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Abstract. Atmospheric composition measurements at

Jungfraujoch are affected intermittently by boundary-layer

air which is brought to the station by processes including

thermally driven (anabatic) mountain winds. Using obser-

vations of radon-222, and a new objective analysis method,

we quantify the land-surface influence at Jungfraujoch hour

by hour and detect the presence of anabatic winds on a

daily basis. During 2010–2011, anabatic winds occurred on

40 % of days, but only from April to September. Anabatic

wind days were associated with warmer air temperatures

over a large fraction of Europe and with a shift in air-mass

properties, even when comparing days with a similar

mean radon concentration. Excluding days with anabatic

winds, however, did not lead to a better definition of the

unperturbed aerosol background than a definition based on

radon alone. This implies that a radon threshold reliably ex-

cludes local influences from both anabatic and non-anabatic

vertical-transport processes.

1 Introduction

High-altitude mountain sites have long been recognised as

suitable places for characterising the chemical composition

of the lower troposphere. These sites can be used to make

measurements that are representative of continental to hemi-

spheric scales (Keeling et al., 1976), also known as the base-

line (Calvert, 1990; Parrish et al., 2014), by focusing on air

masses which have travelled far from emission sources and

had time to mix. But local sources can still have an influence,

depending largely on the recent history of vertical transport

and associated mixing. This necessitates the development of

carefully considered data selection techniques.

The task of understanding vertical transport becomes par-

ticularly complicated in mountainous terrain (Rotach and

Zardi, 2007; Weissmann et al., 2005), which affects vertical

exchange processes in site-specific ways that are not as well

understood as processes occurring over flat terrain (Zardi and

Whiteman, 2013). Because of this complexity, Stohl et al.

(2009) found that Alpine sites were less useful than flat sites

for constraining regional estimates of greenhouse gas emis-

sions.

The High Altitude Research Station Jungfraujoch is a key

European and Global Atmospheric Watch monitoring site

with a long-term history in atmospheric research (Leuen-

berger and Flückiger, 2008). Local influences are felt during

periods of enhanced vertical transport and need to be reli-

ably accounted for during data interpretation. The site is lo-

cated in a saddle, 3454 ma.s.l., on the north-west flank of the

Swiss Alps (Fig. 1). Below station elevation, winds over the

Swiss Plateau are channelled parallel to the mountain range,

whereas above mountaintops winds are most frequently from

the north-west with a broad unimodal maximum (Furger,

1992; Ketterer et al., 2014). At Jungfraujoch itself, however,

terrain channels the wind into a bimodal distribution with

maxima towards the north-west and south-east.
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Figure 1. Jungfraujoch region. Radon detectors are installed at

Jungfraujoch and Bern, separated horizontally by 61 km.

Distinct pollution sources that have been identified at

Jungfraujoch include: aerosols from the Swiss Plateau and

Rhône Valley (De Wekker et al., 2004), a range of species

from the industrialised Po Valley (Reimann et al., 2008,

2004; Seibert et al., 1998) and regional-scale European pol-

lution, mainly from Switzerland, France and Germany (Ugli-

etti et al., 2011). In addition to these surface sources, strato-

spheric incursions can affect air composition, especially

ozone concentration (Stohl et al., 2000; Trickl et al., 2010).

Surface emissions can reach Jungfraujoch via several pro-

cesses (Forrer et al., 2000). The most relevant ones (Zell-

weger et al., 2003) are as follows.

1. Thermally driven boundary-layer growth and anabatic

mountain winds (Henne et al., 2004, 2005; Collaud

Coen et al., 2011; De Wekker et al., 2004; Weigel et al.,

2006; Kossmann et al., 1999; Zellweger et al., 2000).

2. Dynamically driven winds, including Föhn winds, in

which the synoptic flow interacts with terrain (Drobin-

ski et al., 2007; Campana et al., 2005; Lothon et al.,

2003).

3. Deep vertical mixing over flat terrain followed by ad-

vection to the Alps. This can be associated with convec-

tion (active cumulus, or cumulonimbus formation) or

frontal systems (Purvis et al., 2003). The Iberian Penin-

sula is a major source region (Cui et al., 2011).

Thermally driven or anabatic flows, the focus of this study,

are most common under clear-sky, low-wind conditions in

summer, when incoming solar radiation is strong (Henne et

al., 2005). As well as the development of a deep convective

boundary layer over the surrounding flat terrain, heating of

the mountain slopes leads to a net buoyancy force, driving so-

called anabatic upslope winds (Haiden, 2003; Mahrt, 1982).

Weigel et al. (2006) documented a case where vertical ex-

change was enhanced by a factor of three compared with flat

terrain. Convergence near mountain peaks further enhances

the export of boundary-layer air to the free troposphere.

In aggregate, mountain ranges create an injection layer

above and within their lee (Henne et al., 2005; Nyeki et al.,

2000) which is dynamically decoupled from the convective

boundary layer but has similar tracer concentrations. In order

to feed the vertical transport, boundary-layer air is drawn to-

wards the base of the mountains from up to 80 km away over

the course of a day (Weissmann et al., 2005). The export of

mass to the troposphere is significant at a regional scale and

boundary-layer air is exported beyond the peak height even

when the top of the boundary layer is lower over the Plateau

(Ketterer et al., 2014). Henne et al. (2004) show a schematic

in their Fig. 13 which summarises this conceptual model of

flow processes on a fair-weather day.

Anabatic winds cause tracer measurements near moun-

tain peaks to exhibit a diurnal cycle that is approximately

sinusoidal in shape (Forrer et al., 2000; Whiteman, 2000).

Unlike measurements in the boundary layer over flat ter-

rain, which are typically characterised by peak values around

dawn, the maximum occurs in the late afternoon as a result

of boundary-layer air being brought to the mountain peak

by anabatic winds. Tracer concentrations usually drop af-

ter the cessation of anabatic flow as the tracer injected dur-

ing the day is carried away by free-troposphere winds. For

sites near mountain summits, the onset of katabatic drainage

flows in the evening can draw down tropospheric air from

500 to 1000 m above the site (Chambers et al., 2013; Perry et

al., 1999; Ryan, 1997). Under calm tropospheric conditions,

however, the influence of boundary-layer air injected into the

troposphere by anabatic winds can persist well into the next

day (Whiteman, 2000).

There has been an ongoing effort to characterise these lo-

cal influences on Jungfraujoch observations. Previous studies

made use of in situ measurements of surface-emitted trac-

ers with a strong concentration contrast between the bound-

ary layer and the free troposphere, such as aerosols (Col-

laud Coen et al., 2011), volatile organic compounds (VOCs)

(Prévôt et al., 2000), CO (Forrer et al., 2000) and moisture

(Henne et al., 2004, 2005), while others have incorporated

back-trajectories (Balzani Lööv et al., 2008; Kossmann et al.,

1999; Cui et al., 2011). While back-trajectories have proven

to be effective during the winter months, they are less able

to resolve anabatic mountain winds due to the small-scale

nature of these processes. Consequently, meteorological, sta-

tistical or time-of-day filters (Andrews et al., 2011; Brooks

et al., 2012; Zellweger et al., 2003) have been used to avoid

periods influenced by anabatic winds. Yet another approach

is to relate synoptic weather classifications to the occurrence

of vertical transport (Collaud Coen et al., 2011). Data aug-

menting in situ measurements has included lidar, used to de-
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tect the top of aerosol layers (Nyeki et al., 2000; Gallagher

et al., 2012; Ketterer et al., 2014), and radiosondes, which

are launched from near the mountain and used to define the

unperturbed free troposphere (Weiss-Penzias et al., 2006).

In this study we employ radon-222 (radon hereafter), an

inert radioactive gas emitted from the ice-free land surface,

and examine how useful it is for detecting anabatic winds

at Jungfraujoch. Lugauer et al. (2000) demonstrated the fea-

sibility of this approach at Jungfraujoch by measuring radon

decay products attached to aerosol particles; with our method

we are able to determine the concentration of radon itself, re-

moving uncertainties due to the fraction of decay products

which attach to aerosols, deposit on the ground or remain

airborne.

Although other tracers, whether aerosols or surface-

emitted chemical species, have been used in a similar way,

we argue that radon is a more reliable tracer of surface in-

fluence. It is emitted by all soils at a relatively constant rate

(Szegvary et al., 2007; Zhang et al., 2011). Its only significant

sink is radioactive decay. With a half-life of 3.8 d, its tropo-

spheric background concentration is low and temporal vari-

ations caused by changes in atmospheric transport are more

clearly detectable than for other tracers with longer atmo-

spheric lifetimes. Furthermore, seasonal snow cover attenu-

ates emissions (Yamazawa et al., 2005) and we assume that

emissions are negligible in the area with permanent snow

cover surrounding Jungfraujoch, even though there are re-

ports of sites above the snow line where the snow cover does

allow radon to escape from the bedrock below (Pourchet et

al., 2000).

Radon has previously been used to study vertical mixing

based on temporal variations (Griffiths et al., 2013, and refer-

ences therein) or on vertical profiles from aircraft (Guedalia

et al., 1972; Lee and Cicerone, 1997; Williams et al., 2011),

towers (Chambers et al., 2011; Grossi et al., 2012; Williams

et al., 2013) or sites at different altitudes (Chevillard et al.,

2002). Radon has been used for the estimation of local to re-

gional surface emissions of trace gases (van der Laan et al.,

2014), and has been incorporated into transport models as

an auxiliary diagnostic of mixing (Vogel et al., 2013) or for

testing transport or parameterisations (Feichter and Crutzen,

1990; Zhang et al., 2008). Other applications of ground-

based detectors are reviewed by Zahorowski et al. (2004).

In a refinement of earlier studies (Gäggeler et al., 1995;

Lugauer et al., 2000), we first use the Jungfraujoch radon

measurements to rank days according to the strength of an-

abatic winds. Then – on the days of significant anabatic in-

fluence – we use radon measurements from a second detec-

tor, at Bern on the Swiss Plateau (60 km north-west of and

3 km below Jungfraujoch), to assess the strength of verti-

cal mixing between the Swiss Plateau and Jungfraujoch. We

then examine the implications of anabatic winds, showing

that their detection can be linked to meteorological observa-

tions (Sect. 3.2), and that anabatic winds influence air-mass

properties (Sect. 3.3). Despite their successful identification

and characterisation, we show that taking the presence of an-

abatic winds into account does not improve upon the iden-

tification of baseline air masses at Jungfraujoch. Instead, a

simpler method based purely on a radon threshold is just as

effective (Sect. 3.4) and retains a larger volume of data.

2 Data and methods

2.1 Radon observations at Jungfraujoch and Bern

Radon detectors have been operated continuously at Bern

and Jungfraujoch since 2009. Here we use two full years of

data from 2011 and 2012. The instruments are of the two-

filter dual flow loop design, with a delay chamber of 400 L

to remove thoron and a radon detection chamber of 750 L

(Whittlestone and Zahorowski, 1998). This design eliminates

an uncertainty inherent to progeny detectors (Xia et al., 2010)

but means that the detectors are large and have a relatively

slow response time.

The detectors respond to a step change in ambient concen-

tration with a one-half rise time of 45 min. Radon concentra-

tion, as a result, lags measurements made using faster sen-

sors. We corrected for this by adjusting the calibrated radon

concentrations using a lag of 1 h, which maximised the cor-

relation between radon and other tracers.

Operation of the detectors followed the protocol described

by Chambers et al. (2011). Calibration was performed au-

tomatically every month by injecting a known amount of

radon from a calibration source with an absolute uncertainty

of 4 % (Pylon Electronics). Instrument background was mea-

sured every three months. As well as being necessary for con-

verting counts into radon concentration, the instrument back-

ground determines the lower limit of detection, defined as the

concentration with a counting error of 30 %. For these instru-

ments, the lower limit of detection was about 40 mBq m−3.

At Jungfraujoch, where observed radon concentrations are

& 100 mBq m−3 for 99 % of the time, the counting error is

small enough to be ignored.

Calibrated radon concentrations were converted from ac-

tivity concentration at ambient conditions (Bq m−3) to a

quantity which is conserved during an air parcel’s ascent:

activity concentration at standard temperature and pressure

(0 ◦C, 1013 hPa), written Bq m−3 STP.

2.2 Other parameters

A wide range of meteorological and other parameters char-

acterising the physical properties and chemical composition

at Jungfraujoch are also routinely monitored. Trace gases are

measured by Empa as part of Empa’s operation of the Swiss

National Air Pollution Monitoring Network. Aerosol prop-

erties are measured by the Paul Scherrer Institute in sup-

port of the Global Atmosphere Watch aerosol programme.

MeteoSwiss operates one of their SwissMetNet stations at

Jungfraujoch and continuously records an extended set of
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meteorological parameters. Some of these data are archived

in the EBAS database (NILU, 2012) and by the World Data

Centre for Greenhouse Gases (WDCGG; WMO, 2012). The

measurements employed in this study were hourly aver-

ages of CO (measured by nondispersive infrared absorption)

and total reactive nitrogen (NOy, measured by chemilumi-

nescence), standard meteorological observations, and neph-

elometer measurements of the aerosol light scattering coef-

ficient at 450 nm. The nephelometer measurements were ob-

tained from EBAS, the other parameters from WDCGG. See

for example Zellweger et al. (2009), Pandey Deolal et al.

(2012), Cozic et al. (2008) and Appenzeller et al. (2008) for

more details on CO, NOy, aerosol properties and meteoro-

logical observations at Jungfraujoch, respectively.

2.3 Transport simulations (back-trajectories)

Backwards-trajectory simulations were performed using the

Hybrid Single Particle Lagrangian Integrated Trajectory

(HYSPLIT) model, version 4 (Draxler and Hess, 1998)

forced with meteorological data at one-degree resolution

from the National Centers for Environmental Prediction

Global Data Assimilation System (NCEP GDAS) model.

The forcing data are three-hourly on 23 pressure levels (the

first 10 from the surface are 1000, 975, 950, 925, 900, 850,

800, 750, 700 and 650 hPa) and were accessed via the HYS-

PLIT website (ARL, 2013). The trajectories are primarily

used as an indicator of synoptic-scale flow direction, char-

acterised by the back-bearing to Jungfraujoch after reach-

ing a distance of 61 km from the receptor (the distance be-

tween Bern and Jungfraujoch). The particle release height

matches the station elevation, 3.5 km a.s.l. (∼ 650 hPa), but

is 2.2 km above the GDAS topography. Folini et al. (2008)

discuss the impact of the chosen receptor height, observing

that a choice close to the station elevation, rather than near

the model ground level, is more likely to reproduce the ob-

served pattern of horizontal winds.

2.4 Anabatic wind detection

2.4.1 Method description

In common with previous investigators (Prévôt et al., 2000;

Gallagher et al., 2011), the central feature of our method is

the recognition that anabatic mountain winds are associated

with a diurnal cycle in tracer concentrations near mountain-

tops, peaking in the afternoon. However, while previous in-

vestigators, such as Gallagher et al. (2011), fitted a sinusoid

to daily measurements, our approach avoids imposing a con-

straint on the shape of the diurnal cycle. Furthermore, unlike

Prévôt et al. (2000), who used VOCs as a surface tracer, we

do not normalise by the near-surface value because of the rel-

ative homogeneity of radon emissions compared with many

other species, including VOCs.

In overview, the procedure involves computing the diurnal

composite of the set of all observed days and then removing

days from the set in the order which most quickly reduces the

mean square amplitude of the set’s composite diurnal cycle.

In detail, the steps are as follows.

1. Fill gaps in the tracer time series by linear interpolation,

provided they are at most 3 h long.

2. Split the time series into 24 h segments beginning at

07:00 UTC, the time of minimum radon concentration

in the annual average diurnal composite (the seasonal

variation in the time of the radon minimum is small).

3. Discard days with missing data (23 % of days in our

data).

4. From each 24 h segment, subtract the mean of the seg-

ment’s radon concentration values. The resultant un-

ordered set of 24 h segments is called the input set.

5. Compute the diurnal composite of all segments in the

input set and calculate its mean square value.

6. For each segment in the input set:

a. compute a diurnal composite from all segments in

the input set except for the current one; then

b. calculate the mean square value of the new diur-

nal composite, and compare it to the value obtained

from the original composite in step 5.

7. The segment whose exclusion reduces the composite’s

mean square value the most, has its original mean value

(the value subtracted in step 4) added back in, and is

then transferred from the input set to an ordered output

list; the first segment (or day) is given an anabatic rank

of 1 and so on.

8. Steps 5–7 are repeated until the input set is empty.

Once the set of 24 h segments, or days, is ordered by degree

of anabatic influence, each day’s radon load is partitioned

into three components as a secondary diagnostic. This is il-

lustrated in Fig. 2. A running diurnal composite is computed

for each day, i, in the output list using the days ranked i− 5

to i+ 5. The derived components are

1. background radon, the minimum of the running diurnal

composite;

2. anabatic radon, the mean of the running diurnal com-

posite minus background; and

3. non-anabatic radon, the daily mean minus the compos-

ite mean.
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Figure 2. The definition of diagnostic quantities computed after

ranking days by their contribution to the radon diurnal composite,

termed the anabatic rank. Diagnostics for the ith day, day 10 in this

example, are computed from the ith day radon concentration and

the composite of days ranked from i− 5 to i+ 5. These are: (1)

baseline, the minimum of the composite; (2) anabatic, the mean of

the composite; and (3) non-anabatic, the mean of the ith day minus

the mean of the composite.

The main reason for diagnosing anabatic radon is to identify

a threshold rank, below which anabatic winds are absent. By

inspecting a plot of anabatic rank vs. anabatic radon, Fig. 3,

the threshold can be identified from when the anabatic radon

concentration first reaches a minimum; day 220 in this case.

Days with a rank below this threshold are defined as anabatic;

all remaining days are classified as non-anabatic.

Irrespective of classification, periods of low radon concen-

tration mean that the air being sampled is most likely repre-

sentative of unperturbed free-tropospheric background val-

ues, whereas high radon concentrations on non-anabatic days

likely correspond to periods of strong non-anabatic vertical

transport. The classification differentiates between transport

mechanisms.

Radon concentration variability leads to scatter in the an-

abatic radon concentration, making it prudent to select the

threshold by inspection. If the method were perfect, the an-

abatic radon concentration would be zero for days above

the threshold. For certain analyses, it could even be appro-

priate to set the anabatic radon to zero above the identified

threshold. Without applying such a correction, the diagnosed

anabatic radon concentration increases with rank for days

above 220. This is a result of increasing intra-day variabil-

ity, leading to a 10 d running composite that is both small

in amplitude and noisy. This results in an increasing chance

that random fluctuations are both in phase with the running

composite and of comparable magnitude.

2.4.2 Misclassification error

As a further diagnostic we make an estimate of the false-

positive error rate, expressed in terms of the average radon

concentration which is mistakenly classified as being due to

anabatic flows. We expect that false positives will be present
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Figure 3. The daily mean anabatic radon concentration as a function

of anabatic rank. Days with a rank above 220 (when the anabatic

radon concentration first reaches its minimum) have a diurnal radon

variation which is uncharacteristic of anabatic flows and are classi-

fied as non-anabatic. The increase in anabatic contribution after the

minima is an artefact of the method.

because the detection of anabatic influence relies on finding

days with a diurnal radon variation which is in phase with the

running composite mean. Because of random fluctuations in

the timing of nonthermal mixing, some days may have an in-

phase radon cycle in the absence of thermally forced flows.

To compute the error we selectively sub-sample the ob-

served radon time series, obtaining a collection of days with

a diurnal cycle (both individually and in composite) which

is clearly due to processes other than anabatic flows. Then

we apply the ranking procedure to this sub-sample of days

knowing that all of the days classified as anabatic by this

process are false positives. The results from the ranking pro-

cedure, including diagnostics, are used to make an estimate

of the false-positive rate for the full time series.

The sub-sample is generated by selecting all days whose

radon concentration signal, lagged by 12 h, is positively cor-

related with the composite mean of the full data set; in other

words we select days which appear to have anabatic moun-

tain winds during the night. Then, the mean daily anabatic

radon concentration in the full data set due to misclassified

non-anabatic processes is given by

am =
1

N

Ns∑
i=1

a(i)s , (1)

where am is the anabatic radon concentration due to misclas-

sification, a
(i)
s is the anabatic radon concentration on the ith

day in the subset described above, N is the number of days

in the full data set andNs is the number of days in the subset.

www.atmos-chem-phys.net/14/12763/2014/ Atmos. Chem. Phys., 14, 12763–12779, 2014
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Figure 4. Radon diurnal and seasonal cycle. The plots show the mean (dot), median (horizontal bar) and 25th–75th percentile range (vertical

bar) of each bin. The synoptic-scale wind direction is calculated from the back-trajectory position at a distance of 61 km (the distance between

Bern and Jungfraujoch). Plots in (a) show all directions, in (b) show air arriving from the north-western side of the Alps (which are aligned

south-west to north-east), and in (c) show air arriving from the south-east after passing over the full width of the Alps.

3 Results and discussion

3.1 Characteristics of the radon distribution

Seasonal radon composites are shown in Fig. 4, including

separate plots for trajectories arriving from either side of the

Alps. Over the 2-year period, hourly radon measurements

were available for 88 % of the time, allowing 77 % of the

days to be ranked for the likely presence of anabatic flows.

This difference arises because days with data gaps in ex-

cess of 3 h were excluded from further analysis. Missing data

were spread throughout the year, with the result that the data

gaps do not introduce a seasonal bias.

Composite mean radon values, as shown in Fig. 4, are sen-

sitive to time of day, season, and wind direction. Further-

more, the average strength of the diurnal cycle changes with

wind direction.

Months other than winter show a diurnal cycle which is

characteristic of anabatic mountain winds, with higher radon

concentrations in the afternoon. In winter, the peak-to-peak

amplitude is smaller than the distribution spread and there

is no evidence of anabatic winds. Instead of an afternoon

peak, there is a discernible minimum during the daytime at

12:00 UTC.

Low radon concentrations have been associated with a lull

period between the cessation of katabatic flow and the onset

of anabatic flow on Mauna Loa (Chambers et al., 2013), but

the timing is wrong for an explanation of the 12:00 UTC min-

imum in our winter data. The timing of the radon minimum

at Jungfraujoch in winter corresponds with the minimum in

composite wind speed (not shown), indicating that the radon

minimum is due to lower average wind speeds and therefore

less vertical transport from the interaction of synoptic winds

with terrain.
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For these two years, composites for the months October–

March (not shown) had a negligible diurnal cycle, consistent

with the absence of anabatic winds.

Radon concentrations are higher on average, about double,

when the air mass arrives from the south-east. A partial ex-

planation could be higher radon emissions south-east of the

Alps, which are reported by López-Coto et al. (2013). But

emissions are similar across the Alps in the results of Szeg-

vary et al. (2009) and Manohar et al. (2013). Furthermore,

near-surface radon concentrations in Milan (Sesana et al.,

2003) and northern Italy (Galmarini, 2006) are similar to our

measurements from Bern, making this explanation doubtful.

A more likely explanation is that air masses arriving from

the south-east have had more contact with land. To reach the

station from the south-east, air must cross the full width of

the Alps, whereas air arriving from the north-west is un-

obstructed. Adding to the contrast, atmospheric conditions

may be more favourable for vertical transport during periods

of south-east flow; for instance, Föhn winds arrive from the

south more frequently than from the north (Zellweger et al.,

2003). Determining the relative importance of these factors

is outside the scope of the present study, but we take wind

direction effects into account by restricting our attention to

north-west fetch in some of the analyses which follow.

In Fig. 5, composite diurnal cycles are generated according

to the anabatic rank, which results in grouping together days

with similar diurnal cycles. Although each of these compos-

ites are generated from a similar number of samples to those

of Fig. 4, the diurnal cycle explains a large fraction of the

concentration variance for low-rank days, as seen by the nar-

row spread in hourly distributions relative to the size of the

diurnal peak.

To place the Jungfraujoch radon measurements in context,

the observations at Bern, 3 km below on the Swiss Plateau,

are also shown in this plot. For the highest ranking compos-

ite, adiabatically ranked days 1–50, the daytime peak radon

concentration at Jungfraujoch equals the daytime minimum

value measured at Bern. This suggests that the two sites sam-

ple the same air mass on low-rank days.

The availability of radon measurements from Bern make

it tempting to use the difference in afternoon radon concen-

tration, 1Rn= RnB−RnJFJ proportional to the mean radon

gradient between Bern and Jungfraujoch, as an indicator of

mixing strength. From Fig. 5 it is clear that 1Rn is close

to zero on days ranked 1–50 and is thus a good indicator of

strong vertical transport. It is less clear that, when nonzero,

the magnitude of 1Rn relates directly to mixing strength.

During times when the air masses are only weakly coupled,

the first-order influences on 1Rn are the factors which con-

trol RnB, because RnB� RnJFJ and therefore 1Rn∼ RnB.

These factors include the boundary-layer mixing depth at

Bern, h. On the other hand, the radon concentration measured

at Jungfraujoch is primarily influenced by the long-term his-

tory of contact with the ground (the land fetch). Although

high values of RnJFJ may be associated with deep mixing and

vertical transport, the radon concentration is directly related

to the decay-weighted integral of the measurement footprint,

defined formally by Lin et al. (2003), for example. For trace

gases at Jungfraujoch, details of the measurement footprint

are likely to be of more significance than the turbulent mix-

ing strength.

The diurnal cycle at Bern also exhibits a weak but system-

atic dependence on anabatic rank, with the largest peak-to-

peak range on days ranked 1–50 (Fig. 5). This can be ex-

plained by assuming that, at Bern, the mixing height h is the

main driver of radon variability. A large peak-to-peak range

in h is consistent with clear-sky conditions in summer, which

is also when anabatic winds are most energetic.

The lower-ranked composites are associated with an in-

creasing separation between Bern and Jungfraujoch until the

diurnal cycle disappears from the Jungfraujoch data on about

the 200th day (Fig. 5). After this point, in the absence of a

diurnal signal, the ranking algorithm sorts days from low-

to-high intra-day variability – by accident rather than by de-

sign. We see that days with larger variability are more likely

to have higher mean values at Jungfraujoch; the compos-

ite of the last days selected by the algorithm (days 511–

580) is without a significant diurnal cycle, but the mean

radon concentration is high (1.94 Bq m−3 STP compared

with 1.03 Bq m−3 STP for days 200–249). As well as hav-

ing a high variability, the hourly distributions of Jungfrau-

joch radon overlap with the daytime minimum seen in Bern.

High radon concentrations mean that these days are asso-

ciated with recent vertical transport, sometimes resulting in

radon concentrations at Jungfraujoch as high as those in the

boundary layer at Bern, but the absence of a composite diur-

nal cycle means that vertical transport is not driven by solar

forcing. On these days, vertical transport is most likely the

result of synoptic-scale winds interacting with terrain.

Compared with a ranking based on fitting a sinusoid to

daily concentration fluctuations (Gallagher et al., 2011), our

method is in good agreement overall. For the 100 most an-

abatic days according to our method, only one was non-

anabatic according to a sinusoid fit. For the days ranked 100–

200, however, 27 were classified as non-anabatic by the si-

nusoid method. For the days which differed, those classified

as anabatic by our method typically had a rapid morning in-

crease in radon without an evening drop, consistent with an

anabatic event followed by stagnation of the large-scale flow.

The opposite held true for anabatic days according to the si-

nusoid fit, which were characterised by flat concentrations

throughout the day followed by a rapid drop during the night

– thus fitting a sinusoid reasonably well, despite being un-

likely to result from anabatic mountain winds. In summary,

our ranking method appears to be superior to the sinusoid

method, but mainly when anabatic flows are weak. As a con-

sequence, the difference between the methods is likely to

be of only minor significance for the interpretation of atmo-

spheric composition observations, but might be more impor-

tant for other studies.
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Figure 5. The 50-day diurnal composite radon concentration by anabatic rank. The air mass is fully mixed between Bern and Jungfraujoch

during the afternoon on days with a rank of 50 or less; days with a rank of 200 or more are considered to be unaffected by anabatic winds.

The symbols have the same meaning as in Fig. 4.
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Figure 6. Seasonal cycle of decomposed daily radon concentra-

tion using the definitions shown in Fig. 2. The annual mean false-

positive contribution is included on the anabatic plot, showing that

anabatic flows are detected with confidence during the months of

April–September. The symbols have the same meaning as in Fig. 4.

Figure 6 shows the decomposed seasonal cycle. Anabatic

radon, namely radon arriving at Jungfraujoch as a result of

thermally induced transport, is close to the expected false-

positive concentration in October through to March, meaning

that thermally driven transport is absent during these months.

This is consistent with the negligible diurnal cycles we ob-

served over this period and in close agreement with Forrer

et al. (2000), who observed weak diurnal cycles of carbon

monoxide and specific humidity in autumn and winter.

Non-anabatic radon shows a weak seasonal cycle. While

this may be a real phenomenon associated with changes in

air-mass fetch, the decomposition method is only approxi-

mate, and cannot prevent a proportion of anabatic radon leak-

ing into the non-anabatic classification. Our results are there-

fore consistent with there being an absent or weak seasonal

cycle of vertical transport by non-anabatic flows. Over these

two years, the monthly mean wind speed was lower in sum-

mer, typically 5 m s−1 compared to 7 m s−1 during winter,

indicating the potential for stronger non-anabatic transport

in winter, contrary to Fig. 6.

It is also possible that the apparent correspondence be-

tween the mean anabatic and non-anabatic concentrations in

Fig. 6 is attributable to approximations in the method. An-

other way of approaching the issue is to consider the magni-

tude of the seasonal cycle directly. Radon is higher in sum-

mer by a factor of two, compared with winter. Knowing that

anabatic flows are absent in winter, assuming that the non-

anabatic vertical transport is constant throughout the year,

and neglecting any seasonal changes in radon emissions or

land fetch leads to the conclusion that in summer half of the

radon we measure is transported to Jungfraujoch by anabatic

processes and half by non-anabatic processes.

The monthly distributions of daily minimum radon con-

centration also show a seasonality, with higher concentra-

tions in summer. A simple explanation exists if the influence

of anabatic flow conditions persists through to the follow-

ing day. Figure 7 shows a multi-day composite radon con-

centration, constructed by selecting periods when a day with

anabatic influence is followed by two days without. Data

where back-trajectories indicated south-east fetch were ex-

cluded to avoid the effect of any systematic wind shifts as-

sociated with a change from anabatic to non-anabatic condi-
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Figure 7. The 3-day radon composites (∼ 19 samples per bin)

of one anabatic day followed by two non-anabatic days, selecting

north-west fetch. Red lines show the median peak radon concentra-

tion, 24 h after, and 48 h after. The symbols have the same meaning

as in Fig. 4.

tions. After an anabatic flow event, mean and median radon

concentration remain elevated for up to 48 h after the an-

abatic peak. Though dropping rapidly from the afternoon

peak, night-time radon concentrations remain elevated after

an anabatic event compared with concentrations during the

previous night.

3.2 Comparison with other indicators of upslope winds

Radon’s physical properties and source distribution make it

almost ideal as a passive tracer of land influence. On the

other hand, it is not as widely observed as some other tracers

or aerosol parameters. In particular the water vapour mixing

ratio, r , is a convenient tracer because of widespread mea-

surements and usually easily detectable increases in moisture

in the lower free troposphere under conditions with anabatic

flows (Henne et al., 2005).

Figure 8 shows how radon and water vapour compare as

indicators of anabatic flow. Assuming the radon technique

is accurate, anabatic flow occurs on around 40 % of days

(Fig. 8a). An approach based on water vapour increases this

estimate to 50 % (Fig. 8b). Two other options which we ex-

amined, the aerosol scattering coefficient and carbon monox-

ide concentration (Figs. 8c and d), detected roughly half as

many anabatic days, whereas NOy led to a similar proportion

of anabatic days to radon (Fig. 8e) but with radon showing

more contrast between the two classes.

We now examine our claim that radon is more representa-

tive of surface influence than r . In order to do this we take

observed daily temperatures (the gridded E-OBS data (Hay-

lock et al., 2008)), and extract a contingency table of daily

maximum temperature anomalies depending on the classi-

fication according to radon and moisture, shown in Fig. 9.

This is an independent test of the ranking method, based on

the premise that anabatic mountain winds are more common

on warm days.
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Figure 8. The anabatic contribution, meaning the daily mean con-

centration due to anabatic flows, of several tracers as functions of

the anabatic rank normalised by total number of observation days.

The minimum in the anabatic concentration marks the boundary be-

tween anabatic days, with lower anabatic rank, and non-anabatic

days.

Rather than showing that one method is drastically better

than the other, the main conclusion from Fig. 9 is that a more

accurate classification could come from combining both. For

71 % of the time, radon and r are in agreement and are associ-

ated with statistically significant changes in maximum tem-

perature anomalies. Days classified as anabatic are warmer

than average over a large part of Europe; non-anabatic days

are cooler over the same region.

When the tracers disagree, there is a much weaker signal

in observed temperatures. Days which have been classified

as anabatic according to r but not radon are not significantly

different from usual, so are probably false positives caused

by unrelated fluctuations in r .

There are fewer days when radon, but not r , leads to an

anabatic classification. On these days, there is a small (sta-

tistically significant) warm region south-east of Jungfrau-

joch, which also happens to be a region without significant

changes in temperature for other cases. This seems to rule out

all of these being false positives, though it is likely that some

are. On days when r fails to detect anabatic flows, confound-
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Figure 9. Daily maximum temperature anomalies for months with anabatic flows (April–September, inclusive) defined as the mean of each

group minus the mean anomaly for all days with data available. The groups are: (a) days which are anabatic according to both radon and r ,

140 samples; (b) anabatic days according to r but not radon, 68 samples; (c) anabatic days according to radon but not r , 73 samples; and (d)

non-anabatic days according to both tracers, 82 samples. The stippled region indicates a statistically significant difference between the group

mean and the full population at the 95 % confidence level according to Welch’s t test (Press et al., 2007; Welch, 1947). Data are gridded

observations from E-OBS (Haylock et al., 2008).

ing factors include moisture’s higher background variability

compared with radon, which is a result of different sinks and

sources.

In contrast to the binary anabatic/non-anabatic classifica-

tion, a direct comparison of rank between radon and r leads

to poor agreement. In light of this, we avoid relying on the

numerical rank in the analyses which follow and instead fo-

cus on the classification.

Following a different approach entirely, previous investi-

gations (Collaud Coen et al., 2011; Lugauer et al., 1998)

have found that circulation-pattern classifications (Huth et

al., 2008) are useful for explaining the occurrence of anabatic

conditions at Jungfraujoch. Many schemes have been devel-

oped (Demuzere et al., 2011; Philipp et al., 2010); for com-

parison with the radon-based method we selected the CAP9

scheme, a nine-class objective scheme based on mean sea

level pressure in a domain centred on the Alps and imple-

mented by MeteoSwiss (MeteoSwiss, 2012). We used this

scheme for two reasons: it has few classes, allowing for more

robust statistics in our relatively short data set; and it has been

demonstrated to perform well in the Alpine region for pre-

cipitation (Schiemann and Frei, 2010). When compared with

our radon-based classification, we found radon concentration

was weakly associated with circulation type, but circulation

class was not a good predictor of anabatic conditions. Sim-

ilarly, Zellweger et al. (2003) found that direct atmospheric

observations (NOy, aerosol and humidity) were a better pre-
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Figure 10. Hourly observations of tracer and meteorological pa-

rameters binned according to radon concentration for anabatic and

non-anabatic days. The comparison is restricted to the months when

anabatic flows are detected (April–September); hours when the air

mass arrives from the north-west; and when the radon and moisture

methods agree on the anabatic/non-anabatic classification. For mod-

erate radon concentration, anabatic days are calmer and dryer and

aerosols are more abundant. The symbols have the same meaning

as in Fig. 4.

dictor of thermally driven vertical transport than circulation

classification according to the Alpine Weather Statistics.

3.3 Air mass characteristics

Considering the different measurement footprint and trans-

port mechanisms on anabatic vs. non-anabatic days, we ex-

pect systematic differences in air-mass properties. To test this

idea, however, we first need to account for several other ef-

fects that also influence composition: total land-surface in-

fluence, large-scale fetch and season.

To account for the total land-surface influence we bin mea-

sured parameters by a proxy: radon concentration. To elim-

inate the effect of different large-scale fetch regions, we re-

strict the comparison to trajectories arriving from the north-

west. Although not shown here, radon measurements do in-

dicate a difference in the mechanism of vertical transport

for south-east back-trajectories; the radon concentration –

and therefore land-surface influence – increases with increas-

ing wind speed, whereas the opposite trend holds for north-

west back-trajectories. Anabatic days occur only for part of

the year, so a direct comparison between anabatic and non-

anabatic days would bias the anabatic data towards summer

measurements. Therefore, we compare only the months from

April through to September, when both anabatic and non-

anabatic flows are detected.

Figure 10 shows that several parameters have an inflec-

tion or discontinuity at a radon concentration of around

2 Bq m−3 STP.

Wind speeds differ between anabatic and non-anabatic

days; winds are always lower on anabatic days, and have

a weak decreasing trend with increasing radon concentra-

tion. On non-anabatic days, low radon concentrations are

associated with strong winds, but non-anabatic days have

similar wind conditions to anabatic days for radon concen-

trations greater than 2 Bq m−3 STP. This is consistent with

the anabatic and non-anabatic days being linked to differ-

ent dynamical processes. On non-anabatic days with radon

below 1.5 Bq m−3 STP, an increase in wind speed means

stronger vertical transport due to the interaction between ter-

rain and synoptic scale winds. To maintain radon concentra-

tions above this threshold, it seems that low wind speeds are

needed to prevent radon being diluted by the advection of

radon-depleted free-tropospheric air.

On anabatic days the air is dryer, both in terms of relative

humidity and, less dramatically, the water vapour mixing ra-

tio, because anabatic situations are favoured by fair weather

conditions. Non-anabatic days are likely to be close to satu-

ration for radon concentrations of 1.5 Bq m−3 STP or higher,

so non-anabatic vertical transport is likely to be associated

with clouds, which envelope the site for about 40 % of the

year (Andrews et al., 2011; Baltensperger et al., 1998).

On anabatic days, there is a clear correlation between

radon (a proxy for surface contact) and aerosol abundances.

In contrast, on non-anabatic days the median aerosol con-

centration is low and only weakly dependent on radon con-

centration (up until 2 Bq m−3 STP). In this range it is also

strongly skewed, since the mean is influenced by a few high-

concentration events. On non-anabatic days, it is possible to

observe low aerosol concentrations at the same time as high

radon. These cases might be associated with precipitation

and aerosol washout.
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Like radon, the molar ratio of total reactive nitrogen

species to carbon monoxide, [NOy]/[CO], is used as an indi-

cator of recent land influence (Pandey Deolal et al., 2013).

Though emitted in a relatively stable ratio from pollution

sources, NOy is removed faster than CO.

For high radon concentrations, which are associated with

arrival of anabatic flow at the mountain peak, [NOy]/[CO]

is larger on anabatic days. This suggests that closer sources

might be more important on anabatic days. The difference

is relatively small, however, and an alternative explanation

might be that cloud processes remove NOy more quickly on

non-anabatic days than on anabatic days when clouds tend to

be absent.

For higher radon concentrations, above 2.5 Bq m−3 STP

which is the 80th percentile of the observed distribution,

many of the quantities plotted in Fig. 10 are close to constant.

Although this could mean that the highest radon observations

are due to local emissions, these other tracers have seasonal

cycles in their sources and sinks which distorts the relation-

ship because high radon values are most common in midsum-

mer. Accounting for the seasonal cycle in these other trac-

ers, by applying a high-pass filter which retains fluctuations

with a period of 35 d or less, the relationship between binned

radon concentration and other land-surface tracers (for ex-

ample N2O, not shown, and CO) continues to increase in

a near-linear fashion until 5 Bq m−3 STP (98.5th percentile).

This suggests that local sources are not a major contributor

to observed radon concentrations at Jungfraujoch.

3.4 Radon-derived baseline

Baseline air is characterised by undisturbed background con-

centrations of short-lived pollutants, though the specifics of

its identification depend on the reason for study, the species

in question, and the measurement site. At Jungfraujoch, mea-

surements affected by anabatic winds or by strong non-

anabatic vertical transport cannot be expected to be represen-

tative of the regional-scale free troposphere. Identifying these

periods of local influence is a primary application of radon

measurements, which provide an unambiguous method for

defining baseline conditions. Radon has been used at sites

including Mauna Loa (Chambers et al., 2013), Cape Grim

(Zahorowski et al., 2013) and Jungfraujoch itself (Xia et al.,

2013), and here we combine radon and aerosol measure-

ments to examine the importance of anabatic flow detection

in the context of defining a radon-derived atmospheric base-

line.

In Fig. 11, which differs from Fig. 10d by including all

observations, the median aerosol scattering coefficient levels

out for radon concentrations below 2 Bq m−3 STP; for sum-

mer non-anabatic days the shoulder is present at a similar

level (Fig. 10d). So baseline aerosol statistics could be com-

puted from a radon threshold. Here we briefly discuss how

this compares with other commonly used baseline definitions

and examine the effect of excluding anabatic days.
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Figure 11. Aerosol scattering coefficient binned by radon concen-

tration. Data are from all months and wind directions. The symbols

have the same meaning as in Fig. 4.

The value of 2 Bq m−3 STP also corresponds with the sum-

mer [NOy]/ [CO] ratio of 0.008, identified by Pandey De-

olal et al. (2013) as characteristic of baseline conditions

(Fig. 10e). Arguably radon has an advantage in that a con-

stant value is more appropriate year round, whereas the de-

struction rate of CO varies with season. But seasonal changes

in radon emissions, which are sensitive to soil moisture and

large-scale fetch, means that a seasonally varying threshold

might also be preferred for radon.

The agreement between the two criteria, though indicat-

ing consistency between the tracers, is not of critical impor-

tance; any threshold is study specific and most of the plots

in Fig. 10 show a continuous variation in air-mass proper-

ties rather than a step change. For instance, Xia et al. (2013)

used a threshold of 0.5 Bq m−3 (∼ 0.75 Bq m−3 STP), further

limiting recent contributions from the land surface compared

with the Pandey Deolal et al. (2013) criteria and approaching

the observed radon concentration in oceanic baseline air at

Mace Head, a few tens of mBq m−3 (Biraud et al., 2000).

Figure 12 depicts monthly median values after applying

several baseline definitions to the aerosol data. For some

months, a 2 Bq m−3 STP radon threshold may be too high

to eliminate transient spikes from baseline values, though

a trade-off exists between data availability and smoothness.

Compared with a simple time-of-day filter (Andrews et al.,

2011), a radon-based definition results in a smoother season-

ality of baseline values while retaining a similar amount of

data. In this case, the choice of baseline definition can make

a nontrivial difference.

The use of a 2 Bq m−3 STP threshold can be further re-

fined, either by eliminating anabatic days or by choosing

a lower value. The elimination of anabatic days, combined

with a threshold of 2 Bq m−3 STP, has only a minor effect.

A peak is removed from the baseline for April 2011, imply-

ing that unusually active mountain winds were responsible

Atmos. Chem. Phys., 14, 12763–12779, 2014 www.atmos-chem-phys.net/14/12763/2014/
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Figure 12. Monthly median aerosol scattering coefficient from different selection criteria: all data; radon concentration less than 0.75, 1, and

2 Bq m−3 STP (the latter with anabatic days excluded); chemical filter based on [NOy]/ [CO] ratio (Pandey Deolal et al., 2013); time-of-day

filter. The time-of-day filter is similar to Andrews et al. (2011), keeping data measured during a time window of 03:00–09:00 local time, but

we show the median value instead of the mean.

for the higher radon concentrations seen that month, but oth-

erwise it is more effective, in terms of the number of obser-

vations retained, to reduce the threshold. For sufficiently low

radon thresholds, the imposition of an anabatic-day criterion

is redundant, since radon is usually high on anabatic days.

For thresholds of 1 or 0.75 Bq m−3 STP, the baseline aerosol

signal converges, especially during winter, despite making a

relatively large difference to data availability.

From these considerations, a baseline radon threshold of

1 Bqm−3 STP works well for continuous aerosol measure-

ments, but a reasonable choice could easily lie in the range

0.75–2 Bq m−3 STP, depending on the desired remoteness of

land surface influence.

4 Conclusions

Radon – to a good approximation – is a direct indicator of

land influence. From our analysis of the 2010–2011 hourly

radon concentration at Jungfraujoch, the primary outcome

was a classification of each day as affected, or unaffected,

by thermally driven or anabatic mountain winds as well as a

less robust measure of how strong the influence was. On the

most strongly affected days, matching radon concentrations

at Bern and Jungfraujoch were taken as evidence of relatively

unperturbed transport of boundary-layer air from the Swiss

Plateau to Jungfraujoch.

Anabatic winds are likely to be most prominent during

conditions of clear skies and low winds. We found that an-

abatic days had, on average, higher daily maximum temper-

atures over central Europe, lower winds at Jungfraujoch, and

weaker wet scavenging of aerosols. The effect on tempera-

ture was stronger when absolute humidity was used in addi-

tion to radon for classification, indicating that a more robust

classification is achieved when using more than one tracer.

During periods of high relative humidity and strong winds

at Jungfraujoch, high radon concentrations were sometimes

observed, indicative of strong or recent land influence. How-

ever, these days lacked the characteristic diurnal cycle of an-

abatic flows, resulting in their classification as non-anabatic,

and were most likely the result of dynamic influences (e.g.

Föhn winds).

For defining the baseline aerosol scattering coefficient,

or in other words the unperturbed free-tropospheric back-

ground, we showed that a radon threshold in the range of 1–

2 Bq m−3 STP is appropriate and that the monthly median is

relatively insensitive to the radon threshold within this range.

Refining the definition by excluding anabatic days was of no

additional benefit. In other words, the potential land-surface

influence, as characterised by the measured radon concentra-

tion, is of primary importance and the mechanism less so.

With the continuing operation of the Jungfraujoch radon

detector, which provides sensitive quantitative measurements

of the radon concentration, we anticipate that these data will

be useful in other observational and modelling studies. Fu-

ture studies could examine the effect of spatially and tempo-

rally varying radon emissions, overcoming one limitation of

www.atmos-chem-phys.net/14/12763/2014/ Atmos. Chem. Phys., 14, 12763–12779, 2014
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the present investigation. Instructions for accessing the radon

data are at http://www.radon.unibas.ch/.
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