 2003; Wise et al., 2003; Braban and Abbatt, 2004;
Pant et al., 2004; Parsons et al., 2004a, 2006; Badger et al.,
2006; Marcolli and Krieger, 2006; Salcedo, 2006; Ling and
Chan, 2008; Treuel et al., 2009; Bertram et al., 2011; Smith
et al., 2012). These studies have shown that when liquid–
liquid phase separation does not occur, the addition of or-
ganics to inorganic salts lowers the deliquescence and efflo-
rescence relative humidities of the salts. As a result, some
atmospheric particles may remain in a single homogeneous
liquid state for the full range of relative humidities found in
the atmosphere.

More recent studies on phase transitions of mixed organic-
inorganic salt particles of atmospheric relevance have fo-
cused on liquid–liquid phase separations (Clegg et al., 2001;
Pankow, 2003; Marcolli and Krieger, 2006; Chang and
Pankow, 2006; Erdakos et al., 2006b; Anttila et al., 2007;
Buajarern et al., 2007a, b; Ciobanu et al., 2009; Kwamena et
al., 2010; Zuend et al., 2010; Prisle et al., 2010; Bertram et
al., 2011; Smith et al., 2011, 2013; Reid et al., 2011; Song et
al., 2012a, b; You et al., 2012). The majority of the labora-
tory work on this subject has used ammonium sulfate as the
inorganic salt.

In the following we studied liquid–liquid phase separa-
tion in particles containing organics mixed with the follow-
ing salts: ammonium sulfate, ammonium bisulfate, ammo-
nium nitrate and sodium chloride. In each experiment one or-
ganic was mixed with one inorganic salt and the liquid–liquid
phase separation relative humidity (SRH) was determined.
Since we studied 23 different organics mixed with four dif-
ferent salts, a total of 92 different particle types were inves-
tigated. These studies provide insight into the effect of salt
type on liquid–liquid phase separation in atmospheric parti-
cles.

2 Experimental

Shown in Table 1 is the list of the organics studied. The or-
ganics investigated had a wide range of oxygen-to-carbon el-
emental ratios (O : C) (from 0.29 to 1.33), covering the most
of the range of O : C often observed in atmospheric particles
(approximately 0.1 to 1.0) (Aiken et al., 2008; DeCarlo et
al., 2008; Chen et al., 2009; Jimenez et al., 2009; Hawkins
et al., 2010; Heald et al., 2010; Ng et al., 2010; Takahama et
al., 2011). The organic species studied herein also included
several functional groups observed in atmospheric samples
(e.g. carboxylic acids, alcohols, esters, ethers and aromat-

ics) (Rogge et al., 1993; Saxena and Hildemann, 1996;
Finlayson-Pitts and Pitts, 1997; Decesari et al., 2006; Se-
infeld and Pandis, 2006; Day et al., 2009; Gilardoni et al.,
2009; Hallquist et al., 2009; Liu et al., 2009; Russell et al.,
2009, 2011; Fu et al., 2011; Takahama et al., 2011).

All organic compounds studied herein were purchased
from Sigma-Aldrich with purities≥ 98 %, with the excep-
tion of suberic acid monomethyl ester and 1,2,6-hexanetriol,
which were purchased from Sigma-Aldrich with a purity of
97 %, and glycerol, which was obtained from Thermo Fisher
Scientific with a purity of 99.9 %. All organics were used
without further purification.

The organic-to-inorganic mass ratio (OIR) in the particle
was fixed at 2.0± 0.1 for most of the experiments. This value
is in the range of OIR values observed in many field studies
(Zhang et al., 2007; Jimenez et al., 2009). In addition, pre-
vious research using solutions or particles containing organ-
ics mixed with ammonium sulfate suggest that SRH often
is not dependent on the OIR for a wide range of OIR val-
ues (Ciobanu et al., 2009; Bertram et al., 2011; Song et al.,
2012a, b). As an example, Bertram et al. (2011) investigated
the effect of OIR on SRH in eleven different types of par-
ticles containing organics and ammonium sulfate. For eight
out of the eleven systems investigated, the SRH varied by less
than 6 % for OIR values ranging from 0.1 to 10. As another
example, Song et al. (2012b) measured SRH in particles con-
taining ammonium sulfate and up to ten organics with OIR
ranging from 0.17 to 2. The results of that study showed that
for nine out of the fourteen systems that underwent liquid–
liquid phase separation, the SRH varied by less than 15 % as
the OIR varied from 0.17 to 2.

Particles were generated by nebulizing (Meinhard) a so-
lution of one organic compound and one salt, prepared in
high-purity water (Millipore, 18.2 M� cm) or in a mix-
ture of water and methanol if the water solubility of the or-
ganic compound was less than 1 weight/weight %. The par-
ticle stream from the nebulizer was directed at a hydropho-
bic slide surface. As the droplets impacted on the slide sur-
face, they coagulated into supermicron droplets. The water
or the water/methanol mixture was then evaporated to gen-
erate organic-inorganic salt particles with lateral dimensions
ranging from 10 to 35 µm.

The only two organic species that had a solubility of less
than 1 % (weight/weight) in water were liquid diethyl seba-
cate and liquid suberic acid monomethyl ester. Based on this
solubility information, liquid–liquid phase separation is ex-
pected for these species even without the presence of a salt at
roughly≥ 99 % RH.

The glass slide was mounted to a temperature and rela-
tive humidity controlled flow cell, which was coupled to an
optical reflectance microscope (Zeiss Axiotech; 50× objec-
tive) (Koop et al., 2000; Parsons et al., 2004b; Pant et al.,
2006; Bodsworth et al., 2010). The temperature of the cell
was held constant at 290± 1 K in all the experiments de-
scribed here. To control the relative humidity in the flow cell,
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a combination of dry and humidified nitrogen gas was con-
tinuously passed through the cell. The total flow rate was
approximately 1.5 L min−1. The relative humidity of the gas
was determined using a chilled mirror hygrometer (General
Eastern), which was calibrated by measuring the deliques-
cence relative humidity of ammonium sulfate particles.

At the beginning of an experiment, the RH in the flow cell
was first set to nearly 95 % and particles were allowed to
equilibrate for about 15 min. The RH was then ramped down
at a rate of 0.4–0.6 % min−1, and images of the particles were
captured approximately every 10 s until one of the following
conditions occurred: liquid–liquid phase separation was ob-
served, the particles effloresced, or an RH of≤ 0.5 % was
reached. For each different type of organic-inorganic salt par-
ticle, experiments were repeated at least three times. Roughly
5 particles were monitored in each experiment. For particles
containing diethyl sebacate or suberic acid monomethyl es-
ter, experiments started at RH= 100± 2.5 % since the RH
of liquid–liquid phase separation was greater than 95 %.

While the RH was decreased, liquid–liquid phase separa-
tion could be identified from the recorded images. To illus-
trate this point we have included images and movies of par-
ticles containing 2-methylglutaric acid mixed with different
inorganic salts as the relative humidity was decreased (Fig. 1
a–d and Movies S1–S4). The images and movies show that
all particle types containing 2-methylglutaric acid at an OIR
of 2.0± 0.1 underwent liquid–liquid phase separation.

3 Results and discussion

3.1 Effect of H : C (hydrogen-to-carbon elemental
ratio), O : C, and inorganic salt type on
liquid–liquid phase separation

Listed in Table 2 are the measured SRH values for the dif-
ferent particle types investigated. Out of 92 particle types,
49 underwent liquid–liquid phase separation between 100 %
and ≤ 0.5 % RH. These results are summarized in Fig. 2,
which shows the dependence of observed liquid–liquid phase
separation on the O : C and H : C (hydrogen-to-carbon ele-
mental ratios) of the organic components of the particles. No
trend with H : C is apparent for any of the salts studied. How-
ever, a trend with O : C is apparent: for all salts, liquid–liquid
phase separation was never observed for O : C≥ 0.8 and was
always observed for O : C < 0.5. For 0.5≤ O : C < 0.8, the re-
sults depended on the salt type. For ammonium sulfate, phase
separation was always observed for 0.5≤ O : C < 0.57 and
phase separation was frequently observed for 0.57≤ O : C
< 0.8. For the other three salts, phase separation was fre-
quently observed for 0.5≤ O : C < 0.8.

To further investigate the effect of O : C on liquid–liquid
phase separation, the measured SRH values are plotted as a
function of O : C in Fig. 3. The solid curves in the figure are
fits to all the data using a Sigmoidal–Boltzmann function.

Fig. 1. Optical images and illustrations of particles containing 2-
methylglutaric acid and one of the inorganic salts with OIR= 2.0±

0.1. Shown in the images and illustrations are the relative humidi-
ties at which the images were recorded. The inorganic salts studied
were ammonium sulfate in row(a), ammonium bisulfate in row(b),
sodium cholride in row(c), and ammonium nitrate in row(d). The
diameter of the particles shown ranged from 28 to 34 µm.

Following Song et al. (2012b), the Sigmoidal–Boltzmann
function was chosen to avoid physically unrealistic values at
both low and high O : C values. Many of the systems in which
phase separation was observed (i.e. SRH-values > 0 %) lie
above the fit line since the curve was fit to both zero and
non-zero SRH values. Alternatively we could have fit only
the non-zero SRH values, but this would give extra weight
to cases where phase separation was observed. The results
of the fits are given in Table 3. The fit to the ammonium
sulfate SRH-data is qualitatively consistent with fits previ-
ously reported in the literature for ammonium sulfate SRH-
data (Bertram et al., 2011; Song et al., 2012b).

Although the results for each inorganic salt do not fall per-
fectly on the fit curves in Fig. 3, a correlation between O : C
and SRH is observed. This suggests that O : C is a useful pa-
rameter for estimating, to a first approximation, the relative
humidity for liquid–liquid phase separation, as shown previ-
ously for particles containing organics with ammonium sul-
fate (Bertram et al., 2011; Song et al., 2012a, b). For high-
accuracy predictions, additional information such as the or-
ganic functional groups is required (Song et al., 2012b).

www.atmos-chem-phys.net/13/11723/2013/ Atmos. Chem. Phys., 13, 11723–11734, 2013



11726 Y. You et al.: Liquid–liquid phase separation in particles containing organics

Table 1.Summary of different organics used in the liquid–liquid phase separation experiments.

Compounds Formula Molecular weight O : C H : C Functional group(s)

Diethyl sebacate C14H26O4 258.4 0.29 1.86 ester
2,5-hexanediol C6H14O2 118.2 0.33 2.33 alcohol
Poly (propylene glycol) C3nH6n+2On+1 425 0.38 2.10 alcohol, ether
Suberic acid monomethyl ester C9H16O4 188.2 0.44 1.78 carboxylic acid, ester
Poly (ethylene glycol) diacrylate C2n+6H4n+6On+3 575 0.50 1.77 ester, ether, C-C double bond
1,2,6-hexanetriol C6H14O3 134.2 0.50 2.33 alcohol
α,4-dihydroxy-3-methoxybenzeneacetic acid C9H10O5 198.2 0.56 1.11 alcohol, aromatic, carboxylic acid, ether
2,5-hydroxybenzoic acid C7H6O4 154.2 0.57 0.86 alcohol, aromatic, carboxylic acid
Diethylmalonic acid C7H12O4 160.2 0.57 1.71 carboxylic acid
3,3-dimethylglutaric acid C7H12O4 160.2 0.57 1.71 carboxylic acid
Poly (ethylene glycol) 300 C2nH4n+2On+1 300 0.58 2.17 alcohol, ether
Poly (ethylene glycol) 200 C2nH4n+2On+1 200 0.63 2.25 alcohol, ether
Poly (ethylene glycol) bis (carboxymethyl) ether C2n+4H4n+6On + 5 600 0.63 1.92 ester, ether, carboxylic acid
2,2-dimethylsuccinic acid C6H10O4 146.2 0.67 1.67 carboxylic acid
2-methylglutaric acid C6H10O4 146.1 0.67 1.67 carboxylic acid
Diethyl-L-tartrate C8H14O6 206.2 0.75 1.75 alcohol, ether
Glutaric acid C5H8O4 132.1 0.80 1.6 carboxylic acid
Levoglucosan C6H10O5 162.1 0.83 1.67 alcohol, ether
Maleic acid C4H4O4 116.1 1.00 1 carboxylic acid, C-C double bond
Glycerol C3H8O3 92.1 1.00 2.67 alcohol
Citric acid C6H8O7 192.1 1.17 1.33 alcohol, carboxylic acid
Malic acid C4H6O5 134.9 1.25 1.5 alcohol, carboxylic acid
Malonic acid C3H4O4 104.1 1.33 1.33 carboxylic acid

Table 2. Summary of SRH results for an organic-to-inorganic mass ratio (OIR) of 2.0± 0.1. Uncertainties represent 2σ of multiple SRH
measurements and the uncertainty from the calibration.

Organics (NH4)2SO4 NH4HSO4 NaCl NH4NO3

OIR SRH (%) OIR SRH (%) OIR SRH (%) OIR SRH (%)

Diethyl sebacate 2.0 100.0± 2.5 2.0 100.0± 2.5 2.0 100.0± 2.5 2.0 100.0± 2.5
2,5-hexanediol 2.0 88.8± 3.7 2.1 81.0± 3.7 2.0 72.4± 2.6 2.1 63.9± 4.1
Poly (propylene glycol) 2.0 94.1± 3.2 2.0 90.3± 3.1 2.0 89.6± 2.7 2.0 77.6± 2.5
Suberic acid monomethyl ester 2.0 100.0± 2.5 2.0 100.0± 2.5 1.9 100.0± 2.5 2.1 100.0± 2.5
Poly (ethylene glycol) diacrylate 2.0 94.7± 2.5 2.0 91.0± 2.9 2.0 87.0± 2.7 2.0 69.4± 4.4
1,2,6-hexanetriol 2.1 76.7± 2.5 2.0 Not observed∗ 2.0 Not observed 2.1 Not observed
α,4-dihydroxy-3-methoxybenzeneacetic acid 2.0 72.6± 2.6 2.0 38.2± 2.7 1.9 63.1± 2.9 1.9 Not observed
2,5-dihydroxybenzoic acid 2.0 Not observed 1.9 Not observed 2.0 65.5± 3.1 2.0 Not observed
Diethylmalonic acid 2.0 89.2± 3.0 2.0 88.1± 2.6 1.9 87.4± 3.0 2.1 74.1± 3.7
3,3-dimethylglutaric acid 2.0 89.1± 3.4 2.0 88.7± 5.0 2.1 85.6± 2.6 2.0 60.5± 2.6
Poly (ethylene glycol) 300 2.0 86.7± 2.8 1.9 Not observed 2.0 Not observed 2.0 Not observed
Poly (ethylene glycol) 200 2.0 79.8± 4.1 2.0 Not observed 2.0 Not observed 2.0 Not observed
Poly (ethylene glycol) bis (carboxymethyl) ether 2.0 92.0± 2.7 2.0 53.6± 3.1 2.0 49.0± 2.6 2.0 Not observed
2,2-dimethylsuccinic acid 2.0 Not observed 2.0 61.4± 2.5 2.1 58.9± 2.6 1.9 40.0± 3.2
2-methylglutaric acid 2.0 75.3± 2.8 2.0 64.5± 4.4 2.1 60.1± 2.5 2.0 34.5± 3.0
Diethyl-L-tartrate 2.1 90.2± 3.0 2.1 65.2± 4.1 2.0 52.5± 2.5 2.0 28.7± 5.6
Glutaric acid 2.0 Not observed 1.9 Not observed 2.0 Not observed 2.0 Not observed
Levoglucosan 2.0 Not observed 1.9 Not observed 1.9 Not observed 1.9 Not observed
Maleic acid 2.0 Not observed 2.0 Not observed 2.0 Not observed 1.9 Not observed
Glycerol 2.0 Not observed 1.9 Not observed 2.0 Not observed 2.1 Not observed
Citric acid 2.0 Not observed 2.0 Not observed 1.9 Not observed 1.9 Not observed
Malic acid 2.1 Not observed 1.9 Not observed 1.9 Not observed 1.9 Not observed
Malonic acid 2.0 Not observed 2.0 Not observed 2.0 Not observed 2.0 Not observed

∗ Not observed means liquid–liquid phase separation was not observed for the range of relative humidities probed. In some cases SRH was not probed below 20–40 % RH since at RH values less
than this value, efflorescence of the salts occurred.
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Fig. 2. Van Krevelen Diagram for the different mixed organic-
inorganic salt particles (OIR= 2.0 ± 0.1) studied:(a) organic-
ammonium sulfate particles,(b) organic-ammonium bisulfate par-
ticles, (c) organic-sodium chloride particles and(d) organic-
ammonium nitrate particles. Open circles indicate that liquid–liquid
phase separation was observed, while stars indicate that liquid–
liquid phase separation was not observed. The vertical hatched re-
gions correspond to the H : C and O : C conditions when liquid–
liquid phase separation was always observed and the horizontal
hatched regions correspond to the H : C and O : C conditions when
liquid–liquid phase separation was never observed.

Marcolli and Krieger recently measured SRH in bulk solu-
tions containing one organic mixed with ammonium nitrate
or sodium chloride (Marcolli and Krieger, 2006). Organics
studied were 1,2-hexanediol (O : C= 0.33), 1,4-butanediol
(O : C = 0.5), polyethylene glycol (MW= 400 and O : C
= 0.56) and glycerol (O : C= 1). Only one of these organics,
glycerol, was investigated in the current study (see Table 1).
The SRH data from Marcolli and Krieger (2006) is included
in Fig. 3 as a function of O : C (red triangles), together with
the results of this study. The overlap between the current data
and the data from Marcolli and Krieger (2006) suggest good
agreement between the particle studies and the bulk studies.

SRH results shown in Fig. 3 do not vary drastically with
the types of inorganic salt. However, out of the 23 organics
investigated, the SRH of 20 organics followed the SRH trend:
(NH4)2SO4 ≥ NH4HSO4 ≥ NaCl ≥ NH4NO3 (see Fig. 4a).
In other words, the SRH-value measured with (NH4)2SO4

Table 3. Parameterizations of SRH results as a function of the
oxygen-to-carbon elemental ratio (O : C) of the organic material.

Inorganic salt Parameterizations of SRH

(NH4)2SO4 SRH%=
100

1+exp(O : C)−0.68
0.10

× 100%

NH4HSO4 SRH%=
100

1+exp(O : C)−0.57
0.14

× 100%

NaCl SRH%=
100

1+exp(O : C)−0.60
0.14

× 100%

NH4NO3 SRH%=
100

1+exp(O : C)−0.49
0.09

× 100%

was greater than or equal to the SRH-value measured with
NH4HSO4, and so on. Early in the last century, Randall and
Failey showed the following trends for the salting out effi-
ciencies of ions relevant to our work: Na+ > NH+

4 > H+

and SO2−

4 > Cl− > NO−

3 (Randall and Failey, 1927). In ad-
dition, the Hofmeister series, which consists of a ranking of
cations and anions in terms of their ability to salt out proteins
follows the same trend (i.e. Na+ > NH+

4 and SO2−

4 > Cl−

> NO−

3 ) (Hofmeister, 1887, 1888; Kunz et al., 2004). These
trends allow one to compare the salting out efficiency (or
SRH) of two salts if they have a common cation or anion.
Based on these early salting out studies, we would expect
(NH4)2SO4 to have a greater salting out efficiency (or higher
SRH) compared to NH4HSO4 since the salting out efficiency
follows the trend NH+4 > H+. In addition, we would expect
(NH4)2SO4 to have a greater salting out efficiency (or higher
SRH) than NH4NO3, since the salting out efficiency follows
the trend SO2−

4 > NO−

3 . These expectations are consistent
with the trends observed for 20 out of the 23 organics inves-
tigated (Fig. 4a).

Three organics (2,5-dihydroxybenzonic acid,α,
4-dihydroxy-3-methoxybenzeneaceticacid, and 2,2-
dimethylsuccinic acid) were inconsistent with the SRH
trend (NH4)2SO4 ≥ NH4HSO4 ≥ NaCl ≥ NH4NO3 when
using an OIR of 2.0± 0.1. The results from these organics
are illustrated in Fig. 4b. Interestingly, Bertram et al. (2011)
also measured SRH values for these organics mixed with
ammonium sulfate and found that the SRH values for these
organics varied by more than 6 % with the OIR of the parti-
cles. In fact, the SRH of these three organics were the only
ones observed to vary by more than 6 % with OIR out of the
13 organics studied by Bertram et al. (2011). To investigate
this further we have measured SRH for these three organics
mixed with the different salts using OIR values lower than
2.0± 0.1. The results from these measurements as well as
the results from Bertram et al. (2011) are shown in Fig. 5
and are summarized in Table 4.

www.atmos-chem-phys.net/13/11723/2013/ Atmos. Chem. Phys., 13, 11723–11734, 2013
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Fig. 3. Summary of SRH results (OIR= 2.0 ±0.1) as a function
of oxygen-to-carbon elemental ratio (O : C):(a) organic-ammonium
sulfate particles,(b) organic-ammonium bisulfate particles,(c)
organic-sodium chloride particles and(d) organic-ammonium ni-
trate particles. Circles represent the relative humidity at which sep-
aration occurred. Error bars associated with the circles represent 2σ

of multiple SRH measurements and the uncertainty from the cali-
bration. Stars indicate that liquid–liquid phase separation was not
observed. The error bars corresponding to the stars indicate that
liquid–liquid phase separation could potentially occur within the
range indicated by the error bars, but could not be detected due to
the occurrence of efflorescence in the particles. The curves in the
panels are Sigmoidal–Boltzmann fits to the data. Red triangles rep-
resent the results of liquid–liquid phase separation in bulk solution
from Marcolli and Krieger 2006).

Figure 5a shows that for OIR≤ 0.5, SRH of 2,2-
dimethylsuccinic acid followed the trend of (NH4)2SO4 ≥

NH4HSO4 ≥ NaCl ≥ NH4NO3, consistent with the 20 or-
ganics shown in Fig. 4a. Hence the anomaly at OIR= 2 for
2,2-dimethylsuccinic acid is absent at an OIR of≤ 0.5. In
other words, the trend for 2,2-dimethylsuccinic acid is con-
sistent with the other 20 organics as long as the OIR is in
a range where particles undergo liquid–liquid phase separa-
tion.

Figure 5b and 5c show thatα,4-dihydroxy-3-
methoxybenzeneacetic acid and 2,5-dihydroxybenzonic
acid do not follow the trend of (NH4)2SO4 ≥ NH4HSO4 ≥

NaCl ≥ NH4NO3 regardless of the OIR studied. Note

Fig. 4. Summary of trends of SRH of particles (OIR=2.0± 0.1) as
a function of inorganic salt type:(a) the SRH of the organics (20
in total) that followed the trend (NH4)2SO4 ≥ NH4HSO4 ≥ NaCl
≥ NH4NO3 and(b) the SRH for 2,5-dihydroxybenzonic acid,α,4-
dihydroxy-3-methoxybenzeneacetic acid, and 2,2-dimethylsuccinic
acid. In panel a, colors represent the O : C of individual or-
ganics. The organics shown in panel b didn’t follow the trend
(NH4)2SO4 ≥ NH4HSO4 ≥ NaCl≥ NH4NO3. Uncertainties in the
SRH measurements have been left off for clarity.

out of all organics studied, these two organics are the
only two organics which contained aromatic functional
groups. One possible reason for the differences in trends
of SRH observed for these organics may be due to strong
cation–π interactions (Kumpf and Dougherty, 1993; Ma
and Dougherty, 1997; Song et al., 2012b). Previous work
by Song et al. has suggested that cation–π interactions may
decrease the salting out effect of the ammonium cations,
thereby influencing SRH values in particles containing
ammonium salts and aromatic compounds (Song et al.,
2012b).

SRH was only investigated as a function of OIR for
three organics (2,5-dihydroxybenzonic acid,α,4-dihydroxy-
3-methoxybenzeneacetic acid, and 2,2-dimethylsuccinic
acid). For the organics that were only investigated at
OIR=2.0± 0.1, we don’t expect that SRH will be a strong
function of OIR in most cases, based on previous studies with
organics and ammonium sulfate (see Experimental Section).
However, experiments are needed to confirm this expecta-
tion.

Recent work has shown that chloride anions may react
with organic acids in the particle phase to form organic salts
(Laskin et al., 2012). This type of reaction could potentially
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Fig. 5. Summary of SRH results as a function of OIR for the fol-
lowing types of particles:(a) 2,2-dimethylsuccinic acid and inor-
ganic salts,(b) α,4-dihydroxy-3-methoxybenzeneacetic acid and
inorganic salts, and(c) 2,5-dihydroxybenzonic acid and inorganic
salts. Closed symbols represent results from the current study, while
open squares represent results from previous studies by Bertram et
al. (2011). Uncertainties in the SRH measurements have been left
off for clarity.

occur in our studies. However, if such reactions are occur-
ring in our studies, they don’t appear to drastically affect the
occurrence of liquid–liquid phase separation.

3.2 Atmospheric implications

A large fraction of submicron particles in the atmosphere
contain organics mixed with some combination of ammo-
nium (NH+

4 ), protons (H+), sulfate (SO2−

4 ) and nitrate
(NO−

3 ) (Adams et al., 1999; Lee et al., 2003; Martin et al.,
2004; Tolocka et al., 2005; Murphy et al., 2006; Seinfeld and
Pandis, 2006; Zhang et al., 2007; Pratt and Prather, 2010).
As a result the inorganic salts ammonium sulfate, ammonium
bisulfate and ammonium nitrate are thought to be important
in atmospheric particles. As mentioned in the Introduction,
most of the previous laboratory work on liquid–liquid phase
transitions of atmospheric importance have used (NH4)2SO4
as the inorganic salt, even though sulfate is not always fully
neutralized in atmospheric particles and NO−

3 can make up
a large fraction of the inorganic anions under certain con-
ditions (Dibb et al., 1996; Huebert et al., 1998; Tolocka et
al., 2005; Murphy et al., 2006; Zhang et al., 2007; Pratt and
Prather, 2010). To address this disconnect, we have carried
out liquid–liquid phase separation experiments with parti-
cles containing organics mixed with (NH4)2SO4, NH4HSO4
and NH4NO3. The results from these studies show that in

all cases, liquid–liquid phase separation is a common oc-
currence when O : C < 0.8 and always observed when O : C
< 0.5. These ranges of O : C values are frequently observed
in the atmosphere, suggesting that liquid–liquid phase sepa-
ration is a common process in atmospheric particles, regard-
less of the identity of the salt.

In the marine boundary layer, supermicron particles con-
taining NaCl make up a large fraction of the particulate
mass (Quinn and Bates, 2005; Seinfeld and Pandis, 2006).
These particles, which are produced from a bubble bursting
mechanism (Woodcock et al., 1953; Blanchard and Wood-
cock, 1957), can often contain relatively low O : C organics
such as sterols, fatty acids and fatty alcohols (Schneider and
Gagosian, 1985; Peltzer and Gagosian, 1987; Sicre et al.,
1990; Kawamura et al., 2003). Based on the liquid–liquid
phase separation results for NaCl containing particles pre-
sented here and the O : C of sterols, fatty acids and fatty alco-
hols (O : C less than approximately 0.5) thought to be present
in the marine boundary layer, liquid–liquid phase separation
is also expected to be a common occurrence in marine envi-
ronments.

4 Conclusions

Out of 92 types of particles studied, 49 underwent liquid–
liquid phase separation. For all the inorganic salts, liquid–
liquid phase separation was never observed when O : C≥

0.8 and was always observed for O : C < 0.5. For 0.5≤ O : C
< 0.8, the results depended on the salt type. In addition, a
correlation between the separation relative humidity (SRH)
and O : C was observed for all inorganic salts, suggesting that
O : C is a useful parameter for estimating, to a first approx-
imation, the relative humidity for liquid–liquid phase sepa-
ration, although additional information will be required for
predictions with high accuracy.

Out of the 23 organics investigated, the SRH of 20 or-
ganics had the following trend: (NH4)2SO4 ≥ NH4HSO4 ≥

NaCl≥ NH4NO3. The trend is consistent with previous salt-
ing out studies and the Hofmeister series. Based on the range
of O : C values found in the atmosphere and the current re-
sults, liquid–liquid phase separation is likely a common oc-
currence in marine and non-marine environments.

Supplementary material related to this article is
available online athttp://www.atmos-chem-phys.net/13/
11723/2013/acp-13-11723-2013-supplement.zip.
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Table 4. Summary of SRH results as a function of the organic-to-inorganic (OIR) mass ratio for following organics: 2,2-dimethylsuccinic
acid;α,4-dihydroxy-3-methoxybenzeneacetic acid; and 2,5-dihydroxybenzonic acid. Included are results from both the current studies and
results from Bertram et al. (2011). Uncertainties represent 2σ of multiple SRH measurements and the uncertainty from the calibration.

Organics (NH4)2SO4 NH4HSO4 NaCl NH4NO3

OIR SRH (%) OIR SRH (%) OIR SRH (%) OIR SRH (%)

2,2-dimethylsuccinic acid

2.0 Not observeda 2.0 61.4± 2.5 2.1 58.9± 2.6 1.9 40.0± 3.2
0.3b 63.8± 2.5b 0.5 61.2± 2.5 0.5 60.0± 3.1 0.5 41.4± 2.7
0.5b 61.5± 2.5b

1.0b Not observedb

1.2b Not observedb

1.5b Not observedb

α,4-dihydroxy-3-methoxybenzeneacetic acid

2.0 72.6± 2.6 2.0 38.2± 2.7 1.9 63.1± 2.9 1.9 Not observed
0.4b 80.1± 2.5b 0.5 46.3± 3.0 0.5 62.6± 2.6 0.5 Not observed
1.0b 81.3± 2.5b

6.0b Not observedb

2,5-dihydroxybenzoic acid

2.0 Not observed 1.9 Not observed 2.0 65.5± 3.1 2.0 Not observed
0.2b 61.6± 2.5b 0.5 Not observed 0.5 65.2± 2.6 0.5 Not observed
0.3b 64.2± 2.5b

0.5b 62.9± 2.5b

0.8b Not observedb

1.0b Not observedb

1.5b Not observedb

a Not observed means liquid–liquid phase separation was not observed for the range of relative humidities probed. In some cases SRH was not probed below 20–40 % RH since at RH
values less than these values efflorescence of the inorganic salt occurred.b Data from previous study of Bertram et al. (2011).
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