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Abstract. A neural-network-based retrieval method to de-
termine the snow ice water path (SIWP), liquid water path
(LWP), and integrated water vapor (IWV) from millime-
ter and submillimeter brightness temperatures, measured by
using airborne radiometers (ISMAR and MARSS), is pre-
sented. The neural networks were trained by using atmo-
spheric profiles from the ICON numerical weather prediction
(NWP) model and by radiative transfer simulations using
the Atmospheric Radiative Transfer Simulator (ARTS). The
basic performance of the retrieval method was analyzed in
terms of offset (bias) and the median fractional error (MFE),
and the benefit of using submillimeter channels was stud-
ied in comparison to pure microwave retrievals. The retrieval
is offset-free for SIWP > 0.01kg m−2, LWP > 0.1kg m−2,
and IWV> 3kg m−2. The MFE of SIWP decreases from
100% at SIWP= 0.01kg m−2 to 20% at SIWP= 1kg m−2

and the MFE of LWP from 100% at LWP = 0.05kg m−2

to 30% at LWP= 1kg m−2. The MFE of IWV for IWV>
3kg m−2 is 5 to 8 %. The SIWP retrieval strongly benefits
from submillimeter channels, which reduce the MFE by a
factor of 2, compared to pure microwave retrievals. The IWV
and the LWP retrievals also benefit from submillimeter chan-
nels, albeit to a lesser degree. The retrieval was applied to
ISMAR and MARSS brightness temperatures from FAAM
flight B897 on 18 March 2015 of a precipitating frontal sys-
tem west of the coast of Iceland. Considering the given un-
certainties, the retrieval is in reasonable agreement with the
SIWP, LWP, and IWV values simulated by the ICON NWP
model for that flight. A comparison of the retrieved IWV
with IWV from 12 dropsonde measurements shows an offset

of 0.5kg m−2 and an RMS difference of 0.8kg m−2, show-
ing that the retrieval of IWV is highly effective even under
cloudy conditions.

1 Introduction

Ice clouds are in an ongoing focus of atmospheric remote
sensing as they play an important role in atmospheric ra-
diation due to their reflection of sunlight and their entrap-
ment of infrared radiation. The bulk mass of ice in the at-
mosphere is typically used to describe the column-integrated
bulk mass of atmospheric ice, also known as the ice water
path (IWP). Measuring the IWP continues to remain a chal-
lenging task and is an important gap in the current global
climate observation system. Buehler et al. (2012b) and Holl
et al. (2014) argued that this discrepancy is one of the rea-
sons why there are large differences in the IWP estimates in
climate models. In general, the term IWP is defined for the
whole integrated ice bulk mass, for example in the work of
Evans et al. (2012) and Holl et al. (2014). However, in this
paper, henceforth, we distinguish between cloud ice, which
consists mainly of ice particles with diameters < 100µm,
and snow, which consists mainly of ice particles with di-
ameters > 100µm. This threshold results from the particle
size distribution used (see Sect. 3.2). This distinction be-
tween small and large ice particles is similar to that in at-
mospheric models such as the Icosahedral Nonhydrostatic
(ICON) model (Zängl et al., 2015) or in the IFS-137 model
of the European Centre for Medium-Range Weather Fore-
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casts (ECMWF) (Eresmaa and McNally, 2014). Hereinafter,
we define the CIWP as the column-integrated bulk mass of
cloud ice and we define the snow ice water path (SIWP) as
the column-integrated bulk mass of snow. Note that snow de-
fined in this way can and does occur at high altitudes; typical
cirrus clouds in the used model fields contained about two-
thirds of their mass in the form of snow, and only the remain-
ing in the form of cloud ice.

Existing methods to estimate the IWP use passive sen-
sors within the microwave, infrared, and visible ranges of
the electromagnetic spectrum and use active sensors such as
radar or lidar, or combinations of different sensors. Compre-
hensive overviews of existing methods can be found in Elias-
son et al. (2013) and Holl et al. (2014). According to Holl
et al. (2014) active sensors, especially combined radar–lidar
are probably capable of estimating IWP with a higher accu-
racy than any existing passive sensor. Furthermore, because
of the principle on which their measurements are based, ac-
tive sensors such as lidar and radar are much more suited
for also retrieving the vertical structure. The problem with
active sensors is that they lack horizontal coverage, because
they only sample the atmosphere directly below the satellite.

Existing passive sensors are problematic in that their sen-
sitivity is highly selective. Passive microwave sensors for ex-
ample lack sensitivity for thin ice clouds but are capable of
sensing the whole column, whereas infrared and optical sen-
sors are capable of sensing thin ice clouds but cannot sense
the whole column because high clouds obscure lower clouds.
Submillimeter waves are much more sensitive to ice clouds
compared to microwaves, as we show in Sect. 3, but passive
submillimeter waves are still capable of sensing the whole
column in contrast to infrared or visible waves. The use of
submillimeter waves therefore ensures that the retrieval of
the IWP based on combined microwave and submillimeter
wave measurements is more effective than when using in-
frared or visible waves. This approach also obviates the need
for collocating data from different sensors, for example when
using the SPARE-ICE product (Holl et al., 2014). However,
regardless of the technique that is used, remote sensing of ice
clouds is a difficult task because of the many factors that can
influence the measurement (Evans et al., 2012).

The launch of the Meteorological Operational Satellite
Second Generation B (MetOp-SG B) is planned for the early
2020s. Among other sensors, this satellite will be equipped
with an Ice Cloud Imager (ICI) and Microwave Imager
(MWI). ICI will be the first operational spaceborne down-
looking sensor with the ability to measure in the submillime-
ter range of the electromagnetic spectrum. The main purpose
of ICI, as indicated by its name, is to sense ice clouds. Even
though the studies of Buehler et al. (2012b), Buehler et al.
(2007), and Jiménez et al. (2007) were not explicitly carried
out for ICI, they provide a useful overview of the fundamen-
tals of ICI. The International Submillimetre Airborne Ra-
diometer (ISMAR) is an airborne radiometer that measures
at several frequencies between 118 and 664GHz of the elec-

tromagnetic spectrum. One of the main tasks of ISMAR is
to serve as a satellite demonstrator for ICI (Fox et al., 2017).
Apart from ISMAR, another airborne radiometer that mea-
sures in a similar region of the electromagnetic spectrum
is the Compact Scanning Submillimeter-wave Imaging Ra-
diometer (CoSSIR). Evans et al. (2012) used measurements
from CoSSIR on board the ER-2 aircraft to estimate the IWP.

In March 2015, COSMICS (Cold-air Outbreak and sub-
Millimetre Ice Cloud Study) was carried out around the
northern part of the United Kingdom and Iceland. Among
other measurements, COSMICS recorded airborne radiome-
ter measurements with ISMAR and the Microwave Airborne
Radiometer Scanning System (MARSS). These measure-
ments were conducted using the BAe-146 aircraft from the
Facility for Airborne Atmospheric Measurements (FAAM).
ISMAR and MARSS together cover most of the ICI
and MWI channels ≥ 89GHz, which makes ISMAR and
MARSS very useful in view of MetOp-SG B.

The main purpose of this work is to develop a method
to retrieve the paths of ice and snow in the atmosphere,
known as frozen hydrometeors, from data recorded by air-
borne millimeter and submillimeter radiometer and to apply
the retrieval on real observations. Our plan is to base the re-
trieval method on artificial neural networks (NNs). The artifi-
cial NNs are trained using a database of atmospheric profiles
taken from a numerical weather prediction (NWP) model and
associated brightness temperatures calculated using a radia-
tive transfer model. The model profiles are broadly represen-
tative of the conditions during the flight, but they span a much
greater range of atmospheric conditions. As the simulations
need information about cloud liquid water, precipitating wa-
ter, and water vapor, we additionally investigated retrieval
for column-integrated cloud liquid water, which we term the
liquid water path (LWP), the column-integrated precipitat-
ing water, which we term the rainwater path (RWP), and the
column-integrated bulk mass of water vapor, which we term
integrated water vapor (IWV). Our retrieval approach is sim-
ilar to a previous approach of Jiménez et al. (2007). However,
our study differs from theirs in three main respects: first, we
apply the retrieval method to real measurements; second, we
are not only interested in frozen hydrometeors; and, third,
our system can be employed over the ocean, whereas the ap-
proach of Jiménez et al. (2007) worked only over land. The
performance of the NN retrieval is evaluated using an inde-
pendent set of atmospheric profiles and simulated brightness
temperatures to get an error estimate of the retrieval. Fur-
thermore, the retrieval is applied to the observation and the
retrieved quantities are compared to NWP model values as a
consistency check. Although Wang et al. (2016) followed a
similar approach to estimate hydrometeor paths, they did not
apply their approach to measured data. They only used mea-
surement data up to 200GHz to validate their simulations. In
contrast to our study, the retrieval system they developed was
intended for retrieval over land and ocean.
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The text is structured as follows: in Sect. 2 we provide an
overview of ISMAR and MARSS. In Sect. 3 we describe the
retrieval method. This includes the basic assumptions of the
method, the structure and training of the artificial NNs we
used, the approach we followed to conduct the simulations,
and the approach we used to construct the dataset on which
to train the NN and to check the consistency of the simula-
tions. Section 4 contains the results of our test of the retrieval
system under ideal conditions to obtain the limits of the pro-
cedure and a discussion of the results. In Sect. 5 we present
the results of applying the retrieval method to ISMAR and
MARSS measurements and discuss the results. In Sect. 6 we
summarize the results.

2 Sensors

2.1 ISMAR

ISMAR is an along-track scanning heterodyne radiometer,
which measures between 118 and 664GHz (Table 1). IS-
MAR is jointly funded by the UK Met Office and the Eu-
ropean Space Agency (ESA). One task of ISMAR is to
serve as an airborne demonstrator for the upcoming ICI
on MetOp-SG B. ISMAR measures at similar frequencies
as ICI except for the channels at approximately 118GHz,
which form part of MWI instead, and which is on board
the same satellite. ISMAR measures radiation as Rayleigh–
Jeans calibrated brightness temperatures. This means, within
ISMAR, the received radiation power is converted to bright-
ness temperatures using the Rayleigh–Jeans approximation
for a blackbody. Except for the window channels at 243.2
and 664.0GHz, ISMAR measures single linear polarization.
The window channels measure dual orthogonal linear polar-
ization. ISMAR is mounted on the left side of the aircraft, al-
lowing both upward and downward views. Downward views
with nominal nadir incidence angles between +50 and −10◦

are possible, where positive angles indicate directions to-
wards the front of the aircraft. Zenith observations can be
made in the +10 to −40◦ range. The nadir +50◦ view is de-
signed to give a close match in incidence angle to conically
scanning imagers such as ICI. However, in this work we use
only the near-vertical nadir view in order to eliminate any
polarization differences. For further details on ISMAR see
Fox et al. (2017). Polarization differences are not expected
in the vertical view as both polarizations are orthogonal to
both the surface and the clouds, and the sensed medium is
likely to be random in the azimuth direction. Therefore, the
two polarizations of the window channels were averaged.

2.2 MARSS

MARSS is an along-track scanning heterodyne radiometer,
which measures between 89 and 183GHz (Table 1). The
viewing directions of MARSS are 40 to−40° nadir and 40 to
−40° zenith. MARSS is an airborne version AMSU-B (Mc-

Grath and Hewison, 2001). MARSS is also mounted on the
side of the aircraft, allowing similar upward and downward
views. MARSS measures single linear polarization and mea-
sures the radiation as Rayleigh–Jeans calibrated brightness
temperatures. Further details on MARSS can be found in Mc-
Grath and Hewison (2001) and the articles cited therein. In
this work, we use only the nadir-viewing direction.

3 Retrieval method

Retrieving hydrometeor paths from brightness temperatures
or in general from the radiance is an inverse problem with the
generic form (Rodgers, 2000):

Y = f (X)+ ε , (1)

where Y is the vector of the measured brightness tempera-
tures, X is the vector quantities to retrieve, f (the forward
model) is the radiative transfer and sensor model that can
simulate brightness temperatures for a given atmospheric
state, and ε is the measurement noise. The typical inverse
problem in remote sensing is an ill-proposed problem. Many
different ways have been reported in the literature to over-
come this problem, for example optimal estimation (Rodgers
and Connor, 2003), Monte Carlo integration in combination
with Bayesian inference (Evans et al., 2012), or artificial NNs
(Defer et al., 2008; Jiménez et al., 2007). We followed the lat-
ter approach and used NNs to retrieve the desired quantities.
For a detailed introduction on NNs, see for example Rojas
(2013). Before it can be used, a NN requires training data to
set up the network. Construction of the training dataset is ex-
plained in the next subsection. Details of the NN follow in
Sect. 3.4.

3.1 Training database

The training database plays a crucial role in NN-based re-
trieval. All the assumptions on which the retrieval method
is based are condensed in the database. For example, the
database needs to cover the actual measurement space (the
full range of Y s), failing which the retrieval would be unsuc-
cessful for some measurements. This would imply that the
assumptions about the atmosphere and the interaction with
electromagnetic radiation were inadequate. Therefore, it is
important to make reasonable assumptions. The two main
assumptions in terms of retrieval are that the atmospheric
profiles from a NWP model are sufficient to describe the
possible states of the atmosphere and that the interaction of
the atmosphere with the electromagnetic radiation can be de-
scribed by a radiative transfer model.

We use atmospheric profiles from simulations of a regional
version of the ICON model, details of which can be found in
Zängl et al. (2015) and Reinert et al. (2016). The atmospheric
profiles were taken from three ICON forecast runs on 11, 13,
and 18 March 2015 of the region between 50 and 75◦ N and
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Table 1. Channel descriptions, taken mostly from Fox et al. (2017).

Center fre- Side Band- Noise Polari- Feature
No. quency (GHz) bands (GHz) widths (GHz) (K) zation Instrument

1 89.0 ±1.1 0.65 0.5 v MARSS window
2 118.75 ±1.1 0.4 0.2 v ISMAR oxygen line
3 118.75 ±1.5 0.4 0.2 v ISMAR oxygen line
4 118.75 ±2.1 0.8 0.2 v ISMAR oxygen line
5 118.75 ±3.0 1.0 0.2 v ISMAR oxygen line
6 118.75 ±5.0 2.0 0.2 v ISMAR oxygen line
7 157.05 ±2.6 2.6 0.5 v MARSS window
8 183.31 ±1.0 0.45 0.5 v MARSS water vapor line
9 183.31 ±3.0 1.0 0.5 v MARSS water vapor line

10 183.31 ±7.0 2.0 0.5 v MARSS water vapor line
11 243.20 ±2.5 3.0 0.3, 0.5 h, v ISMAR window
12 325.15 ±1.5 1.6 1.1 v ISMAR water vapor line
13 325.15 ±3.5 2.4 0.3 v ISMAR water vapor line
14 325.15 ±9.5 3.0 0.8 v ISMAR water vapor line
15 448.0 ±1.4 1.2 0.9 v ISMAR water vapor line
16 448.0 ±3.0 2.0 1.3 v ISMAR water vapor line
17 448.0 ±7.2 3.0 1.9 v ISMAR water vapor line
18 664.0 ±4.2 3.0 0.9, 2.7 h, v ISMAR window

30◦W and 5◦ E with a gridded resolution of about 10km.
These three runs cover the three different FAAM BAe-146
flights during COSMICS. Each run started at 00:00 GMT us-
ing the starting conditions from the Integrated Forecasting
System (IFS) of the ECMWF and ended at 06:00 GMT on
the following day. The complete model fields of each run
had a time resolution of 30 min. The fields for the first 6 h
of each run were excluded to eliminate possible spinup ef-
fects. From the remaining time steps we randomly selected
approximately 13 000 atmospheric profiles over the ocean.
The location and the time of the profiles and the north–south
transects of the FAAM flight B897 on 18 March are shown
in Fig. 1. The selected profiles cover a much wider range
of atmospheric conditions than the actual conditions during
the flight. The flight took about 3 h west of Iceland, whereas
the selected profiles span in total a time range of 72 h over
a much larger area than the actual flight. Because the atmo-
spheric profiles were from the same season and they cover
a wide range of atmospheric conditions including the con-
ditions during the flight, these profiles are expected to suffi-
ciently cover the situations encountered during the measure-
ment flight without being optimized for this specific flight.
Although the database covers a wide range of atmospheric
conditions, it is constrained to a similar season and simi-
lar latitude over ocean. A retrieval based on this database
is likely to provide insufficient results when applied to dif-
ferent seasons, different latitudes, or even over land. Simu-
lated brightness temperature measurements for each atmo-
spheric profile were generated for the database using the At-
mospheric Radiative Transfer Simulator (ARTS) (Eriksson
et al., 2011 and Buehler et al., 2005).

Figure 1. Locations of the approximately 13 000 randomly selected
profiles of the training database from the three ICON forecast runs
on 11, 13, and 18 March 2015. Each dot stands for one profile. The
day time of each profile is color indicated in hours after start of the
runs. The red lines depict the north–south transects of the FAAM
flight B897 on 18 March 2015. The white ocean areas north of Ice-
land and east of Greenland indicate areas covered with sea ice.
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3.2 Radiative transfer simulations

ARTS, which is a radiative transfer model for thermal ra-
diation, can process fully polarized radiative transfer calcu-
lations with scattering. This is important as microwave and
submillimeter radiation mostly interacts with ice particles by
scattering. We used ARTS version 2.3. The discrete ordinate
iterative (DOIT; Emde, 2004) method was used as scatter-
ing solver within ARTS. The Rayleigh–Jeans brightness tem-
peratures were simulated for each randomly selected atmo-
spheric profile. No explicit spectral response function was
used to simulate the ISMAR and MARSS channels; instead,
we conducted monochromatic radiative transfer simulations
for the center frequencies of the two side bands of each chan-
nel and obtained their average. Tests with highly spectral re-
solved clear-sky simulations showed that the error by using
only the center frequency of each pass band is < 1 K. Pos-
sible effects due to different footprint sizes and beam-filling
are neglected as the footprints of MARSS and ISMAR are
much smaller than similar satellite instruments, or an ICON
model grid cell. The footprint size at ground level is pretty
much the same for all the ISMAR channels is of the order of
700m for a flight altitude of 10km. The footprint size at the
surface varies with channel; for a flight altitude of 10 km it
varies between 700 and 1500 m.

Within ARTS, gas absorption was taken into account
by using the HITRAN database (Rothman et al., 2013)
and the MT_CKD model for the continuum absorption
of water vapor and molecular nitrogen in version 2.52
(Mlawer et al., 2012). The gas absorption of molecular oxy-
gen was processed by using the full absorption model of
Rosenkranz (1998) modified by the values from Tretyakov
et al. (2005). The surface emissivity was calculated using the
FAST microwave Emissivity Model (FASTEM; Liu et al.,
2011) implementation within ARTS 2.3 using the surface
wind speed and surface temperature from the ICON model
dataset. Although FASTEM was originally developed for
low microwave frequencies, with further development the
valid frequency range was enhanced to higher frequencies.
Liu et al. (2011) tested FASTEM up to 150GHz. Prigent
et al. (2016) compared FASTEM with the Tool to Estimate
Sea-Surface Emissivity from Microwaves to sub-Millimeter
waves (TESSEM2) and with ISMAR measurements from
two low-level flights at low wind speeds. They showed that
FASTEM tends to underestimate the emissivity at 243.3GHz
leading to errors of order 5K in the upwelling brightness
temperature close to the surface (flight altitudes < 300 m).
The emissivity using FASTEM at 243GHz is roughly be-
tween 0.7 and 0.8 for nadir-viewing direction and atmo-
spheric conditions during FAAM flight B897. At surface
level and for a surface temperature of 276K, which is the
surface temperature in the ICON model for the beginning of
the first transect of FAAM flight B897 (see also Sect. 5),
these emissivities result in upwelling brightness tempera-
tures of 193 and 221K and a difference of 28K in the up-

welling brightness temperatures. Clear-sky simulations using
ARTS for conditions similar to the driest conditions during
the FAAM flight B897 show for an IWV of 6kg m−2 at a
flight level of 10km an upwelling brightness temperature of
233K for a surface emissivity of 0.7 and 243K for a sur-
face emissivity of 0.8. The difference in upwelling brightness
temperatures is reduced to 10K at a flight level of 10km.
This is roughly one-third of the upwelling brightness tem-
perature difference at surface level. So, a 5K error in the
upwelling brightness temperature at the surface will result
in a worst-case error of approximately 1.8K at 10 km. For
greater IWV the error is even smaller. Therefore, consider-
ing the strong scattering signal at 243.3GHz (see Fig. 3), we
do not consider this problematic. For the higher-frequency
ISMAR channels (325GHz and higher, ch. 12–18) the effect
of surface emissivity errors will be smaller due to the strong
water vapor absorption at these frequencies.

Each atmospheric profile consists of the following pro-
files with 90 pressure levels between 0.02hPa and the surface
pressure: Atmospheric temperature in K, altitude in m, atmo-
spheric humidity in vmr, cloud liquid water in kg m−3, cloud
ice water in kg m−3, rain in kgm−2 s−1, and snow in kg m−3.
Oxygen and nitrogen levels were assumed to be constant with
volume mixing ratios of 0.2095 and 0.7808, respectively.

The ICON runs used a one-moment microphysics scheme
with four distinct hydrometeor types, namely liquid cloud
water, cloud ice, rain, and snow. Assumptions on particle
size distributions and shape are necessary in order to sim-
ulate brightness temperatures. Our assumptions are simi-
lar to Geer and Baordo (2014) with one exception: Geer
and Baordo (2014) use sector-like snowflakes from the Liu
(2008) database to simulate the scattering of snow. The Liu
database is valid only for frequencies up to 340GHz, which
is insufficient for our simulations. Instead, we use aggregates
from the database of Hong et al. (2009) to simulate the scat-
tering of snow, because the Hong aggregate is the only ag-
gregate habit for which there exist publicly available data
above 340GHz. According to Eriksson et al. (2015), Hong
aggregates reasonably represent the average scattering prop-
erties of snow. However, in some respects the Hong database
is also problematic. Firstly, the effective density of the Hong
aggregates is constant, whereas the effective density of snow
changes with the particle size. Secondly, the data are based
on the old Warren (1984) refractive index data, which do
not include the temperature dependencies. We therefore used
a corrected version of the Hong et al. (2009) database in
which the absorption is rescaled using the Mätzler (2006)
parameterization for the refractive index of ice. Rescaling
is achieved by multiplication with imag(n)/imag(n0), where
n0 and n are the refractive indices from Warren (1984) and
Mätzler (2006), respectively. The rescaling is used to obtain
data for 183, 213, 243, and 266K. The scattering extinction
and all six of the phase matrix values are maintained con-
stant. This means that only the absorption is rescaled. Our
assumptions about the microphysics are the same in terms of
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the basic hydrometeor types but differ from the internal mi-
crophysics of the ICON model in terms of size, shape, and
density. However, this is not considered an issue, because the
function of the ICON model for the database is simply to de-
liver physically realistically profiles, which span the range of
conditions that may be encountered. For this case, it is not
necessary to be fully consistent with the ICON model. If the
interest is in the ICON microphysics then consistency would
be needed.

Explicitly, we used the following four hydrometeors for
the radiative transfer simulations.

1. Liquid cloud water: the scattering properties were cal-
culated under the assumption of a spherical shape using
the Mie theory. The size distribution was calculated us-
ing a modified gamma distribution

N (D)=N0D
µ exp

(
−3Dγ

)
, (2)

where D the diameter of the spheres using the coeffi-
cients of Geer and Baordo (2014). The parameters µ,
γ , and 3 are provided in Table 2. The scale parameter
N0 is set according to the mass concentration using the
expression for the third moment of a modified gamma
distribution (Petty and Huang, 2011)

2. Cloud ice: the scattering properties were calculated un-
der the assumption of a soft sphere with a density of
900kgm−3 using the Mie theory as in Geer and Baordo
(2014). The size distribution was calculated using a
modified gamma distribution (Eq. 2). The parameters
µ, γ , and 3 are listed in Table 2. The scale parameter
N0 is set according to the mass concentration using the
expression for the third moment of a modified gamma
distribution (Petty and Huang, 2011).

3. Rain: the scattering properties were calculated under the
assumption of a spherical shape using the Mie theory.
The size distribution was calculated using the Marshall–
Palmer size distribution (Marshall and Palmer, 1948),
for which the mass flux was converted to the rain rate
by assuming a constant density of 1000kgm−3.

4. Snow: we assume snowflakes behave similar to the ag-
gregates from the Hong DDA database (Hong et al.,
2009). The size distribution was calculated using the
midlatitude version of the distribution from Field et al.
(2007). The mass–dimension relationship we used is

m(D)= α

(
D

D0

)β
, (3)

where α = 65.4kg and β = 3 are the shape parameters,
D is the maximum diameter, and D0 is the unit maxi-
mum diameter. The shape parameters α and β were cal-
culated from the shape dimensions.

Table 2. Parameters used for the modified gamma distribution.

Hydrometeor µ γ 3

Cloud liquid water 2 1 2.13× 105

Cloud ice water 2 1 2.05× 105

The selected size distributions define the size range covered
by the different hydrometeor habits. These choices result in
cloud ice mainly consisting of particles < 100µm, whereas
snow mainly consist of particles > 100µm.

3.3 Comparison of simulations and measurements

Before we can start with the retrieval, we have to verify
whether the data in our training database cover the measure-
ments. If the simulations do not cover the full range of mea-
surements or only partially cover this range, the retrieval is
likely to provide insufficient results. In Fig. 2 the brightness
temperature of each channel at a flight altitude of 10500m
is plotted against that of all the other channels, such that the
plot consists of 18 times 18 subplots. The diagonal is empty
by definition. The channels stated above the plots correspond
to the brightness temperatures on the x axis and the channels
stated on the right-hand side correspond to the brightness
temperatures on the y axis. The plot in Fig. 2 shows how each
channel is correlated with every other channel. First, let us
consider the upper right half of the plot, where the measure-
ments are plotted over the simulations. Although the mea-
sured values cover a smaller area than the simulated values,
the former of these values are mostly surrounded by the latter
values. This means that the variability of our simulations is
higher than the variability of the measurements. As we chose
the profiles randomly we do not expect to obtain an exact
match between each measurement and its simulation. Actu-
ally, this is not necessary and is not our intention. The ICON
profiles only have to be physically realistic and span the pos-
sible range of conditions. The important point is that the set
of measurements is contained within the set of simulations.
In the lower left half, where the simulations are plotted over
the measurements, we can easily determine whether the set
of measurements is within the set of simulations. Mostly, the
red dots are covered by the blue dots, meaning the measure-
ments are within the set of simulated values. The simulated
brightness temperatures of the 183.31± 1GHz channel, the
325.15± 1.5GHz channel, the three 448GHz channels, and
the 664GHz channel are slightly higher than the measured
brightness temperatures. One reason could be the presence
of an insufficient amount of water vapor in the upper tropo-
sphere of the randomly selected atmospheric profiles from
the ICON model dataset, because these channels are sensi-
tive to the upper troposphere. Another reason could be the
spectroscopy used within ARTS.
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Figure 2. Comparison of simulated brightness temperature (blue) and measured brightness temperature of flight B897 (red). The channels
indicated above and on the right correspond to the brightness temperatures on the x and y axes, respectively.

www.atmos-meas-tech.net/11/611/2018/ Atmos. Meas. Tech., 11, 611–632, 2018



618 M. Brath et al.: Retrieval of ice water path

Of course this comparison cannot prove the sufficiency of
our training database for retrieval purposes; however, thus far
the behavior seems to be reasonable and understandable. We
therefore expect the training database to be adequate for the
retrieval.

Before we discuss the NN, we investigate the influence
of frozen hydrometeors on the brightness temperatures. The
liquid particles interact with the electromagnetic radiation by
absorption and in the case of rain also by scattering, whereas
the frozen particles interact with the electromagnetic radi-
ation mainly by scattering. Furthermore, the absorption is
mostly related to the total mass of the particles and is less de-
pendent on the particle size, whereas scattering strongly de-
pends on the particle size. Buehler et al. (2007) showed, for
frequencies similar to those of ISMAR, that the frozen parti-
cles must have an effective diameter > 100µm to have a sig-
nificant influence on the brightness temperatures. Figure 3a
shows the difference in brightness temperatures between a
subset of 450 simulations without cloud ice and with cloud
ice as a function of the CIWP. The maximum difference is
< 0.5K, which is mostly smaller than the noise of ISMAR
and MARSS. This means, by using ISMAR and MARSS,
there is no possibility to physically sense CIWP, bearing in
mind that within this study CIWP is the column-integrated
bulk mass of ice particles mostly smaller than 100µm. In this
respect, our work contrasts with that of Wang et al. (2016),
who stated that they can estimate CIWP. The reason for this
difference is that they assume a different particle size distri-
bution for cloud ice, which results in larger cloud ice parti-
cles. Figure 3b shows the difference in brightness tempera-
tures between a subset of 450 simulations without snow and
with snow as a function of the SIWP. A clear relationship be-
tween the SIWP and the difference in brightness temperature
can be seen. The difference in brightness temperature is up to
50K. For the 243GHz channel, it is even up to 80K (outside
the y-axis range of Fig. 3).

3.4 Neural network

Before the NN is set up, the retrieval method has to be de-
fined. The main interest of this study is to retrieve SIWP as
well as to investigate the retrieval of IWV, LWP, and RWP.
Except for IWV, these quantities have a high dynamic range
and all four quantities are always greater than or equal to
0kg m−2. Therefore, we retrieve the logarithm of the ratio of
the desired quantity and the unit path, for example for SIWP:

siwp= log10
SIWP
SIWP0

, (4)

with SIWP0 = 1kg m−2 the snow ice water unit path. As the
logarithm is not defined for zero, every zero value of the four
quantities is assigned the value of 10−9 kg m−2 before com-
puting the logarithm, which was the order of the smallest val-
ues above zero, to avoid infinite values. Thus, the smallest
value of a retrieval quantity is −9. Henceforth, writing the

SIWP or one of the other three quantities in lowercase means
that the decadic logarithm of the quantity was used. Our state
vector X refers to

X =


lwp
rwp
siwp
iwv

 . (5)

The measurement vector Y consists of 18 components. Each
component is the measured brightness temperature Tb of one
of the 18 combined channels of ISMAR and MARSS:

Y =


Tb,ch1
Tb,ch2
...

Tb,ch18

 (6)

with the channels defined as in Table 1.
Instead of using one NN for the retrieval, we use an en-

semble of NNs. According to Heskes (1997), an ensemble
of NNs is expected to provide a more accurate estimate of
the true regression than would be possible with only one NN.
The retrieved state vector X is then the average over the esti-
mated state vectors of each NN of the ensemble:

X =
1
N

N∑
n=1

Xn, (7)

whereN is the number of neural networks and Xn is the esti-
mated state vector of the nth neural network. An ensemble of
20 NNs is used for the retrieval. Each NN consists of one in-
put, one hidden, and one output layer with 18, 12, and 4 neu-
rons, respectively. The input neurons are the components of
the measurement vector Y , i.e., the measured brightness tem-
peratures. The output neurons are the components of the state
vector X, i.e., the logarithms of the path of the three hydrom-
eteors and the logarithm of the IWV. Each NN is trained with
simulated measurement vectors from the training database
and the corresponding state vectors. The noise behavior of
the measured brightness temperatures is included by adding
a Gaussian distributed error to every simulated brightness
temperature with a standard deviation of the noise of each
channel (see also Table 1).

The NNs are trained by using approximately 6000 state
vectors. The other 7000 state vectors are used for testing.
Each NN of the ensemble is trained with a randomly chosen
subsample of about 3000 state vectors and the corresponding
measurement vectors. Each NN is trained by the Levenberg–
Marquardt algorithm (Hagan and Menhaj, 1994).

As simple to use and as powerful as NNs are, these net-
works have a downside. As soon as one part of the measure-
ment setup is changed, a new NN must be trained. If the num-
ber of channels or even simply the position of one channel is
changed, it is necessary to train a new NN. This has the im-
plication that for airborne measurements, different NNs are
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Figure 3. Difference in brightness temperatures between simulations with (a) cloud ice set to zero and with simulation with unchanged cloud
ice as a function of the CIWP and (b) same as for panel (a) but with snow set to zero and as a function of SIWP.

www.atmos-meas-tech.net/11/611/2018/ Atmos. Meas. Tech., 11, 611–632, 2018



620 M. Brath et al.: Retrieval of ice water path

required for different flight altitudes. Nonetheless the compu-
tational burden is not high. Once the NNs are trained, which
takes some hours, they are very fast. For satellites such as
MetOp-SG B, which will carry MWI and ICI, this is less of
an issue because observation will always be from above the
top of the atmosphere. The main issue for a satellite applica-
tion is that the training database must cover the global range
of atmospheric conditions. Therefore our retrieval is limited
to similar seasons and latitude range as the used database, but
there is no fundamental limit in the usage a NN for global re-
trieval application, as long the database covers the wide range
of globally possible atmospheric conditions and the NN can
capture this variability. For example, Holl et al. (2014) ap-
plied their trained NN globally to retrieve IWP. By using for
example similar ICON model runs for several globally dis-
tributed regions and different seasons, our retrieval can be
expanded to global applications.

4 Basic retrieval performance

Retrieval simulations for a flight altitude of 10.5km are used
to test the basic retrieval performance. We applied the NN,
which was trained with one part of the training database, to
the other part of the training database. This means that the
retrieval procedure was applied to approximately 7000 mea-
surement vectors with simulated brightness temperatures.
For each of these 7000 measurement vectors the correspond-
ing state vector is known. Thus, the results of the retrieval can
be compared directly with the true state vectors. This is a test
under ideal conditions as retrieval and test data are based on
the same assumptions. Possible errors due to radiative trans-
fer simulation or errors of the model profiles are excluded in
this test. In that case, the retrieval performance is limited by
the errors of the artificial NNs and from the radiometer noise
of MARSS and ISMAR in combination with limited inter-
action between the electromagnetic radiation and the atmo-
sphere. We excluded the error of the radiative transfer sim-
ulation and the error of the atmospheric model because the
modeling errors are difficult to estimate, as there are no data
to compare with. Therefore, the errors from the direct com-
parison are an estimate of the physical limits of our retrieval
approach. The retrieval error when applying the retrieval on
measured brightness temperatures is likely to be larger, as the
a priori assumptions will be never completely fulfilled.

4.1 Offset

In Fig. 4 the difference between the retrieved state vector
and the true state vector is shown as a two-dimensional his-
togram. The x and y axes show the component of the re-
trieved state vector and the corresponding component of the
difference between the retrieved and the true state vector, re-
spectively. On the x and y axes, 45 equally sized bins be-
tween −9 and 2 and 121 bins between −5 and 12 are used,

Figure 4. Two-dimensional histograms of the difference between
components of the retrieved state vector and the corresponding
ICON model state vector, as a function of the retrieved state vec-
tor. The components of the state vectors are defined as the decadal
logarithm of the ratio of the specific quantity and the specific unit
path; therefore they are unitless. The offsets O of the components
of the retrieved state vector are shown as blue lines and the corre-
sponding standard deviations σO are shown as red lines. For the
hydrometeor paths, an x value of −3 corresponds to a value of
10−3 kg m−2

= 1gm−2. For IWV, an x value of 1 corresponds to a
value of 101 kg m−2

= 10kg m−2.

respectively. Because of the different value range of IWV,
121 equally sized bins between −1 and 2 and 161 bins be-
tween −1 and 1 are used on the x and y axes, respectively.
The histograms are normalized with respect to the number of
state vectors.

The relative frequency of occurrence is coded as different
grey shadings. Recall that the components of the state vectors
are logarithmic quantities, as mentioned in the beginning of
Sect. 3. The difference in the logarithmic quantities is the
same as the logarithm of the ratio of the linear quantities. For
example, a y-axis value of 1 in Fig. 4 corresponds to a factor
10 error, and a value of 0.1 corresponds to a 25% relative
error. To look for systematic errors of each component, the
offset Oi as a function of the j th bin of the binned ith com-
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ponent of the retrieved state vector is shown as a blue line.
The offset Oi is

Oi(xret,ij )=

∑161
k=1wijk1xijk∑161

k=1wijk
, (8)

wherewijk is the number of occurrences of bin (k,j) of com-
ponent i and 1xijk is the binned difference 1xi = xret,i −

xtrue,i between the component i of the retrieved and the true
state vector of bin (k,j). The standard deviation σO,i is cal-
culated to consider the random error. The standard deviation
σO,i is shown by red dashed lines on either side of the offset
Oi . The standard deviation σO,i is

σO,i(xret,ij )=

[∑161
k=1wijk

(
1xijk −Oi(xret,ij )

)2∑161
k=1wijk

] 1
2

. (9)

The offset and the standard deviation were calculated for
each j th binned component of the estimated state vector but
only if the summed number of occurrences in the j th bin is
at least 1% of the number of state vectors to avoid statisti-
cal fluctuation due to small numbers. Strikingly, there is a
straight line in the upper half of the plots of the retrieved hy-
drometeors, indicating a bimodal distribution for small val-
ues. For values>−3 this second mode vanishes. These lines
depict cases of overestimation of the specific hydrometeor.
All cases on these lines are cases where we set the specific
component of the state vector to −9 to avoid infinite values,
because for these cases the actual hydrometeor path was zero.

The SIWP histogram has a bell-mouthed shape, from
which we can infer that with increasing amount the error
decreases. The offset of the retrieved SIWP is 0 for SIWP
>−2. In addition to this, the standard deviation is symmet-
ric around zero for SIWP >−2. For SIWP <−2, the offset
is oscillating around zero with increasing amplitude for de-
creasing SIWP. Up to this point, we can record that for SIWP
>−2 the retrieval has no offset and the standard deviation
decreases from 0.6 to 0.2 with increasing SIWP. The standard
deviation of SIWP>−2 is of the same order of magnitude as
the error for the retrieved IWP within the work of Evans et al.
(2012). These authors used combined passive microwave and
submillimeter radiometers to retrieve the IWP, among other
quantities. The IWP of Evans et al. (2012) corresponds to
the column-integrated bulk mass of atmospheric ice, whereas
SIWP is the column-integrated bulk mass of snow. However,
as the column-integrated bulk mass of cloud ice, which is
our definition for CIWP, is typically an order of magnitude
smaller, the IWP of Evans et al. (2012) corresponds mostly
with the SIWP in our retrieval. A detailed comparison with
the work of Evans et al. (2012) is difficult since there is no
distinct information about the error as function of the IWP as
there is in the work of Holl et al. (2014), for example.

The LWP histogram differs from the SIWP histogram. For
LWP <−1 the LWP histogram consists mainly of a straight
line in the upper half and a wider strip in the lower half. The

various values in the lower half mean that many estimated
values are underestimated. Due to the fact that cases with no
LWP are strongly overestimated, the offset has some stronger
jumps around zero. For LWP >−2 the offset and the stan-
dard deviation become smoother with increasing LWP. For
LWP >−1 the offset changes only slightly with increas-
ing LWP and the standard deviation decreases from 0.8 to
0.4 at LWP > 0. The RWP histogram is similar to the LWP
histogram for RWP <−1. For RWP >−1, the size of the
standard deviation is still similar to the standard deviation
of LWP but compared to LWP there is a strong change of
the RWP offset with increasing RWP indicating a significant
non-zero offset.

The IWV histogram differs strongly from the histograms
of the three estimated hydrometeor paths. It has a rectangu-
lar shape and the differences are at least 1 order of magnitude
smaller. Except for IWV > 1.3 (IWV> 20kg m−2), the off-
set over the whole range of values is practically zero and the
standard deviation is almost constant with a value of 0.04.
This means the IWV retrieval is offset-free over that range of
values. For IWV > 1.3, there is a small offset of 0.02.

In summary, the retrieval is practically offset-free for IWV,
for SIWP >−2 (SIWP> 0.01kgm−2), and for LWP >−1
(LWP> 0.1kgm−2). For RWP, this does not hold.

4.2 Median fractional error (MFE)

Thus far, we know which quantities can be measured offset-
free. We next address the retrieval error, which is described
using the MFE, which was also used by Holl et al. (2014) to
estimate the error of IWP of the SPARE-ICE product. The
MFE is defined as follows:

MFE=median

=FE[︷ ︸︸ ︷
exp10

(∣∣xi,ret− xi,true
∣∣)− 1

]
, (10)

with xi the ith component of the estimated state vector and
xi,true the ith component of the true state vector. For example,

MFESWP =median
[
exp10

(∣∣swpret− siwptrue
∣∣)− 1

]
=median

[
exp10

(∣∣∣∣log10
SIWP

SIWPtrue

∣∣∣∣)− 1
]
. (11)

For example 100% MFE on SIWP means that for half of
the considered cases the retrieved value is within the interval[
SIWPtrue/2, 2 ·SIWPtrue

]
. For MFE< 30% it is approxi-

mately equal to the relative error. The MFE for each compo-
nent of the state vector as function of the corresponding com-
ponent of the estimated state vector is shown as blue lines in
Fig. 5. To compute the MFE, the components of the state
vector were binned on a logarithmic grid with 45 bins start-
ing from 10−9 kg m−2 and ending at 102 kg m−2. The differ-
ent value range for the MFE of IWV necessitated the use of
a logarithmic grid with 121 bins starting from 10−1 kg m−2

and ending at 102 kg m−2 was used for IWV. The MFE is
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Figure 5. Median fractional error as function of the components
of the retrieved state vectors. The blue lines indicate the MFE of
the retrieval using all ISMAR and MARSS channels. The red lines
indicate the MFE using all ISMAR and MARSS channels up to the
183 GHz channels for the retrieval and the orange lines indicate the
MFE using a AMSU-B type sensor. See Sect. 4.3 for details.

shown only for bins that include at least 1% of the total num-
ber of state vectors to avoid statistical fluctuations.

The MFE of SIWP decreases with increasing SIWP.
Whereas the MFE of SIWP is more than 600% for SIWP<
10−3 kg m−2 it decreases to 20% at SIWP= 1kg m−2. For
SIWP > 0.01kg m−2 the MFE is less than 100% and for
SIWP > 0.1kg m−2 the MFE is less than 50%, which is
in good agreement with the relative error of SIWP over the
ocean of Wang et al. (2016) for combined simulated MWI–
ICI measurements. They used an approach similar to ours but

with the difference of an additional frozen hydrometeor, dif-
ferent assumptions about the particle size distributions, and
they used an additional NN-based classification before the
retrieval. For snow they also assume slightly different scat-
tering properties.

Jiménez et al. (2007) conducted a simulated retrieval of
IWP using channels similar to ISMAR and NNs but, in con-
trast to our retrieval, they carried out the retrieval over land
and for different meteorological situations. These authors de-
fined the column-integrated bulk mass of atmospheric ice
as IWP, which, as written in the previous subsection, cor-
responds mostly with the SIWP of our retrieval. Comparing
the MFE of SIWP with the retrieval error of IWP by Jiménez
et al. (2007) shows that their retrieval error is approximately
half as large as the MFE of SIWP. One has to be cautious
when comparing these errors, because the exact error defini-
tion in Jiménez et al. (2007) is not clear. Because the datasets
and assumptions in Jiménez et al. (2007) differ from ours,
compared to our retrieval the errors cannot be expected to be
the same, but they should be of the same order, which they
are.

A comparison with the error estimation of the SPARE-ICE
product (Holl et al., 2014), which combines the results that
were obtained with the current operational microwave and
infrared sensors, shows that the MFE of SIWP for SIWP=
0.01kg m−2 is of similar size as the MFE of IWP of the
SPARE-ICE product and that with increasing SIWP the MFE
of SIWP decreases to about half of the MFE of IWP of the
SPARE-ICE product. The IWP of the SPARE-ICE product is
defined as the column-integrated bulk mass of atmospheric
ice but should be comparable to SIWP in our retrieval. For
SIWP< 0.01kg m−2 the MFE of SIWP is larger than the
MFE of IWP of the SPARE-ICE product. The SPARE-ICE
product is a good measure to compare with because it pro-
vides a good estimate of the performance of the latest oper-
ational passive sensors, but there are also two caveats in the
comparison. Firstly, our MFE is based on model simulations
under ideal conditions, whereas the MFE of SPARE-ICE is
based on the 2C-ICE product (Deng et al., 2010), which is
derived from lidar and radar measurements. Secondly, our er-
ror estimation is obtained from the perspective of the retrieval
results, whereas that of Holl et al. (2014) is from the perspec-
tive of the reference data, but as long as the retrieval is offset-
free this should not make a significant difference. For SIWP
< 0.01kg m−2 it is more effective to use a retrieval that in-
cludes thermal infrared channels as in SPARE-ICE, because
the interaction between atmospheric ice and microwaves and
submillimeter waves is too weak for such a low amount of
SIWP (see Fig. 3). For now, we can keep in mind that our
retrieval is capable of estimating SIWP with MFE lower than
100% for SIWP> 0.01kg m−2 and that the MFE of SIWP is
reduced to about 20% for high SIWP.

The MFE of LWP is of similar size as the MFE of RWP for
LWP< 0.1kg m−2, but for LWP> 0.1kg m−2 the MFE of
LWP decreases to 30%. For LWP> 0.05kg m−2, the MFE
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is < 100%. A MFE of 50% for LWP= 0.1kg m−2 con-
verted to absolute values approximately corresponds to an er-
ror of 0.05kg m−2 and a MFE of 30% for LWP= 1kg m−2

converted to absolute values approximately corresponds to
an error of 0.3kg m−2. English (1995) estimated an error
of 0.03 to 0.05kg m−2 for LWP< 0.5kg m−2 using a re-
trieval based on measurements of the 89GHz channel and
the 157GHz channel of MARSS, which is of the same or-
der as our retrieval. For LWP > 0.5kg m−2, English (1995)
argued that the retrieval is unreliable by estimating an er-
ror of 0.85kg m−2 for a LWP of 1kg m−2. However, these
researchers performed their LWP retrieval on low liquid
clouds, apparently without any ice. Compared to their re-
sults the error of our retrieval is almost one-third of the
error of their retrieval and the meteorological conditions
in our retrieval are much more complicated. Horvath and
Davies (2007) compared the retrieval of LWP of warm non-
precipitating clouds from Tropical Rainfall Measurement
Mission (TRMM) Microwave Imager (TMI) and from Mod-
erate Resolution Imaging Spectroradiometer (MODIS). They
found a RMS difference 0.025kg m−2 between the two LWP
retrievals for a mean LWP of 0.1kg m−2. Care needs to be
exercised when comparing the errors of English (1995) and
Horvath and Davies (2007) with our error estimate, because
our error definition differs. Nonetheless, considering the fact
that the meteorological conditions in our retrieval are more
complex because of coexisting frozen and liquid hydromete-
ors and because we do not focus on a specific cloud form, the
estimated MFE of LWP is reasonable.

Our previous consideration of RWP indicated that the re-
trieval of RWP using MARSS and ISMAR is difficult. Except
for the section around RWP= 0.1kg m−2, where the MFE
of RWP is about 50%, the MFE of RWP is much larger
than 100%. Interestingly, the MFE of RWP decreases for
RWP< 0.1kg m−2 and afterwards the MFE increases with
increasing RWP. If we compare the MFE of RWP with the
offset of RWP, then we can identify the regions with the low-
est MFE as the regions where the offset of RWP is zero.
The MFE of RWP increases for RWP> 0.1kg m−2 with in-
creasing RWP, because the offset of RWP increases with in-
creasing RWP even though the standard deviation of RWP
changes little with increasing RWP. This is in contrast to the
findings of Wang et al. (2016), who estimated a relative value
of < 40% for RWP > 0.1kgm−2. The reason for this is that
their training database includes more cases with higher RWP
than our training database, so that their training database is
more suitable for estimating RWP. If our database included
more cases with higher RWP it is likely that our retrieval
would provide a similar result to Wang et al. (2016).

Let us now consider the MFE of IWV, which is also shown
in Fig. 5. As for the consideration of the offset of IWV, the
MFE of IWV differs strongly from the results of the hydrom-
eteor paths. The MFE of IWV is 1 order of magnitude smaller
compared to the MFE of the hydrometeor paths and almost
constant over the whole range of values changing little be-

tween 5 and 8%. Converted to an absolute value, this cor-
responds to an error of 0.2kg m−2 for low IWV and to an
error of 2kg m−2 for high IWV. This error range of IWV
corresponds to the range of differences of several different
IWV retrievals (microwaves, infrared, radio sonde) and GPS-
retrieved IWV within the work of Buehler et al. (2012a).
Note that, as we did not place any restriction on IWV, the
retrieval for IWV is effective for cloudy conditions as well
as for clear-sky conditions.

4.3 Benefit of the high-frequency channels of ISMAR

It is interesting to explore the benefit of the new high-
frequency channels of ISMAR. We answer this question
by comparing the retrieval, which we name the “ISMAR–
MARSS” retrieval hereafter, with two additional retrievals:
one retrieval using all channels up to 183GHz (Table 1, ch.
1–10) and another retrieval using the 89GHz, the 157GHz,
and the 183GHz channels (Table 1, ch. 1, 7–10), which are
the same five channels at which AMSU-B measures (Saun-
ders et al., 1995); see also Sect. 2.2. We name the former
and latter retrievals LF and AMSU-B, respectively. Except
for the number of channels used and the number of hid-
den layer neurons, the setup is exactly as for the ISMAR–
MARSS retrieval. Compared to the ISMAR–MARSS re-
trieval the number of hidden layer neurons of the LF retrieval
and the AMSU-B retrieval were reduced to reduce the chance
of overfitting, but tests showed that this is still adequate. The
LF and AMSU-B retrievals use seven and five hidden layer
neurons, respectively.

The MFE for each component of the state vector as a
function of the corresponding component of the estimated
state vector is shown in Fig. 5. The MFEs for RWP of
the LF retrieval and of the AMSU-B retrieval are shown
only for the sake of completeness, because we already know
from our above considerations that the retrieval is insuffi-
cient for RWP. Therefore, we concentrate on SIWP, LWP,
and IWV. For SIWP, the MFE of the ISMAR–MARSS
retrieval is reduced at SIWP≈ 0.01kg m−2 below 100%,
whereas the MFEs of the LF retrieval and of the AMSU-
B retrieval of SIWP decrease at SIWP= 0.06kg m−2 and
SIWP= 0.1kg m−2 below 100%, respectively. At SIWP=
0.06kg m−2 the MFE for the ISMAR–MARSS retrieval is al-
ready at 50%. For SIWP, the MFEs of the LF retrieval and of
the AMSU-B retrieval are consistently higher than the MFE
of the ISMAR–MARSS retrieval, but with increasing SIWP
the difference between the MFE decreases. Because of the
higher frequencies of the ISMAR channels (ch. 11–18) the
MFE of SIWP can be reduced by a factor of as much as
2 with respect to the AMSU-B configuration. The 118GHz
channels are less important for the retrieval of SIWP because
the difference between the LF retrieval and the AMSU-B re-
trieval is smaller.

For LWP, the MFE of the ISMAR–MARSS retrieval de-
creases monotonically, whereas the MFE of the LF retrieval
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and of the AMSU-B retrieval of LWP decreases only up
to LWP= 0.1kg m−2 and then increases with increasing
LWP, whereas the MFE of the LF retrieval only increases
slightly. The reason for the strong increase of the MFE of
the AMSU-B retrieval is a strong underestimation of LWP>
0.1kg m−2. The AMSU-B retrieval estimates almost no LWP
> 0.2kg m−2. The increase of the MFE of the LF retrieval is
less strong than the MFE of the AMSU-B retrieval. The rea-
son for the increase of the MFE of the LF retrieval is an in-
crease of the offset with increasing LWP, which results in an
overestimation of the LWP. Therefore, the higher-frequency
ISMAR channels (ch. 11–18) deliver valuable information
for the retrieval of LWP.

Thus, the lower-frequency ISMAR channels (ch. 2–6) and
the higher-frequency ISMAR channels (ch. 11–18) are valu-
able for the retrieval of IWV. Whereas the MFE of IWV for
the AMSU-B retrieval is on average about 10% below an
IWV of 12kg m−2 and higher than 10% above an IWV of
12kg m−2, the MFE of IWV for the LF retrieval is on aver-
age approximately 8 % and the MFE of IWV for the ISMAR–
MARSS retrieval is approximately 6% on average.

Thus, we can say that compared to an AMSU-B type sen-
sor, the ISMAR channels deliver very valuable information
for the retrieval, especially for SIWP, but also for a more ac-
curate IWV retrieval and for a LWP retrieval under complex
meteorological conditions.

4.4 Basic performance summary

This section describes the retrieval tests under ideal condi-
tions. This means that retrieval and test data are based on
the same assumptions. By doing so, the error of the radiative
transfer simulation and the error of the atmospheric model
were excluded from this investigation. The investigated er-
rors result from the artificial NNs and from the physical lim-
its of the retrieval, which are, on the one hand, the limited
interaction between the electromagnetic radiation and the at-
mosphere and, on the other hand, the noise of the radiometers
ISMAR and MARSS. Therefore, the investigated errors are
an estimate of the limits of our retrieval approach. The re-
trieval error when applying the retrieval on measured bright-
ness temperatures is likely to be larger, as the a priori as-
sumptions will never be completely fulfilled.

One basic requirement of a retrieval is, in general, that
the retrieval should be bias-free or, in our terms, the re-
trieval should have no offset. Based on that, the retrieval
fulfills this requirement for SIWP> 0.01kg m−2, LWP>
0.1kg m−2, and for IWV> 3kg m−2. We cannot say whether
the retrieval also has an offset of zero for IWV< 3kg m−2

because there were almost no states with IWV< 3kg m−2.
We can say that the requirement is not fulfilled for RWP.

In summary, a comparison with the simulated retrieval of
Jiménez et al. (2007) showed that the performance of our
SIWP is of the same order. The performance of our SIWP is
also in good agreement with the performance of the SIWP

retrieval of Wang et al. (2016). When the SIWP is not exces-
sively small, i.e., above 10−2 kg m−2, ISMAR has the poten-
tial to perform more effectively than the SPARE-ICE (Holl
et al., 2014) product. For smaller SIWP, SPARE-ICE per-
forms more effectively, because it uses infrared channels,
which are more sensitive to very thin clouds than millime-
ter and submillimeter waves. A comparison with the retrieval
of English (1995) and the study Horvath and Davies (2007)
showed that the results of the LWP retrieval are reasonable.
The LWP retrieval method is capable of retrieving LWP in
situations with coexisting frozen and liquid hydrometeors.
Furthermore, our retrieval is capable of retrieving IWV un-
der cloudy and clear-sky conditions with an error, which is
comparable with existing clear-sky IWV retrievals.

A comparison of our retrieval with retrievals using only the
channels up to 183GHz enables us to conclude that the re-
trieval of SIWP strongly benefits from the higher-frequency
ISMAR channels (ch. 11–18; see Table 1). The MFE of
SIWP is reduced by a factor of 2 compared to retrievals using
only channels up to 183GHz channels. Both the IWV and
LWP retrievals benefit from the higher-frequency ISMAR
channels.

5 Flight B897: measurements on 18 March 2015

In this subsection, we describe the application of the retrieval
to brightness temperatures measured during the FAAM flight
B897 on 18 March 2015 as part of COSMICS. On that
day, the FAAM BAe-146 aircraft measured a precipitating
frontal system west of the coast of Iceland. The aircraft
had several instruments on board to measure the size of ice
particles, among which were in situ probes, ISMAR, and
MARSS. We focus on the measurements of these two ra-
diometers. Details about FAAM BAe-146 and the other in-
struments on board can be found on the website of FAAM
(http://www.faam.ac.uk).

Figure 6 shows the flight track, overlaid on MODIS images
from 18 March 2015. The flight consisted of three north–
south transects across the frontal structure starting in the
north. The transects were flown along a straight line start-
ing at 66◦ N and 25◦W and ending at 62◦ N and 25◦W. The
airplane required 2.5h for the three transects. During these
transects a total of 12 dropsondes (Vaisala Dropsonde RD94)
were dropped. The altitude time series is also shown in Fig. 6.
The airplane was above the clouds most of the time. Dur-
ing the flight the clouds varied from thin, broken clouds in
the north to full-depth precipitating clouds in the south. The
frontal structure moved slightly northwards during the flight.

Every time step at which the aircraft was not in stable,
straight, and level flight was excluded from the brightness
temperature time series to ensure that the retrieval is only
applied to measurements recorded when the aircraft was at
constant altitude with its wings level. In stable, straight, and
level flight, the aircraft actually has a pitch of 5◦, resulting
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Figure 6. (a) Images of MODIS (Terra and Aqua) band 1 (visi-
ble) during flight B897 on 18 March 2015 overlaid with the flight
track (red lines) and the position of the aircraft (green crosses) at the
MODIS measurement time. (b) Altitude time series of flight B897
and below map with the flight track (black) with a color marker
indicating the time.

in slightly different incidence angle for ISMAR and MARSS
instead of nadir, but this slight change in the incidence angle
has no significant effect on the retrieval. The sampling period
of the brightness temperature time series is 3.6s. The time se-

ries is smoothed by a 3.5min running mean to improve the
compatibility of the measurements with those of the ICON
model and to reduce the amount of noise. A 3.5min running
mean corresponds to a path length of ≈ 23km. This is on
the order of the smallest horizontal size of features that can
be resolved within of the ICON model, which is twice the
grid resolution of ICON. As stated in Sect. 3.4, different NNs
need to be trained for different flight altitudes. Thus, we di-
vided the flight into nine discrete pressure levels, for which
NNs, as described in Sect. 3.4, were trained using 6000 ran-
domly selected profiles from the database. These NNs were
applied to the measured brightness temperature time series,
which is shown in Fig. 7. The flight consisted of three cross-
ings of a frontal system. The brightness temperature time se-
ries starts at 12.3h in the north, then flying southward un-
til 13.4h, crossing the frontal system and flying back north-
ward until 14.1h, and finally flying southward. The bright-
ness temperature time series itself reflects the flight pattern,
as it is symmetric around the turning points (13.4, 14.1h).
From the symmetry within the brightness temperature time
series, it is to be expected that the meteorological conditions
are also symmetric with respect to the turning points. This
symmetric pattern is a good test for the consistency of the
retrieval procedure, because the retrieved hydrometeor path
and IWV time series should reflect this pattern. In the 89GHz
channel, we can clearly see the crossing of the frontal system.
At the beginning the brightness temperatures are about 190K
and this low brightness temperature indicates that the sensed
radiation was emitted from the ocean surface. At 89GHz the
emissivity of the ocean surface is approximately 0.7, result-
ing in a brightness temperature of about 190K for a surface
temperature of about 273K. Over the ocean an increase in the
amount of liquid water in the atmosphere leads to an increase
in the brightness temperature at 89GHz. When the aircraft
moved towards the frontal system, the 89GHz brightness
temperature increased up to a maximum of 250K around the
turning point at 13.4h. This increase in the brightness tem-
perature enables us to conclude that there must be a strong
increase in the amount of liquid water in the atmosphere, be-
cause the high brightness temperature indicates that the large
amount of absorption suggests that the sensed radiation is
not emitted by the ocean surface but from somewhere in the
lower troposphere.

5.1 Retrieval applied to flight B897

Time series of the retrieved SIWP, LWP, and IWV are shown
as blue lines in Fig. 8. In the absence of in situ data except for
the 12 water vapor profiles from dropsonde measurements,
the retrieval is compared with the ICON model. The red lines
indicate the value of the corresponding component of the
ICON model state vectors interpolated to the time and loca-
tion of the aircraft measurement. Of course, the ICON model
itself is far from being perfect due to internal assumptions as
well as limited temporal and spatial resolution. Therefore we
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Figure 7. (a) Observed brightness temperature time series of flight B897. (b) Simulated brightness temperature time series of flight B897.
The markers are shown only for every 100th value.

cannot expect that the model is accurate in terms of retrieval
quantities, time, and location. To get an estimate for the un-
certainty of the ICON model, we produced histograms of the
corresponding components of the ICON state vectors within
a 50km radius and within ±1h of the time of measurement
for every time step and location of the flight. The histograms
are plotted as grey shades underneath the ICON time series.
The model data are not considered as truth but they serve as
a consistency check within this analysis.

Comparing the retrieval to the model state is not a true
validation for several reasons, notably the dependence of the
training data on the same model, and the fact that the model
hydrometeors may be quite far from the true hydrometeors
at the time and location of measurement. Nevertheless, test-
ing whether the ICON simulations and ISMAR or MARSS
measurements are comparable is important to ensure consis-
tency, given our assumptions in representing the model hy-
drometeors in the radiative transfer simulations. Big errors
in these assumptions would mean that the simulated and ob-
served brightness temperature for a given profile would be

very different. This implies that the result from the retrieval
applied to the actual observation would be a very different to
the model.

In general, the time series of the retrieved state vectors
in Fig. 8 are within the given uncertainties and in reason-
able agreement with the time series of the ICON model. The
blue lines are mostly within the grayish area. The retrieved
SIWP, LWP, and IWV time series are symmetric with respect
to the turning points (13.4, 14.1h), which is consistent with
the abovementioned expectation. Although the agreement is
good in general, there are substantial differences between the
retrieval and the model, for example the time period between
13 and 13.5h of the SIWP time series. Possible sources for
the difference between the retrieved time series and the mod-
eled time series are as follows:

1. The limit of the retrieval itself, namely the combined
error from the NN approach and the radiometer noise.
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Figure 8. Time series of the retrieved SIWP, LWP, and IWV. The
time series of the retrieved SIWP, LWP, and IWV are shown as blue
lines. The time series of the ICON model SIWP, LWP, and IWV for
the time and location of the FAAM during flight B897 are shown
as red lines. Time series of histograms of the ICON model SIWP,
LWP, and IWV are plotted as grey shades underneath; see text for
details. The green shaded areas marks the range where the retrieval
is offset-free according to Sect. 4. The orange crosses indicate the
IWV from the dropsonde measurements.

2. The assumptions for the radiative transfer simulations,
namely the assumption about particle size distributions
and hydrometeor types and their shape.

3. Misplacement. The ICON model can generally simu-
late the frontal structure during the flight; however, the
ICON model cannot simulate the frontal structure ex-
actly collocated in time and space of the measurements.

4. Unresolved features. The ICON model cannot simu-
late all the small details of the frontal structure that
can be sensed by the aircraft measurements. Recall that,
firstly, the airborne measurements have a much shorter
sampling period (Ts,air = 3.6s). Although the bright-
ness temperature time series have been smoothed by a
3.5min running mean, compared to the ICON model

data (Ts,model = 1800s= 30min) it still captures more
temporal variability. Secondly, the sampled space is
much smaller than the grid size of the ICON model. The
sampled space is of similar length in the along-track di-
rection but in the across-track direction it is of the order
of a hundred meters. In contrast, the ICON model has
a grid resolution of about 10km in the horizontal di-
rection and 30min in time, from which we interpolated
the ICON model time series to the location and time of
flight. Thus, we expect that the aircraft measurements
sample more detailed features, which are not resolved
in the ICON model.

Time series of SIWP, LWP, and IWV retrieved from simu-
lated brightness temperatures of the flight are shown in Fig. 9
in a similar way as in Fig. 8 in order to illustrate the perfor-
mance of the retrieval in idealized conditions. Under these
ideal conditions, as simulation and retrieval are based on the
same assumptions, the agreement between the retrieved time
series and the model time series is very good, and differences
are within the range expected from the analysis in Sect. 4. In
Fig. 7 both the observed and simulated brightness temper-
ature time series are shown. The observed brightness tem-
peratures of the 89GHz and the 118.75± 5GHz channels
show, for example, a steady increase between 12.5 and 13.3h
flight time, whereas the increase of the simulated bright-
ness is rather discontinuous, being flatter at the beginning
and steeper after 13.2h. As described at the beginning of
Sect. 5, an increase of the 89GHz brightness temperature
over ocean indicates an increase of liquid water within the
atmosphere. The same holds for the 118.75± 5GHz chan-
nel. The conclusion from this comparison of brightness tem-
peratures is that in the model the increase of liquid water
is delayed compared to reality. This implies that the model
predicts the front further south, with a more rapid increase
in liquid water. These behaviors are also reflected in the re-
trieved LWP time series from the observation (Fig. 8) and
from the simulation (Fig. 9). LWP retrieved from the obser-
vation shows a more steady increase, whereas LWP retrieved
from simulation shows a more discontinuous increase, with
a strong increase at 13.2h. Therefore, it is unlikely that the
differences arise from NN and noise-related uncertainties
and that their effect is less important, because the retrieval
shows for observation and simulation a coherent behavior
in terms brightness temperature and LWP. Furthermore, the
brightness temperature time series were smoothed to reduce
the noise. However, it is likely that the differences mainly
arise from the inaccuracies of the ICON model in the spatial,
temporal, and structural representation of the front, because
the difference between LWP retrieved from the observation
and LWP retrieved from simulation corresponds to the dif-
ference between observed and simulated brightness temper-
atures. Nonetheless, unresolved features in the ICON model
cannot be excluded as possible source for the difference, too.
The errors made by the radiative transfer simulations and the
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assumptions therein also influence the retrieval, but this re-
flects the general agreement between retrieval and model. A
quantitative error estimate is difficult as there are no in situ
data to compare with and the model error of ICON and the
radiative transfer simulations are unknown.

For IWV we can compare the retrieval with the in situ
data from the dropsondes. The dropsonde IWV is shown as
orange crosses in Fig. 8. The retrieved IWV measurement
captures the trend of the dropsonde IWV measurement, but
compared to the dropsonde IWV the retrieved IWV is shifted
to slightly higher values. The offset (mean difference) be-
tween the 12 dropsonde IWV values and the retrieved IWV
value at the time of the start of dropsonde measurements is
0.5kg m−2. This offset could be due to a dry bias of the ra-
diosondes or due to a wet bias within the retrieval. Nonethe-
less, for an IWV value of > 5kg m−2 this offset results in
an error of less than 10%. The RMS difference between the
12 dropsonde IWV values and the corresponding retrieved
IWV value is 0.8 kg m−2. This corresponds to an MFE of
16% for an IWV value of 5kg m−2 and to a MFE of 4% for
an IWV value of 18kg m−2. When removing the offset, the
RMS difference is 0.6kg m−2, which is similar to the random
error 0.66kg m−2 between the radiosonde measurements and
the GPS measurement of the IWV values in Buehler et al.
(2012a). The IWV error is in the expected range of Sect.
4.2. Despite the accuracy of the statistic being such that a
detailed analysis is not possible, this comparison is encour-
aging, showing that the retrieval of IWV measurements, in
general, is effective under both cloudy and clear-sky condi-
tions.

We know from Sect. 4 that the retrieval is insufficient for
RWP. Nonetheless, we apply the retrieval for RWP out of
curiosity. Figure 10a shows the time series of the retrieved
RWP, which seems to represent the general structure of the
modeled time series. The retrieved RWP time series is sym-
metric with respect to the turning points (13.4, 14.1h), which
is consistent with the stated expectations. The retrieved RWP
time series shows a strong increase within the time period
between 12.5 and 13.4h with a maximum RWP at approxi-
mately 13.4h, which is consistent with our conclusion from
the brightness temperature time series. In Sect. 4, we con-
cluded that the retrieval is insufficient for RWP, but at first
glance the retrieval of RWP seems to be effective accord-
ing to Fig. 10. We verified this by applying the retrieval to
a simulated brightness temperature time series, because, if
the retrieval of RWP was effective, then the retrieved RWP
should be similar to the ICON RWP. The time series of the
RWP retrieved from the simulated brightness temperature is
shown in Fig. 10b. For RWP the blue and red lines are not
in agreement. Therefore, our conclusion from Sect. 4 still
holds. Even though the RWP retrieval is unreliable, it can
still deliver some useful information, such as an approximate
classification that indicates whether there is rain or not.

Figure 9. Time series of the retrieved SIWP, LWP, and IWV from
simulated flight B897. The time series of the retrieved SIWP, LWP,
and IWV are shown as blue lines. The time series of the ICON
model SIWP, LWP, and IWV for the time and location of the FAAM
during flight B897 are shown as red lines. Time series of histograms
of the ICON model SIWP, LWP, and IWV are plotted as grey shades
underneath; see text for details. The green shaded areas marks the
range where the retrieval is offset-free according to Sect. 4. The or-
ange crosses indicate the IWV from the dropsonde measurements.

5.2 Summary of flight analysis

We applied the retrieval method to the brightness tempera-
tures measured during flight B897. As a consistency check
we compared the retrieved state vectors with the ICON
model state vectors, which we interpolated to the time and
location of the aircraft measurements. Considering the given
uncertainties, the agreement between the estimated SIWP,
LWP, and IWV and the SIWP, LWP, and IWV from ICON is
reasonable. There are strong local differences due to the mis-
placement of spatial features in the ICON model and small-
scale variability. Compared to SIWP, LWP, and IWV, the
RWP retrieval is less satisfactory, which is consistent with
the results from Sect. 4. Furthermore, we compared the re-
trieved IWV with IWV from 12 dropsonde measurements.
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Figure 10. (a) Time series of the retrieved RWP. The time series of
the retrieved RWP is shown as a blue line. The time series of the
ICON model RWP for the time and location of the FAAM during
flight B897 is shown as red line. Time series of histograms of the
ICON model RWP are plotted as grey shades underneath; see text
for details. (b) The same as in (a), but the RWP is retrieved from
the simulated flight.

The mean difference between them is 0.5kg m−2 and the
RMS difference is 0.8kg m−2. We showed thereby, that we
can estimate SIWP, LWP, and IWV with ISMAR in combi-
nation with MARSS.

6 Summary

This study involved an investigation of strategies for hydrom-
eteor path retrieval from airborne radiometer measurements.
We distinguish between cloud ice, which consists mainly of
ice particles < 100 µm, and snow, which consists mainly of
ice particles > 100 µm. This distinction between small and
large ice particles is similar to the distinction in atmospheric
models. We defined the CIWP as the column-integrated bulk
mass of cloud ice and we defined the SIWP as the column-
integrated bulk mass of snow. As the use of ISMAR and
MARSS makes it possible to sense SIWP but not CIWP, we
developed a retrieval method based on a NN by using nadir-
viewing brightness temperature measurements with the main
purpose of estimating SIWP. We also tried to estimate LWP,
RWP, and IWV with the retrieval. The NNs were trained by
simulated brightness temperatures and atmospheric profiles
from the ICON model. The brightness temperatures were
simulated by ARTS with the atmospheric profiles from the
ICON model as input. The scattering properties of the hy-
drometeors were assumed to behave as Mie spheres except

for SIWP particles, which were assumed to behave like the
aggregates from the Hong et al. (2009) database.

We tested the retrieval with simulated measurements of
which the true state is known. This test enabled us to esti-
mate the physical limits of this retrieval process:

– If SIWP> 0.01kg m−2, then the MFE of our retrieval
is lower than 100%, which decreases to about 20% for
high SIWP and the retrieval has an offset of zero.

– If LWP> 0.05kg m−2, then the MFE of our retrieval is
lower than 100%, which decreases to about 30% for
high LWP and the retrieval has an offset of zero.

– If IWV> 3kg m−2, then the MFE is 5 to 8%. Con-
verted to an absolute value, this corresponds to an er-
ror of 0.2kgm−2 for low IWV measurements and to an
error of 2kg m−2 for high IWV measurements.

The retrieval is insufficient for RWP determination because
it is not bias-free and the MFE is mostly higher than 100%.

Furthermore, we showed that the magnitude of the error
in the SIWP determination of the retrieval using ISMAR and
MARSS measurements is only half of that of the retrieval
using only AMSU-B channel combinations. This shows that
estimating SIWP strongly benefits from submillimeter wave
measurements but also that estimating LWP and IWV bene-
fits from the higher-frequency ISMAR channels.

We applied the retrieval method to brightness tempera-
ture measurements recorded during flight B897. As a con-
sistency check we compared the estimated SIWP, LWP, and
IWV values with the SIWP, LWP, and IWV values that
were obtained by using the ICON model, which were inter-
polated to the time and location of flight B897. Consider-
ing the stated uncertainties, the agreement between the es-
timated SIWP, LWP, and IWV values and the SIWP, LWP,
and IWV values obtained with ICON is reasonable. A com-
parison between the retrieved IWV values with those from
the 12 dropsonde measurements shows that the mean differ-
ence between them is 0.5kg m−2 and the RMS difference is
0.8kg m−2. We showed thereby that we can use brightness
temperature measurements obtained using ISMAR in combi-
nation with MARSS to estimate SIWP, LWP, and IWV. This
is especially interesting in view of the upcoming MetOp-SG
mission, where ICI together with MWI will provide bright-
ness temperature measurements with a similar combination
of channels. Although our retrieval is limited in season and
latitude range, there is no fundamental limit in using NN for
global retrievals. The main requirement for global applica-
tion is that the training database covers the wide range of
global possible atmospheric conditions.

After establishing that the retrieval of SIWP, LWP, and
IWV is effective, the next steps would be to firstly proceed
beyond estimating integrated quantities and retrieve profiles
because of the considerable potential of the combination of
the channels of ISMAR and MARSS, which we did not ex-
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ploit in our actual retrieval. Secondly, the scattering proper-
ties of snow have to be investigated especially in the sub-
millimeter range, because data for the scattering properties
of this range of the electromagnetic spectrum are rare and
partially inconsistent with measurements. The mass of the
taken Hong aggregates is proportional to the third power of
the maximum dimension of these aggregates (see also 3.2),
whereas the measurements show that the mass is approxi-
mately proportional to the second power of the maximum
dimension (Cotton et al., 2013). This is especially important
in view of retrievals for the upcoming ICI sensor, because
the retrieval results will strongly depend on the goodness of
the scattering properties. Therefore, a more thorough valida-
tion is clearly needed, for example against in situ measure-
ments. Setting up such validation experiments will be logisti-
cally challenging, ideally using at least two different aircraft,
one with the radiometer and one with the in situ probes. Co-
located aircraft cloud radar would be also very helpful.

Data availability. The observed ISMAR and MARSS
brightness temperatures of FAAM Flight B897, the sim-
ulated ISMAR and MARSS brightness temperatures of
FAAM Flight B897 and the training database are avail-
able at https://doi.org/10.5281/zenodo.1156514 (Brath et
al., 2018). In this article an older version of the IS-
MAR/MARSS brightness temperatures was used. The lat-
est reprocessed version will be available in the future
from the Centre for Environmental Data Analysis (CEDA,
http://data.ceda.ac.uk//badc/faam/data/2015/b897-mar-18/). The
dropsonde data are also available from CEDA (http://data.ceda.ac.
uk//badc/faam/data/2015/b897-mar-18/core_processed/).
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