
Atmos. Meas. Tech., 2, 621–637, 2009
www.atmos-meas-tech.net/2/621/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Measurement

Techniques

Non-Gaussian Bayesian retrieval of tropical upper tropospheric
cloud ice and water vapour from Odin-SMR measurements

B. Rydberg1, P. Eriksson1, S. A. Buehler2, and D. P. Murtagh1

1Department of Radio and Space Science, Chalmers Univ. of Technology, Gothenburg, Sweden
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Abstract. Improved Odin-SMR retrievals of upper tropo-
spheric water are presented. The new retrieval algorithm re-
trieves humidity and cloud ice mass simultaneously and takes
into account of cloud inhomogeneities. Both these aspects
are introduced for microwave limb sounding inversions for
the first time. A Bayesian methodology is applied allow-
ing for a formally correct treatment of non-unique retrieval
problems involving non-Gaussian statistics. Cloud structure
information from CloudSat is incorporated into the retrieval
algorithm. This removes a major limitation of earlier in-
version methods where uniform cloud layers were assumed
and caused a systematic retrieval error. The core part of
the retrieval technique is the generation of a database that
must closely represent real conditions. Good agreement with
Odin-SMR observations indicates that this requirement is
met. The retrieval precision is determined to be about 5–
17% RHi and 65% for humidity and cloud ice mass, respec-
tively. For both quantities, the vertical resolution is about
5 km and the best retrieval performance is found between
11 and 15 km. New data show a significantly improved
agreement with CloudSat cloud ice mass retrievals, at the
same time consistency with the Aura MLS humidity results
is maintained. The basics of the approach presented can be
applied for all passive cloud observations and should be of
broad interest. The results can also be taken as a demonstra-
tion of the potential of down-looking sub-mm radiometry for
global measurements of cloud ice properties.
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1 Introduction

Although upper tropospheric water vapour and cloud ice
mass are keys to the prediction of future climate, knowl-
edge of these parameters in the present atmosphere is limited
(John and Soden, 2006). Satellite observation techniques are
important for obtaining global and temporal information on
atmospheric parameters. Traditional sensors, mainly oper-
ating in the visible and infrared region, are well suited for
observing cloud top altitude, frequency of occurrence, and
humidity for cloud free conditions, but they fail to penetrate
clouds. This is necessary to get information of the total cloud
ice mass and humidity in cloudy regions.

It has been suggested that cloud ice mass may be esti-
mated by down-looking sub-millimetre radiometry (Evans
and Stephens, 1995; Buehler et al., 2007), where the cloud
penetration capability is good and the measured signal is gen-
erated by interaction with cloud particles carrying a domi-
nant part of the cloud ice mass. Even though no such in-
strument exists in space, the two limb-sounding instruments,
Odin-SMR (Murtagh et al., 2002) and Aura-MLS (Waters
et al., 2006; Wu et al., 2006) operate in a similar manner
and can determine upper tropospheric humidity and cloud ice
mass simultaneously. Another interesting cloud sensor is the
microwave Cloud Profiling Radar (CPR) on-board CloudSat
(Stephens et al., 2002) which provides high quality cloud re-
flectivity measurements.

Odin-SMR is a passive sub-mm limb sounding radiometer
operating near to 500 GHz. However, for low tangent point
measurements the observation geometry can be regarded as
slant angle down-looking, since strong water vapour ab-
sorption makes the lower part of the atmosphere opaque.
For clear sky spectra brightness temperatures are approx-
imately proportional to the relative humidity of the upper
troposphere. Cloud ice interacts with sub-mm radiation
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mainly through the scattering process, which acts to reduce
the radiance measured. Simple retrieval schemes for cloud
ice mass and humidity from Odin-SMR observations have
previously been reported (Eriksson et al., 2007; Ekstr̈om
et al., 2007).

A common problem for all passive observations is that the
cloud properties are not homogeneous within the sampled
volume. This was found to be a major retrieval uncertainty
for Odin-SMR (Eriksson et al., 2008). The importance of in-
homogeneity depends on the details of the observations, but
it increases with the non-linearity of the relationship between
cloud properties and measurement signal. If there is a non-
linear relationships between the amount of cloud ice mass
and measurement signal, a homogeneous cloud field will
have a greater impact on the measurement signal than an in-
homogeneous cloud field with the same amount of ice mass
within the volume sampled (Davis et al., 2007). A system-
atic retrieval error may be introduced if homogeneous clouds
are assumed, which previously have been called beamfilling
errors (Kummerow, 1998). The impact of cloud inhomo-
geneities must at least be characterised, or better, be incor-
porated into the retrieval process. This opens up for a very
important indirect use of CloudSat data that can be used to
improve on the accuracy of passive cloud measurements.

The objective of this article is to develop a retrieval al-
gorithm that combines Odin-SMR measurement information
with accurate a priori data from CloudSat and complemen-
tary data sources. This is to enable combined profile re-
trievals of tropical upper tropospheric humidity and ice wa-
ter content where cloud inhomogeneity effects are handled
as accurately as possible. The retrieval approach selected
is Bayesian Monte Carlo integration (Evans et al., 2002),
where the Bayes theorem is used to retrieve the conditional
expected value of the atmospheric state for a given measure-
ment. The Bayesian Monte Carlo integration retrieval algo-
rithm is based on a pre-calculated retrieval database, consist-
ing of atmospheric states and corresponding synthetic mea-
surements. The atmospheric states in the retrieval database
are created using a priori data and the retrieval algorithm ef-
fectively interpolates between the states that approximately
match the measurement to be inverted.

The focus of the paper is to present how such a retrieval
database can be constructed. A major consideration is that
the atmospheric states in the retrieval database should be
realistic and correctly distributed. A method for creating
such a retrieval database for 1-D atmospheric states was pre-
sented inRydberg et al.(2007). The methodology has been
extended to create 3-D atmospheric states, as required to
resolve cloud inhomogeneity effects. Realistic 3-D atmo-
spheric states are generated by combining 2-D radar reflec-
tivity measurements from the CPR on CloudSat, in situ mea-
surements of cloud microphysics, weather data, and climato-
logical data. A state-of-the-art radiative transfer simulator is
used to simulate the instrumental measurement correspond-
ing to the atmospheric states generated.

The novelty in this article is the practical demonstration on
the use of CloudSat data to constrain retrievals of cloud ice
water content profiles from microwave radiometry. In addi-
tion, the retrieval method is successfully applied on globally
real data for the first time. It has previously only been used
for case studies (Seo and Liu, 2005; McFarlane et al., 2002;
Evans et al., 2005) and instrument concept studies (Zinner
et al., 2008; Evans et al., 2002). The development is moti-
vated by the need to improve the Odin-SMR retrievals, but
the methodology should be of general interest since it can be
used for any similar instrument.

2 Non-Gaussian Bayesian retrieval methodology

The goal of this article is to design an improved method for
retrieving upper tropospheric ice water content and humidity
profiles from Odin-SMR measurements. Three basic con-
siderations are that the retrieval problem is non-unique and
non-linear, and that upper tropospheric water exhibits non-
Gaussian statistics. Since a priori information to handle the
non-uniqueness aspect exists, a Bayesian retrieval approach
is suitable. Following the Bayes theorem, the conditional ex-
pected value of the state vector (x̂) is retrieved as

x̂ =

∫
xP(x|y)dx =

∫
xP(y|x)P (x)

P (y)
dx, (1)

wherey is the measurement vector,P(x|y) is the conditional
probability density function (PDF) ofx giveny, P(x) is the
prior PDF ofx, P(y|x) is the conditional PDF ofy givenx,
andP(y) is the prior PDF of the measurement. A direct ap-
plication of Eq. (1) would require integration over the whole
state space, which is a too demanding operation for most sit-
uations.

For non-linear and non-Gaussian inversion problems, such
as the one faced here, several methods to solve Eq. (1) ex-
ist. Markov chain Monte Carlo (MCMC,Tamminen and
Kyrölä, 2001), Bayesian Monte Carlo integration (BMCI,
Evans et al., 2002), neural nets (NN,Jimenez et al., 2003),
and non-linear regression (NLR) methods are some exam-
ples. MCMC provides a discrete representation ofP (x|y),
which could be used to solve Eq. (1). The BMCI, NN, and
NLR methods make use of a discrete representation of the
state and measurement spaces through a retrieval database, in
order to approximately solve Eq. (1). One fundamental dif-
ference between the approaches is that BMCI, NN, and NLR
use a pre-calculated retrieval database, whereas MCMC re-
quires new radiative transfer simulations for each inversion.
For this reason, the MCMC method is too costly for this ap-
plication.

A common requirement for applying BMCI, NN, and NLR
is that a retrieval database matching reality with sufficient ac-
curacy must be created. NN and NLR involve a second crit-
ical step where a mapping function is derived. This can po-
tentially result in information being lost. The main drawback
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of BMCI is that the size of the retrieval database needed in-
creases very rapidly with the dimensionality of the measure-
ment space. The method requires that the synthetic measure-
ments in the database fill the measurement space observed
by the sensor with sufficient density. The database must hold
at least a handful of cases that match any real measurement
considering the error margins caused by noise and other ob-
servation uncertainties. For example, consider a hypothet-
ical case where 100 cases are needed to fill the measure-
ment space for each independent channel of a sensor. For
n independent channels, 100n cases are then needed to fill
the retrieval database.

The BMCI method has been selected due to its conceptual
clarity, direct link to probability theory, and that the dimen-
sionality of the measurement space of concern is relatively
small. In the BMCI method, Eq. (1) is solved practically by
transforming it into a Monte Carlo integration (Evans et al.,
2002):

x̂ ≈

∑
i xiP(y|xi)∑
i P(y|xi)

, (2)

where the summation is performed over statesxi sampled
from P(x). In practice, the summation is performed over
the states in the pre-calculated retrieval database and it is im-
portant that the atmospheric states in the retrieval database
are sampled fromP(x). From Eq. (2) it is clear that the
BMCI method works for all types of a priori distributions,
although one must sample from the correct distribution. The
retrieved state is a weighted average over all states in the
database, where the weight (P (y|xi)) of each state depends
on the noise of the measurement and how closely the sim-
ulated measurement is to the actual measurements. If one
assumes that the measurement noise is distributed in a Gaus-
sian manner, which is often the case, thenP (y|xi) in Eq. (2)
can be expressed as

P(y|xi) ∼ exp

(
−

(y − F(xi))
T S−1

e (y − F(xi))

2

)
, (3)

whereF (xi) is the simulated measurement vector for state
xi andSe is the measurement noise covariance matrix. The
error estimate, the conditional expected covariance matrixŜ,
is obtained by

Ŝ =

∫
(x − x̂)(x − x̂)T P(x|y)dx

(4)

≈

∑
i(xi − x̂)(xi − x̂)T P(y|xi)∑

i P(y|xi)
.

Hence, once the retrieval database is calculated, one can in-
expensively invert measurements by the use of Eq. (2) and
Eq. (4), since the equations do not involve any heavy calcu-
lations.

The sensitivity of the retrieval to the true state,A=∂x̂/∂x,
is a matrix that contains information on the response and ver-
tical resolution of the measurements, but is not a product that
the selected retrieval method provides directly. However,
by assuming the retrievals to be close to linear, an average
estimate ofA can be obtained indirectly from the retrieval
database and Eq. (3.12) inRodgers(2000):

x̂ = xa + A(x − xa), (5)

wherexa is the mean state ofx and measurement noise is
ignored. With some rearrangements of Eq. (5) one obtains

A =

(
(1X1XT )−11X1X̂

T
)T

, (6)

where

1X̂ = [x̂1 − xa, x̂2 − xa, . . . , x̂n − xa] (7)

and

1X = [x1 − xa, x2 − xa, . . . , xn − xa]. (8)

The sum of the diagonal ofA gives the degrees of freedom
for the signalds (Rodgers, 2000),

ds = tr(A), (9)

which can be interpreted as the number of independent quan-
tities that we can extract from the observation system.
As already mentioned, the crucial part of inverting mea-
surements using the BMCI method is to create a retrieval
database consisting of atmospheric states (xi) and the cor-
responding synthetic measurement (yi) for each state. The
retrieval methodology can be summarised as (Fig.1):

– An atmospheric database consisting of 3-D atmospheric
states is created based on a priori information. The at-
mospheric states in the database should be distributed
according to P(x), also covering extreme cases, and in-
clude all atmospheric and sensor parameters that affect
the measurements. To include extreme states is impor-
tant as the retrieval algorithm (Eqs.2–4) can not extrap-
olate. This, as the retrieved state is a weighted average
of all states in the database. Thus in practice, the num-
ber of extreme states in the database should be larger,
rather than smaller, than in reality.

– The atmospheric states together with sensor character-
istics are fed into a radiative transfer model to simulate
a synthetic measurement for each state.

– Real measurements, together with the generated re-
trieval database are given to the retrieval algorithm. This
algorithm integrates over the states in the database ac-
cording to Bayes theorem to provide an estimate of the
state.
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Fig. 1. Block diagram describing the retrieval methodology.Fig. 1. Block diagram describing the retrieval methodology.

3 Observations and a priori data

This section describes the data involved in the study. The aim
of the study is to retrieve tropical upper tropospheric water
from Odin-SMR measurements by combining measurement
information with a priori data.

3.1 Odin-SMR observations

The Odin satellite was launched in February 2001 into
a 600 km quasi-polar sun-synchronous orbit, with ascend-
ing node around 18:00 h. The payload includes the first
space-borne sensor for atmospheric sub-mm observations,
Odin-SMR. This limb sounding instrument measures thermal
emission at frequencies around 500 GHz. The atmospheric
signal is recorded through a 1.1 m telescope, single-sideband
heterodyne receivers, and two auto-correlation spectrometers
with 800 MHz bandwidth. Further information can be found
in Murtagh et al.(2002) andEkstr̈om et al.(2007).

Only measurements (level 1b, v6) collected inside±30◦

in latitude are considered here. Also, only low tangent point
measurements are included, as this greatly reduces the com-
plexity of the observation geometry. For measured spectra
with tangent altitudes below∼9 km, the atmosphere around
the tangent point acts as a blackbody background, due to
strong water vapour absorption. The observation geometry
can be seen as a slant down-looking geometry, where the
sampling volume inside the troposphere is a tilted cylinder
with approximate dimensions of 2×2×45 km3. Relation-
ships between atmospheric variables and observed bright-
ness temperatures, and other details of the measurements, are
treated in detail byEkstr̈om et al.(2007) andEriksson et al.
(2007).

3.2 Cloud, weather, and atmospheric a priori data

The a priori data described below are used as input to create
the retrieval database.

3.2.1 CloudSat

CloudSat is a satellite designed to measure the vertical struc-
ture of clouds from space (Stephens et al., 2002). The satel-
lite has a 13:40 ascending node, sun-synchronous orbit at
705 km altitude. CloudSat carries a 94 GHz, 0.16◦ off-nadir-
looking Cloud Profiling Radar (CPR) which measures the
power back-scattered by clouds as a function of distance
from the radar. The standard data product consists of 125 ver-
tical bins that are 240 m thick, while the vertical resolution of
the radar is approximately 500 m. Each profile is generated
over a 160 ms integration time with a 6 dB footprint resolu-
tion of approximately 1.3 km across-track and 1.7 km along
track. The minimum detectable equivalent radar reflectivity
is approximately−30 dBZ and the dynamic range is 70 dBZ.
This study uses radar reflectivities from the 2B-GEOPROF
product version 011 provided by the CloudSat Data Process-
ing Center.

3.2.2 Cloud ice microphysics

Cloud ice microphysics refers here to ice particle sizes and
shapes. A cloud ice particle size distribution parameterisa-
tion derived byMcFarquhar and Heymsfield(1997) is used
to describe the particles size variation. This parameterisa-
tion is based on tropical in situ measurements. Particle shape
assumptions are discussed in Sect.4.1.2.

3.2.3 Weather and atmospheric data

Temperature, humidity, and ozone data are taken from the
ECMWF-AUX product, version 008, provided by the Cloud-
Sat Data Processing Center. Atmospheric gas concentrations
of O2, N2, ClO, and HNO3 are taken from a tropical clima-
tology (Fascod), and N2O from an Odin-SMR derived clima-
tology.

4 Construction of retrieval database

4.1 Construction of atmospheric states

The generation of atmospheric states can be summarised as
(Fig. 2):

– A 2-dimensional (2-D) cloud radar reflectivity measure-
ment is fed into a Fourier transform algorithm that gen-
erates a stochastic 3-D radar measurement field (Ven-
ema et al., 2006).

– The 3-D radar measurement field is combined with tem-
perature data and a particle size distribution parameteri-
sation, and fed into a cloud generator model. The output
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of the cloud generator model is a 3-D field of ice water
content and underlying particle size distributions, with
conserved radar backscattering properties.

– The 3-D cloud field, together with weather data and cli-
matological information of trace gases are passed on to
an atmospheric scene generator model. This model gen-
erates 3-D gas and temperature fields, where fine scale
structure are added to the fields to account for variability
not resolved by the data sources.

4.1.1 Cloud structures

Cloud states are generated in a series of steps, where the first
step deals with obtaining 3-D cloud structures. Detailed in-
put data are required to obtain realistic 3-D cloud structures.
Possible data sources are cloud resolving models, radars, and
in situ measurements. In situ measurements exist only for a
few clouds and are therefore not appropriate for the use here.
The advantage of using radar measurements as input, as com-
pared to using cloud resolving model data, is that correct sta-
tistical properties of cloud structures are obtained automati-
cally. Therefore, using radar cloud structure measurements
as input was considered most suitable.

The CPR on-board CloudSat collects cloud structure mea-
surements throughout the tropical region, and using Cloud-
Sat instead of data from tropical ground based radars gives
a statistical advantage. The CPR on-board CloudSat pro-
vides high resolution 2-D cloud reflectivity measurements.
A transformation to 3-D is achieved by inputting such 2-D
measurements into a stochastic iterative amplitude adjusted
Fourier transform algorithm (Venema et al., 2006). This al-
gorithm generates surrogate 3-D radar measurement fields
with the same amplitude distribution and power spectrum as
the original fields. The CloudSat data were inputted as orbit
sections having a 4◦ latitudinal extension and full resolution
(∼200 m in vertical× 2 km in latitude), that yield 3-D fields
covering 4◦ in both latitude and longitude with the same spa-
tial resolution as the input.

4.1.2 Cloud microphysics

The concept is to create 3-D cloud fields that conserve the
surrogate 3-D radar reflectivities. Two assumptions are made
regarding microphysical properties:

– Cloud ice particle size distribution (PSD) variations
seem to be complex in nature. PSDs vary both within
clouds and from cloud to cloud. Ideally, the PSDs in
the cloud states in the database should follow this natu-
ral variability. If this was the case, the retrieval uncer-
tainty associated with PSD variability would have been
incorporated in the retrieval algorithm. However, no
PSD parameterisation exists that can describe the full
true ice cloud variability. A method to include varia-
tions in the mean particle size and width of the PSD

B. Rydberg et al.: Non-Gaussian Bayesian retrieval 17
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alised.

is presented inRydberg et al.(2007). That method
was basically applied in order to predict the retrieval
performance of a dedicated cloud instrument, capable
of measuring some PSD parameters. However, Odin-
SMR provides no mean in estimating PSD parameters.
Thus, applying a method to generate variations of PSD
parameters would basically only effect the retrieval un-
certainty. An alternative approach would be to apply a
fixed well defined PSD parameterisation. The drawback
with this approach is that retrieval uncertainties must be
handled separately. On the other hand, there are two
considerable advantages. As the degrees of freedom of
the cloud states in this approach is smaller, the num-
ber of states in the database can be smaller. Addition-
ally, it is more straight forward to directly compare to
results from similar instruments. The PSD parameter-
isation derived byMcFarquhar and Heymsfield(1997)
(hereafter MH97) is assumed to be the best representa-
tion of the mean PSD in the tropical region. The PSD,
n(D), is described by a non linear function of IWC (w)
and temperature (T ),

n(D)=f (D, w, T ). (10)

whereD is the particle diameter. It should be clear
that local PSDs may deviate significantly from MH97.
However, no deviations from MH97 are included in the
database states, as sufficient information of how much
local PSDs may deviate from MH97 is lacking. This has
the consequence that the full natural variation of PSDs
is not covered by the database states, but, as long as
MH97 is a fair representation of the mean PSD no large
systematic retrieval errors are introduced and the asso-
ciated random retrieval uncertainty can be characterised
separately (Sect.5.4).
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– Natural occurring cloud ice particles can have very com-
plex shapes. The crucial aspect here is that average scat-
tering properties of particle ensembles are represented
in an appropriate manner with respect to the observa-
tions. The Odin-SMR receivers have a±45◦ linearly
polarised response, meaning that a combination of the
first and third Stokes components are measured. For
Odin-SMR observations of most atmospheric states the
third Stokes component is close to zero. Scattering by
non-spherical particles can give rise to differences in the
vertical and horizontal component of the radiation, but
the first Stokes component (total intensity) is less influ-
enced by realistically varying particle shapes (Eriksson
et al., 2007). In (Evans et al, 1998) (e.g. Fig. 8) nadir
viewing sensitivity to 8 different particle shapes, includ-
ing spheres, at 500 GHz is shown. It is shown that the
induced intensity depression depends on assumed parti-
cle shape for a given mass equivalent sphere PSD. The
induced depression by spheres tends to be in the cen-
tre of the depression produced by more complex shaped
particles. These particles produced depressions that are
within ±50% as that for spheres. By considering that
a cloud consists of a variety of particle shapes, we as-
sume that mass equivalent spheres closely describes the
averaged scattering properties of particle ensembles in
realistic clouds. This enables the use of Mie theory
for calculating the scattering properties of ice particles.
However, for instruments measuring only the vertical,
or horizontal, components of the radiation effects of
non-spherical particles should be considered.

Equivalent radar reflectivity,Ze, is related to the cloud mi-
crophysics according to

Ze =
λ4

4π4|Kw|2

∫
∞

0
qb(D, T )f (D,w, T )dD, (11)

whereλ is the wavelength,Kw the dielectric factor of water,
andqb(D, T ) is the backscattering cross section. The radar
backscattering is calculated by Mie theory.

The general situation is that a measuredZe, at a known
T , can be explained by a range of IWC values. However, as
MH97 is assumed to describe the PSD, radar reflectivity has
an unambiguous relation to IWC andT within relevant vari-
able ranges. Hence, IWC can be derived for givenZe and
T by, for example, a pre-calculated look-up table. When the
IWC matchingZe andT is determined, the PSD is obtained
from Eq. (10). This procedure ensures that the radar reflec-
tivity is conserved for the generated microphysical fields.

4.1.3 Weather and atmospheric structures

The 3-D fields of these variables are generated in a series of
steps. As a starting point weather data (temperature, humid-
ity, and pressure) and ozone, originating from ECMWF, are
obtained from CloudSat auxiliary data archive. The ECMWF

data are 2-D cross-sections (latitude and pressure) and initial
3-D fields are created by assuming no longitudinal variation.
The viewing direction of Odin-SMR in the tropical region
is approximately north to south, or reversed, and the treat-
ment of the longitude dimension is less critical. The volume
mixing ratio of gas species beside ozone are set to tropical
climatological values.

To account for weather variations on scales not resolved
by ECMWF and for natural variations of trace gas concentra-
tions, perturbations are made in the 3-D fields. A stochastic
method adding 1-D structures is described inRydberg et al.
(2007), and the modification of 3-D fields is done follow-
ing the same basic approach. The method effectively adds a
field with a zero mean and desired standard deviations and
spatial correlations to the original field. Standard deviations
are set to values that are approximately determined by the
uncertainty of ECMWF data (1 K for temperature, 20% for
ozone, and 10% for water vapour). The variation of ClO and
HNO3 was set to 40% for all altitudes while N2O was only
perturbed above 200 hPa with 30%. Assumed values of inter-
level correlation lengths are based on educated guesses. The
vertical exponential correlation length of all fields is set to
1 km at the surface level, and to increase with altitude up to
the upper troposphere. At the upper troposphere and above
3 km is assumed. The latitudinal and longitudinal correlation
lengths are throughout all states set to 0.5◦.

It was found that ECMWF underestimates the variabil-
ity of upper tropospheric humidity when compared to val-
ues found byEkstr̈om et al.(2007). Since it is important
that the database covers extreme states, the humidity fields
were modified by scaling each 2-D cross-section by a factor
randomly selected in the range [0.6,1.4] before further pro-
cessing. A scaling factor symmetric around 1 was chosen
to obtain a distribution of upper tropospheric humidity more
resembling the results ofEkstr̈om et al.(2007), at the same
time as the ensemble mean humidity is conserved. Further-
more, generated 3-D perturbed humidity fields inside clouds
is modified by assuming that the RHi is close to saturation
following Rydberg et al.(2007).

4.2 Radiative transfer simulations

The second part of the generation of the retrieval database
consists of simulating synthetic measurements for each at-
mospheric state. The simulations were performed using ver-
sion 1.1 of the Atmospheric Radiative Transfer Simulator
(ARTS). This is a development of the first version, ARTS-
1 (Buehler et al., 2005), where two scattering modules, a
discrete ordinate iterative method (Emde et al., 2004) and
a reverse Monte Carlo algorithm (Davis et al., 2005) have
been implemented to solve the polarised radiative transfer
equation. In ARTS the polarisation state is expressed by the
Stokes formalism, the geoid and surface can have arbitrary
shape, and atmospheric fields can have variations in three di-
mensions.
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4.2.1 Instrument response simulations

Simulations of Odin-SMR observations were performed for
each 3-D atmospheric state generated. For cases including
clouds, the cloud influence on the radiance was simulated
using the Monte Carlo module of ARTS, whereas radiances
for cases lacking clouds were simulated in the ordinary clear
sky mode of ARTS. In all cases the 3-D variability of the
atmosphere is fully considered in the radiance simulations.

The selected Odin-SMR frequency bands are centred
around 501.2 and 544.4 GHz, and a single frequency (cen-
tre frequency) is used to represent each band. Odin-SMR is
a single sideband heterodyne receiver, but only the primary
band is simulated. This has very little influence on simu-
lated radiances for the observation geometry of concern, as
discussed inEriksson et al.(2007). Simulations were per-
formed for the total intensity of the radiation, which for nor-
mal conditions closely approximates the Odin-SMR receiver
of ±45◦ linearly polarised response (Sect.4.1.2).

The strengths of molecular transitions and other spectro-
scopic data are mainly taken from the operational Odin-SMR
retrievals of stratospheric gas species (Urban et al., 2005).
Of special concern for tropospheric observations is that ni-
trogen absorption followsLiebe et al.(1993) and that this
absorption is scaled with a factor of 1.34 as suggested by
Boissoles et al.(2003). New data were selected for some
important water vapour variables. The pressure broadening
width coefficients for the 556.9 GHz water vapour transition
are here taken fromGolubiatnikov et al.(2008), and the wa-
ter vapour “continuum” parameterisation followsPodobedov
et al.(2008).

The antenna pattern of Odin-SMR yields an upper tro-
pospheric resolution (full width at half maximum) of
∼2 km×2 km in vertical and across-track dimensions, where
the across-track resolution is comparable (and aligned) to the
one of CloudSat, and hence to the horizontal resolution of at-
mospheric states generated. The azimuthal variation of the
antenna response can thus be neglected. However, the az-
imuthal/longitude variation of the atmospheric scenes have
an impact for cloudy scenes as scattering out of the obser-
vation plane then occurs. Accordingly, an azimuthally inte-
grated antenna pattern was applied, where pencil beam sim-
ulations were performed for tangent altitudes with a vertical
spacing of 250 m. In cloudy cases, where Monte Carlo sim-
ulations are used, each pencil beam simulation was run to a
precision of 3 K. This yields, after the antenna weighting, a
total precision better than 1 K.

The Monte Carlo module of ARTS can not handle refrac-
tion, and therefore, a simple correction scheme was applied.
Clear sky simulations, including and excluding, refractive
effects were performed. It was found that clear sky sim-
ulations, excluding refractive effects, could reproduce the
level of radiance of simulations including refractive effects,
if the tangent points were moved 500 m closer to the sur-
face. Therefore, a 500 m offset in tangent point is used to

compensate for refractive effects that are not included. The
remaining calculation error has a marginal impact on final
results.

4.3 Representation of atmospheric states

The atmospheric states in the retrieval database must be 3-D
in order to include cloud inhomogeneity effects in simulated
measurements, but it is not feasible to retrieve any atmo-
spheric 3-D structures. First of all, Odin-SMR does not pro-
vide a continuous coverage horizontally. In addition, the
measurements are inverted individually. There is, accord-
ingly, no information on horizontal structures in the measure-
ments and the only reasonable aim is to retrieve some average
for the horizontal area probed. On the other hand, vertical
information is present through differences in absorption at
501 and 544 GHz, primarily through pressure broadening of
a very strong water vapour transition at 556.9 GHz. This ap-
plies to both humidity (Ekstr̈om et al., 2007) and cloud scat-
tering (Eriksson et al., 2007), and profile retrievals of both
RHi and IWC are attempted. This in contrast to earlier Odin-
SMR cloud retrievals where only partial column values have
been retrieved.

The database state vectors for use in Eq. (2) shall thus hold
vertical profiles of RHi and IWC. That is, a 1-D representa-
tion of the humidity and cloud ice fields. The best 1-D repre-
sentation of the 3-D states should consider the spatial weight-
ing by the antenna pattern. Hence, 1-D profiles of IWC and
RHi, for each state, are obtained by first extracting values
of these parameters along each pencil beam where the radia-
tive transfer simulations were performed. These profiles are
weighted according to the Odin-SMR antenna pattern (anal-
ogously to how radiances are weighted).

This means that each case in the retrieval database consists
of a 3-D atmospheric state, a synthetic instrument measure-
ment vector, and a 1-D representation of the 3-D state. The
1-D state vectors and the synthetic instrument vectors are the
input to the retrieval algorithm. The retrieval database con-
sists of a total of∼400 000 cases. This size includes cases
covering measurements from 0 to 9 km in tangent altitude.
Hence, not all of these cases can effectively be used as in-
put for the inversion of a measurement from a given tangent
point, and the effective database size for individual cases is
∼30 000 cases. This can be compared to a required size
which is on the order of 1002=10 000, following the rough
estimate in Sect.2 whose assumptions approximately applies
to Odin-SMR.

5 Results

Basic considerations for the retrievals are treated inEkstr̈om
et al. (2007) andEriksson et al.(2007), and the details are
not repeated here. One conclusion of those studies is that
it is sufficient to consider two frequency bands to preserve
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Fig. 3. Upper panel: Radiance distribution of simulated Odin-SMR
measurements, with measurement noise added. Lower panel: Radi-
ance distribution of real Odin-SMR measurements.

Fig. 3. Upper panel: radiance distribution of simulated Odin-SMR
measurements, with measurement noise added. Lower panel: radi-
ance distribution of real Odin-SMR measurements.

the information content for the retrievals of concern and only
two frequencies are therefore considered here. The two fre-
quencies are 501.2 and 544.4 GHz.

5.1 Radiance comparison

A basic test is that the distribution of generated radiances re-
sembles that of the measured radiances. If the radiance dis-
tributions for the database and the real Odin measurements
differ significantly, one or several steps of the simulations
have been handled incorrectly and the database can not be
applied for retrievals. This retrieval uses data from only two
frequency channels and radiances can be displayed as 2-D
distributions (501 vs. 544 GHz, Fig.3). The upper right re-
gion of the figure panels corresponds to states which con-
tain no or very thin clouds, while the lower left region corre-
sponds to states that are greatly influenced by cloud scatter-
ing.

The agreement between the two distributions in Fig.3
must be judged as highly satisfactorily. The simulated dis-
tribution is in general somewhat broader, which is an ad-
vantage compared to an opposite tendency as discussed in

Sect.2. This is particularly true for the part of the distribu-
tion corresponding to a strong impact of clouds and a possi-
ble contributing factor to the broader simulated distribution
is diurnal variations in tropical deep convection. Such diur-
nal variations are well known (Liu and Zipser, 2008) and as
CloudSat performs its measurements at local times around
01:40 and 13:40 while Odin-SMR observes around 06:15
and 18:15 some differences in obtained brightness temper-
atures are expected. Diurnal differences in CloudSat and
Odin-SMR measurements are being examined and will be
presented separately.

The measurements show a higher variation in the 544 GHz
channel for brightness temperatures around 210 K. This can
be the result of an under-representation of very dry and very
humid situations at altitudes around 14 km, but is more likely
an effect of that simulated noise does not totally capture the
behaviour of the more unstable performance of this receiver
chain for level 1b v6 data (Ekstr̈om et al., 2007). The other-
wise good agreement for the clear sky domain of the radiance
distributions (upper right corner) indicates that the imposed
variation for temperature and humidity in the database mim-
ics real conditions satisfactorily.

The good agreement between the distributions in Fig.3 is
not proof that everything is handled correctly. There could
be counteracting issues and incorrect values for less influ-
ential parameters can not be resolved in this manner. How-
ever, there is no obvious way to strictly validate the retrieval
database. For example, if any better data were available they
should be included in the retrieval database.

5.2 Retrieval setup and characterisation

The final retrieval setup was determined by inverting simu-
lated measurements. The test retrievals were performed by
dividing the database into a smaller retrieval database and a
test part, each consisting of∼200 000 cases.

Obvious elements of the measurement vectory are the two
measured brightness temperatures, at 501 and 544 GHz. The
standard deviation for the noise at 501 GHz was set to 2 K,
while for 544 GHz it was assumed to vary where 3.5/2.5 K
were selected for shortest/longest integration time (Ekstr̈om
et al., 2007). The geometric tangent altitude,zt , of Odin-
SMR spectra has been estimated to have an uncertainty fol-
lowing a Gaussian distribution with a standard deviation of
about 200 m. This knowledge was treated as measurement
information andzt was included iny. The alternative would
be to divide the data into ranges of tangent altitudes and
split up the retrieval database in the same manner. However,
the inclusion ofzt in y is directly in line with the selected
Bayesian retrieval methodology by using existing informa-
tion in an optimal manner and is thus to prefer.

Odin-SMR data do not provide independent information
on humidity and temperature. Retrieval tests showed also
some improvements for the humidity retrieval when exter-
nal temperature information was added to (y) and this option
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Fig. 4. Averaging kernels (rows of A) and total measurement re-
sponse (the sum of each kernel) for relative humidity.

Fig. 4. Averaging kernels (rows ofA) and total measurement re-
sponse (the sum of each kernel) for relative humidity.

was selected for the final retrieval setup. A single tempera-
ture was chosen in order to keep the measurement vector as
short as possible. The temperature at 140 hPa was selected
as this level is approximately in between the altitudes where
the two channels have their maximum sensitivity. The tem-
perature information is taken directly from ECMWF when
inverting real Odin-SMR measurements. The standard de-
viation for the uncertainty for this piece of information was
set to 1 K. All measurement uncertainties are assumed to be
totally uncorrelated andSe in Eq. (3) is a diagonal matrix.

The state vector holds 1-D antenna-weighted IWC and hu-
midity profiles (Sect.4.3). It was found that a grid spacing
of 1.5 km is appropriate and a state vector covering altitudes
from 9 to 18 km with a spacing of 1.5 km is used in all re-
trievals presented. For both RHi and IWC, the values at each
grid point represent the average of the quantity inside the
layer (the first layer is from 9–10.5 km and so on).

Figure4 shows an estimate of the ensemble mean averag-
ing RHi kernels, which were obtained as discussed in Sect.2.
The greatest response (∼0.7) is found for the three layers
covering 10.5–15 km. The direct sensitivity of the measure-
ments to water vapour outside this altitude range is much
lower, but the retrievals do not exhibit a corresponding de-
cline in the response. This is as a consequence of applying
a Bayesian approach. The retrievals use correlations found
in the a priori data to obtain information in regions where
the measured radiances in themselves have little, or even no,
sensitivity. Thus, the quality of such retrievals are very de-
pendent on whether the correlations assumed actually exist.

Figure 5 shows an estimate of the ensemble mean aver-
aging kernels for IWC. The kernels were determined for the
logarithm of the IWC, in order to stabilise the least square fit-
ting procedure. All IWC values below 0.1 mg m−3, including

20 B. Rydberg et al.: Non-Gaussian Bayesian retrieval

Fig. 5. Averaging kernels (rows of A) and total measurement re-
sponse (the sum of each kernel) for the logarithm of ice water con-
tent.

Fig. 5. Averaging kernels (rows ofA) and total measurement re-
sponse (the sum of each kernel) for the logarithm of ice water con-
tent.

zero values that are below the detection limit of Odin-SMR
(Sect.5.4), were given small random numbers in the range
0.001–0.1 mg m−3, in order to be able to work with a log
scale. Different ranges were tested but the results remained
stable. Giving these small values a fixed number instead
might intuitively sounds better. However, that would lead
to an overestimation of the response, as it would look like
that the retrievals can exactly reproduce these values. The
greatest response (∼1.0) is found for 10.5–15 km, as for hu-
midity, and drops to∼0.65 and 0.85 for the two surrounding
layers. Below 16 km, the response is higher for IWC com-
pared to RHi. This as the measured brightness temperatures
are much stronger affected by clouds than by humidity. The
reason for the low response in the highest layer is that there
exists relatively little cloud ice there.

The trace of the estimated ensemble mean averaging ker-
nels matrix gives information on how many independent
pieces of information that can be extracted from the mea-
surements. This number is 2.3. This is consistent to the fact
that the main information is coming from the two, more or
less independent, Odin-SMR channels considered. For weak
cloud conditions these two pieces of information approxi-
mately corresponds to the RHi in the lower and upper part
of the tropical uppermost troposphere, and to the IWC in the
same layers for cases where the measured intensity is influ-
enced by clouds. For cloudy cases, the retrieved RHi is to a
large extent determined by the statistics of a priori data.

Another way to look at the information content is to es-
timate the vertical resolution, which is in the order of 5 km
(full width at half maximum of the averaging kernels) for
both RHi and IWC. This resolution is rather coarse compared
to the selected grid spacing of 1.5 km. However, retrieved
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Fig. 6. Odin-SMR multi year means of retrieved relative humidity.
Fig. 6. Odin-SMR multi year means of retrieved relative humidity.

profiles can be seen as moving averages in the vertical di-
mension, where the averaging kernels describe the weight-
ing. Accordingly, the retrievals at the different levels carry to
some extent independent information and results for the four
layers covering the altitude region from 10.5 to 16.5 km are
displayed below. The response is above 0.6 for both RHi and
IWC throughout this altitude region.

5.3 Retrieved relative humidity

Odin-SMR RHi retrievals are presented as multi year mean
results for four vertical layers in Fig.6. The geographical
patterns of RHi are in general agreement with AURA-MLS
data (see e.g.Ekstr̈om et al., 2007). Regions of high RHi are
found over Central Africa, Central and South America and
over the maritime continent. These are regions associated
with strong convection. The regions of high RHi become
broader with increasing altitude. This follows from the fact
that the humidity is more controlled by zonal mixing at the
highest altitudes, while local convection is the dominating
factor at lower altitudes. Additionally, at higher altitudes the
average RHi is closer to saturation.

The retrieval database does not include any geographical
information and the a priori fields corresponding to Fig.6 are
completely flat. That is, all horizontal structures in retrieved
results come from the measurements. In addition, the fact
that the geographical patterns of mean RHi differ between
the vertical layers indicates that vertical information has been
extracted from the measurements.

The retrieval accuracy is examined in Fig.7. The figure is
based on the retrieval simulations described in Sect.5.2. The
retrieval works best for the two vertical layers between 12
to 15 km. The retrieved RHi compare in general well to the
true RHi. The retrieval accuracy (difference between mean
retrieved RHi for each interval and the true RHi) is within
10% for RHi below 90%. The effective noise is higher for
the 544 GHz band, which is reflected by a somewhat poorer
precision for the two higher layers. In addition, the measure-
ment sensitivity to water vapour in the uppermost layer is rel-
atively small, compared to the other layers. The systematic
retrieval error has a consistent pattern. The retrieved mean
values are lower than the true RHi for high RHis and higher
than the true RHi for low RHis, where the brake point is
found around 70% RHi. This is an effect of that the measure-
ments do not provide complete information and the BMCI
method favours more likely states. The influence of the a
priori data is especially high for RHi above 90% RHi. This is
due to the effects of that saturation in the measurement sig-
nal occurs (Ekstr̈om et al., 2007), and the measurement noise
is approximately as high as the variation between the signal
at 70 and 150% RHi. Thus, retrievals are here greatly ef-
fected by a priori data. As individual retrieved values are the
most likelihood solution, the only way to reduce systematic
retrieval errors would be to reduce the measurement noise,
dominated by calibration errors. It is to date not known why
there are such high random calibration errors. A simple cor-
rection for geographical averaged retrievals, taking into ac-
count the retrieval biases in Fig.7, is discussed in Sect.6.1.

Systematic error sources, such as spectroscopic parame-
ters, possible biases in Odin-SMR calibration and ECMWF
temperatures, are not captured by the simulations shown in
Fig. 7. These errors were examined inEkstr̈om et al.(2007),
who obtained a worst case estimate of a 30% relative error.
The systematic error should in practise be lower than 30%,
since this is a worst case estimate and the errors can possible
counteract each other.

5.4 Retrieved ice water content

Retrievals of upper tropospheric IWC are shown as multi
year mean values for four vertical layers in Fig.8. The re-
trievals produce effectively no ice inside regions known to
have a low degree of high altitude (thick) clouds, such as an
area west of South America. This indicates that the retrievals
have a low degree of false cloud detections. Regions of high-
est mean IWC and the highest RHi at 10.5–13.5 km match
quite closely. On the other hand, there is a clear difference
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Fig. 7. Statistics for simulated relative humidity retrievals. The
green line is the mean retrieved RHi for each interval, the vertical
bars show the range between the 14 and 86% percentiles (corre-
sponds to ±1σ), the black line the one to one line, and the red lines
correspond to a 20%RHi error.

Fig. 7. Statistics for simulated relative humidity retrievals. The
green line is the mean retrieved RHi for each interval, the vertical
bars show the range between the 14 and 86% percentiles (corre-
sponds to±1σ ), the black line the one to one line, and the red lines
correspond to a 20%RHi error.

between Figs.6 and8 for the highest altitudes where regions
with high RHi are much wider than regions with high IWC,
in contrast to the underlying layers. As argued byEkstr̈om
and Eriksson(2008), based on CloudSat and Aura-MLS data,
this can potentially be explained as even though the dynam-
ics of the uppermost troposphere is partly controlled by zonal
mixing, the transport of higher IWC can not be performed
over long distances. This as cloud ice particles will evaporate
or fall out during the transport. Hence, the IWC throughout
the upper troposphere appears to be largely determined by
the strength of local convection. That this feature is captured
shows that the retrievals can distinguish between RHi and
IWC, but it is stressed that completely independent informa-
tion is not obtained. As for RHi, all horizontal structures are
based on measurement information. Significant IWC values
are becoming more localised with increasing altitude, a fact
showing that the vertical information has been extracted from
the measurements.

The IWC retrieval accuracy is shown in Fig.9. The re-
trieved IWC compares well to the true IWC for the layer
around 14.25 km. Significant systematic errors are found for
the other layers, caused by incomplete measurement infor-
mation in the same manner as for RHi. The general pattern
is also the same as for RHi, there is a tendency for overesti-
mation for low IWC and vice versa. For example, the under-
estimation of high IWC is caused by a combination of two
effects: 1. Such cases are less frequent and BMCI puts more
weight on the more common situation of a lower IWC. 2.
Screening by clouds at higher altitudes. For measurements
of thick clouds with large vertical extension, the sensitivity
to the lower part of the clouds is small and the retrieval algo-
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Fig. 8. Odin-SMR multi year means of retrieved ice water content.
Fig. 8. Odin-SMR multi year means of retrieved ice water content.

rithm will result in some kind of mean IWC at the lowermost
levels. Thus, a noticeable difference is that the lowermost
layer has the largest retrieval errors for IWC, whereas the
uppermost layer has the largest retrieval errors for RHi. The
overall IWC precision and accuracy are∼50%.

The retrieval database does not include the full natural
variability of microphysical quantities, i.e. deviations from
the assumptions regarding the MH97 PSD, refractive index
and solid spherical particles. InEriksson et al.(2007) ran-
dom and systematic errors associated with these uncertain-
ties are discussed. The random errors in retrieved IWC due to
PSD variations was estimated to a 40% relative error, and the
same error for refractive index and shape variations to 15%.
By combining these uncertainties, and the ones covered by
Fig. 9, and assuming that they are independent from each
other, the total precision of Odin-SMR upper tropospheric
IWC observations is found to be∼65%.

The assumed MH97 PSD parameterisation and assumed
refractive index and solid spherical particles give, possi-
bly also, rise to systematic errors, estimated inEriksson
et al. (2007) to be 30% and 15%, respectively. Systematic
errors associated with absorption spectroscopic parameters
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Fig. 9. Statistics for simulated ice water content retrievals. The
green line is the mean retrieved ice water content for each interval,
the vertical bars show the range between the 14 and 86% percentiles
(corresponds to±1σ), the black line the one to one line, and the red
lines correspond to a 50% ice water content error.

Fig. 9. Statistics for simulated ice water content retrievals. The
green line is the mean retrieved ice water content for each interval,
the vertical bars show the range between the 14 and 86% percentiles
(corresponds to±1σ ), the black line the one to one line, and the red
lines correspond to a 50% ice water content error.

and Odin-SMR calibration were also considered byEriksson
et al. (2007). These errors are regarded as negligible com-
pared to the other systematic errors. Hence, the combined
effect of systematic errors discussed is estimated to be below
50%.

6 Comparisons

Retrieved upper tropospheric RHi and IWC are compared
to results from AURA-Microwave Limb Sounder (MLS),
CloudSat and earlier Odin-SMR retrievals.

6.1 Relative humidity

The RHi results (here denoted v2) are compared to results
from AURA-MLS (Read et al., 2007, v2.2) and to previous
Odin-SMR inversions (Ekstr̈om et al., 2007, here denoted
v1) in Fig. 10. Odin-SMR and AURA-MLS have approxi-
mately the same vertical resolution of∼5 km. AURA-MLS
values were interpolated to the Odin-SMR altitudes. Odin-
SMR v1 RHi results were retrieved for two layers centred
around 200 and 130 hPaand are compared to v2 results for
the corresponding layers. An averaging over 7.5◦

×7.5◦ in
latitude and longitude is applied in Fig.10. A main reason
for using this relatively broad averaging is to decrease the im-
pact of differences in horizontal weighting that are generated
through the uneven latitude sampling of Odin-SMR.

The weighted total least square linear lines in Fig.10 all
have a slope greater than one. That is, the Odin-SMR v2 re-
trievals span a lower range of RHi than the other two datasets.
The main cause to this feature is the influence of a priori
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Fig. 10. Comparison of multi year averages of Odin-SMR v2,
AURA-MLS v.2.2 and Odin-SMR v1 RHi retrievals. The averages
(blue dots) are calculated for areas with an extension 7.5◦ in both
latitude and longitude. The black line is the one-to-one line, the
red line is the weighted total least square fitted line and dashed red
line is the weighted total least square fitted line after a correction
procedure described in the text.

Fig. 10. Comparison of multi year averages of Odin-SMR v2,
AURA-MLS v.2.2 and Odin-SMR v1 RHi retrievals. The averages
(blue dots) are calculated for areas with an extension 7.5◦ in both
latitude and longitude. The black line is the one-to-one line, the
red line is the weighted total least square fitted line and dashed red
line is the weighted total least square fitted line after a correction
procedure described in the text.

data (see Fig.7 and the discussion in Sect.5.3). The ear-
lier Odin-SMR retrievals were based on simple regression
models and were not affected by a priori assumptions in the
same manner. As a consequence, the v1 retrievals could yield
unrealistically high RHi (including>200% RHi). In addi-
tion, those retrievals were less advanced when it comes to
handling the impact of weak clouds that generates an over-
estimation of RHi. However, multi year average RHi fields
are dominated by “clear sky” retrievals. For clear sky mea-
surements the v1 retrievals use a regression model that maps
measured radiances to RHi by comparing to simulated mea-
surements with fixed RHi. These retrievals are very noise
sensitive, as the measured radiance including measurement
noise is directly mapped to RHi. As the relationship between
RHi and radiance is not linear, averaged results will be biased
high. This as a positive noise will result in an increase in RHi
that is greater than the decrease in RHi a negative noise with

Atmos. Meas. Tech., 2, 621–637, 2009 www.atmos-meas-tech.net/2/621/2009/



B. Rydberg et al.: Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour 633

the same magnitude would produce. The v2 retrievals uses
a priori data and are less noise sensitive, but on the other
hand retrievals are biased towards mean RHi. Thus there
are fundamentals differences between the v1 and v2 retrieval
algorithms. Both versions introduce biases. It is judged that
the v2 results give a fairer representation of the actual mea-
surement information found in Odin-SMR spectra.

A significant a priori “contamination” can not be avoided
for individual v2 retrievals, but it could be decreased some-
what by introducing a geographical and seasonal varying a
priori. This choice was rejected so as to maintain a situation
where all horizontal and temporal structures in estimated RHi
fields are directly attributable to the measurements. On the
other hand, the contamination can be decreased for average
values in a relatively straightforward manner. If the humid-
ity inside each grid box were constant, it should be possible
to compensate for the a priori influence through Fig.7 that
gives the systematic error for each range of RHi. The dashed
(red) line in Fig.7 is the weighted total least square linear
line after such a compensation is applied to the average val-
ues displayed. The natural variability is not zero and perfect
compensation is not achieved. However, a first order correc-
tion for a priori influence should be reached and the dashed
lines are used below for further comparisons.

The changes in spectroscopic variables (Sect.4.2.1)
should result in drier Odin-SMR values for v2 compared to
v1, and the differences in Fig.10 (for dashed line) between
v1 and v2 are primarily caused by these changes. For the
15.0–16.5 km layer the screening applied to the 544 GHz data
in v1 must also be considered. The screening left only spec-
tra with a less frequently used longer integration time (1.87 s)
that gives a less pronounced impact of random calibration er-
rors. The introduction of a priori data made it also possible to
handle higher calibration errors and the data included differ
between v2 and v1. This point explains also the higher scat-
ter between v1 and v2 mean RHi for the 15.0–16.5 km layer
than for 12.0–13.5 km.

The agreement between Odin-SMR and Aura MLS is ex-
cellent between 13.5 and 16.5 km (after correction for a priori
influences). The consistency is good also at 10.5–13.5 km for
regions with low RHi.

The highest differences are found for wet regions below
13.5 km where MLS shows significantly higher values than
SMR. The deviation is higher after a priori compensation,
but the correction here is questionable. Odin-SMR on av-
erage underestimates RHi above 70–75% (Fig.7), but such
high relative humidities are not found among the v2 average
values below 13.5 km and the correction gives consistently
drier data. The part of the data that should have the oppo-
site correction is lost in the averaging and the compensation
procedure fails for high humid average conditions. There is
a better match between MLS and v1 data for these lower and
wetter regions (Ekstr̈om et al., 2008). However, the better
agreement is probably partly caused in artificial ways by al-
lowing unrealistic values and interference of weak clouds in

v1, as discussed above. Figure 12 inEkstr̈om et al.(2008) in-
dicates that the new Odin-SMR retrievals should agree quite
well with data from UARS MLS, below 13.5 km. In any
case, the Odin-SMR retrievals are for these lower altitudes
especially sensitive to the selection of “continuum parame-
terisation” for H2O and N2. Large uncertainties exist around
these parameterisations for both species and a change was
made for H2O (Sect.4.2.1) in order to use newest available
data. Accordingly, some kind of validation for selected pa-
rameterisations is needed before any more firm conclusions
can be drawn.

6.2 Ice water content

The IWC results (here denoted v2) are compared to results
from CloudSat (Austin et al., 2009) and to previous Odin-
SMR results (Eriksson et al., 2007, 2008, here denoted v1). It
should be noted that the comparison uses the official Cloud-
Sat IWC retrievals (2B-CWC-RO, R04) and not the implicit
retrieval made when constructing the retrieval database. The
main difference between these two retrieval approaches is as-
sumptions regarding the PSD.

As opposed to RHi retrievals, the Odin-SMR random cal-
ibration error does not significantly affect IWC retrievals.
This means that not only retrieved mean values can be con-
sidered in the comparison. Comparing higher order statis-
tics gives additional information on how the datasets relate.
This is of particular interest for tropical upper tropospheric
IWC, which exhibits non-Gaussian statistics and covers a
large span of values, typically from 0 to 1000 mg m−3. Thus,
comparisons of retrieved PDF of upper tropospheric cloud
ice are considered.

Figure11 shows PDFs of retrieved IWC values. Table1
gives the corresponding overall mean IWC. Since there is
a fundamental difference between the observation geome-
tries and resolution of the two sensors, CloudSat data have
been averaged in different ways to show the impact of spa-
tial sampling on IWC PDFs. In the case of CloudSat-a,
individual IWC profiles have been averaged over the four
altitude ranges considered. The sampling volume is ac-
cordingly a vertical cylinder with a height of 1.5 km. For
CloudSat-b the data are averaged over the same vertical
layers, but weighted in the horizontal direction according
to Odin-SMR’s observation geometry and antenna pattern.
Thus, the sampling volume is a tilted cylinder with a 1.5 km
vertical extension. This does not change mean IWC val-
ues compared to the CloudSat-a case. The averaging for
CloudSat-c aims at producing data that can be directly com-
pared to the Odin-SMR v2 retrievals and the vertical res-
olution must also be considered. The CloudSat-c PDF is
obtained by weighting CloudSat-b data with the ensemble
mean averaging kernels in Fig.5. The Odin-SMR averag-
ing kernels were mainly derived in order to get a rough es-
timate of the vertical resolution of Odin-SMR. The derived
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Fig. 11. PDFs of Odin-SMR (blue) and CloudSat (red, green, and
cyan) retrieved ice water contents. The different averages (a, b and
c) of CloudSat data are described in the text.

Fig. 11. PDFs of Odin-SMR (blue) and CloudSat (red, green, and
cyan) retrieved ice water contents. The different averages(a), (b)
and(c) of CloudSat data are described in the text.

averaging kernel matrix is an average over the complete
training data ensemble. Hence, applying the kernels on
individual CloudSat-b profiles must only be seen as a rough
estimate what the Odin-SMR retrieval algorithm would have
retrieved. Anyhow, CloudSat-C data are more appropriate
than CloudSat-b data to directly compare to Odin-SMR re-
trievals.

As the kernels were derived for the logarithm of IWC,
the same transformation must be applied here. This causes
some ambiguity around how to treat CloudSat data with low
IWC, and especially the case of IWC = 0. The detection limit
for Odin-SMR is≈1 mg m−3 and all IWC values below this
level can be treated as “clear sky” with respect to Odin-SMR
measurements. To mimic this, CloudSat data were set to have
a minimum value of 1 mg m−3 and final results were com-
pensated in such way that a constant IWC field of 1 mg m−3

gives a CloudSat-c value of 0. That is, the averaging ker-
nel matrix was multiplied both with each “real” profile (with
minimum values of 1 mg m−3) and with a profile, where all
values are 1 mg m−3 and the latter resulting profile is sub-
tracted from the former.

A spatial averaging has a clear influence on the PDF
(Fig. 11). The impact is especially clear for highest IWC
as such values are normally confined to small volumes and
are less frequent for averages covering larger volumes. The
opposite occurs for low IWC, where the PDFs increase with
spatial averaging.

Between 10.5 and 15 km, the Odin-SMR PDFs coincides
well with the CloudSat-c ones for high IWC, but is consis-
tently below for lower IWC. This can not be explained by
influence of a priori as the v2 retrievals tend to give an over-
estimation for lower IWC (Fig.9). As noted above, the Odin-
SMR and CloudSat retrievals are based on different assump-

Table 1. Retrieved ice water content mean values. The different
averages (a, b and c) of CloudSat data are described in the text. All
values in mg m−3.

10.5–12 km 12–13.5 km 13.5–15 km 15–16.5 km

CloudSat-a 8.4 5.1 2.1 0.41
CloudSat-b 8.4 5.1 2.1 0.41
CloudSat-c 6.1 3.5 1.3 0.055
Odin-SMR 4.4 2.1 0.76 0.085

tions on the PSD.Eriksson et al.(2008) inverted one month
of CloudSat observations using MH97 (the PSD applied for
Odin-SMR) and compared to official (R04) results. A pattern
resembling the one noted above was found: good agreement
for high IWC but lower PDF with MH97 for lower IWC.
The average values when using MH97 are 10, 25 and 41%
below official data at 11.0, 12.0 and 14.0 km, respectively.
The differences between v2 and CloudSat-c are (Table1) 28,
40 and 42% for the 11.25, 12.75 and 14.25 km layers, re-
spectively. Accordingly, for 10.5–15.0 km, there should be
relatively small deviations between Odin-SMR v2 data and
CloudSat inversions assuming MH97 as PSD.

The situation is different for 15.0–16.5 km, where the
Odin-SMR average is 55% above CloudSat. The PDFs ob-
tained byEriksson et al.(2008) for 15.5 km indicate that
the deviation between v2 and CloudSat retrievals should in-
crease with a switch to MH97. The difference can instead
potentially be explained by the fact that the two sensors per-
form measurements at different local times and high altitude
clouds have a clear diurnal cycle. It might be that Odin-SMR
measures the clouds at a later stage in their life where con-
vective updrafts have brought up more ice particles to higher
altitudes.

Figure12shows the PDF of retrieved pIWP for Odin-SMR
v1 and v2. pIWP is defined inEriksson et al.(2007) and cor-
responds roughly to the column ice mass above 12 km. The
retrieved profiles from v2 have been weighted with the aver-
aging kernel provided byEriksson et al.(2007). The main
limitation of the v1 retrievals was that homogeneous cloud
layers were assumed and a simple scheme to correct for this
shortcoming was introduced. Cloud inhomogeneity effects
are handled in detail by the v2 inversions and the good agree-
ment between v2 and v1b PDFs confirms that the correction
applied on v1 data was justified.

7 Conclusions

A Bayesian retrieval algorithm has been developed and ap-
plied to Odin-SMR measurements of tropical upper tropo-
spheric humidity and cloud ice. The core of the algorithm
is the generation of a retrieval database, consisting of at-
mospheric states and corresponding synthetic measurements.
Great care must be taken to create atmospheric states that
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mimic real conditions in detail. This is here achieved by
merging data from several sources, with CloudSat radar
measurements as the cornerstone. The generated atmo-
spheric states together with sensor characteristics are fed into
a state-of-the-art radiative transfer model to simulate syn-
thetic measurements. The main advantage of this methodol-
ogy is that the basic information content from radar measure-
ments is preserved, at the same time as atmospheric quan-
tities are given realistic variability, and a database closely
matching observed brightness temperatures could be created
(Fig. 3).

Odin-SMR retrievals of tropospheric relative humidity
(RHi) and cloud ice mass were introduced byEkstr̈om et al.
(2007) and Eriksson et al.(2007). Cloud inhomogeneities
inside the sampled volume was reported as a major cloud
ice mass retrieval uncertainty. It was found that assuming
homogeneous cloud layers will lead to a systematic under-
estimation of cloud ice mass. The main achievement of this
work is that cloud structure inhomogeneity effects are now
handled in a near optimal manner, by using high resolution
(compared to Odin-SMR) radar data as input for the gener-
ation of atmospheric states in the retrieval database. Only
a marginal systematic error should remain and estimation of
the corresponding random error is an integrated part of the
inversions.

Another major improvement is that simultaneous profile
retrievals of RHi and ice water content (IWC) can now be
performed compared to the earlier retrievals where cloud ice
mass and RHi were treated separately. Further, the earlier
cloud ice mass retrieval product was limited to the column
integrated mass above∼12 km, and RHi was retrieved only
for two layers centred around 200 and 130 hPa. Addition-
ally, the introduction of a priori data made it possible to also
handle a higher level of calibration error found in data of the
Odin-SMR 544 GHz channel (level 1b v6), enabling the use
of all data for RHi retrievals.

It was determined that Odin-SMR can measure tropical
upper tropospheric profiles of RHi and IWC with a verti-
cal resolution of∼5 km. The best retrieval performance is
found between 11 and 15 km in altitude. The retrieval preci-
sion is<20% RHi and<65% and systematic errors are be-
low 30% and 50%, for RHi and IWC, respectively. Greatly
improved confidence and precision in the RHi retrievals has
been achieved. This, at the cost of a clear a priori influence
in results, which is strongest for high RHi due to a saturation
effect in measurement signal. The a priori “contamination”
must be considered in comparing to other datasets and a sim-
ple correction procedure for a priori influence was suggested.
Eriksson et al.(2007) estimated the deviations between local
average RHi values for Aura MLS and earlier Odin-SMR re-
trievals to be≤10% RHi. This general accuracy estimate is
retained, but this comparison indicates an even better agree-
ment in the 13.5–16.5 km altitude range. The highest devia-
tions (10–15% RHi) are found for lower altitudes (10–13 km)
and most humid conditions. The new retrievals are closer to
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Fig. 12. New Odin-SMR (v2) and previous Odin-SMR (v1) re-
trieved pIWP. For v1 the PDF of both original data (v1a) and after
a correction for cloud inhomogeneity effects (v1b).

Fig. 12. New Odin-SMR (v2) and previous Odin-SMR (v1) re-
trieved pIWP. For v1 the PDF of both original data (v1a) and after
a correction for cloud inhomogeneity effects (v1b).

UARS MLS results. However, for these lower altitudes the
Odin-SMR retrievals are especially sensitive to the selection
of “continua parameterisation” for H2O and N2, where large
uncertainties exist for both species, and a more detailed anal-
ysis is needed before any conclusions can be drawn.

Limited knowledge of both average and local particle size
distributions (PSD) is a main issue for all remote sensing
of cloud ice mass. This work provides no progress on this
point. The Odin-SMR retrievals are based on the assump-
tion that the PSD parameterisation derived byMcFarquhar
and Heymsfield(1997) (hereafter MH97) is the best repre-
sentation of the mean PSD in the tropical region. In lack of
relevant data, no attempt to include PSD variations in the
database was made and the related errors have to be esti-
mated separately (here taken fromEriksson et al., 2007). It
is stressed that no large systematic retrieval errors are intro-
duced as long as MH97 is a fair representation of the mean
PSD, and this retrieval error should primarily be of random
nature.

Odin-SMR and (official) CloudSat IWC retrievals show
clear deviations, where the differences between mean values
are −40 to +55%. Based on earlier studies where Cloud-
Sat observations were inverted with the same PSD as applied
for Odin-SMR (MH97), it was judged that differences be-
low 15 km in both average and distribution of IWC retrieved
largely can be explained by different PSD assumptions. Di-
urnal variations are suggested as the main cause to the dis-
agreement above 15 km, and have probably also an impact at
lower altitudes.

Dedicated mm and sub-mm down-looking instruments
for cloud observations have been suggested (Evans and
Stephens, 1995; Buehler et al., 2007) and the results here
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serve as a practical demonstration of the potential of those
instrument concepts. This is the case as, for the observations
considered, Odin-SMR shares the basic properties of the
measurement principle used. Odin-SMR is in this context
a simple instrument and a greatly limited performance com-
pared to a dedicated instrument is expected, but it is clearly
demonstrated that differences in gaseous absorption provides
cloud altitude information. This work also shows that satel-
lite cloud radars are important in an indirect manner, the data
can be used to improve retrievals from existing/future passive
measurements.

The retrieval method could in principle be applied to any
passive microwave cloud observations, but the following
properties of the CloudSat 94 GHz radar should be noted.
The thinnest clouds are not detected by the radar. Further,
CloudSat is in a sun-synchronous orbit and this has the con-
sequence that the atmospheric states in a retrieval database do
not fully mimic the diurnal variability of clouds. In general,
over tropical land maximum cloudiness occur in afternoon,
while over oceans the peak is in the early morning. How-
ever, the phase of the diurnal cycle may vary from region
to region, meaning that the retrieval database to some extent
covers diurnal variability. If it is desired to better capture
diurnal differences, input from ground-based cloud profiling
radars can be used instead, at the expensive of global cover-
age. The EarthCARE mission (Ingmann, 2004), with launch
planned for 2013, will also be in a sun-synchronous orbit, but
will provide a better sensitivity to thin clouds.
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