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Abstract. The bending angle observation operator (forward
model) currently used to assimilate radio occultation (RO)
data at the Met Office, the European Centre for Medium-
Range Weather Forecasts (ECMWF) and other centres is
the same as is included in the Radio Occultation Process-
ing Package (ROPP), along with the corresponding tangent-
linear and adjoint code. The functionality of this package
will be described in another paper in this issue. The mean
bending angle innovations produced with this operator using
Met Office background fields show a bias that oscillates with
height and whose magnitude peaks between the model levels.
These oscillations have been attributed to shortcomings in
the assumption of exponentially varying refractivity between
model levels. This is used directly in the refractivity operator,
and indirectly to produce forward-modelled bending angles
via the Abel transform. When the spacing between the model
levels is small, this assumption is acceptable, but at strato-
spheric heights where the model level spacing is large, these
biases can be significant, and can potentially degrade anal-
yses. This paper provides physically based improvements to
the functional form of refractivity with height. These new
assumptions considerably improve the oscillatory bias, and
a number of approaches for practical implementation of the
bending angle operator are provided.

1 Introduction

A key feature of radio occultation (RO) data is that the raw
observations of excess phase should be unbiased, due to
the use of an atomic clock onboard the low Earth orbiting
(LEO) RO receiver. These raw measurements, however, are

not straightforward to assimilate into a numerical weather
prediction (NWP) system, and the raw data are usually pre-
processed into bending angles or refractivities, which are
then disseminated on the Global Telecommunication System
(GTS).

Data assimilation (DA) is the process of producing a sta-
tistically optimal “analysis” which is used as an input to an
NWP forecast system. The assimilation step blends infor-
mation from observations and short range (e.g. 6 h) forecast
fields, i.e. the background. Mathematically, the basic, time-
independent DA problem is defined as finding the value ofx

which minimises the following cost function,J :

J (x) =
1

2

[
(xb − x)T B−1 (xb − x)+ (1)

(y − H(x))T R−1 (y − H(x))
]
,

wherex is the model state vector,xb is the background state
vector (i.e. the “first guess”),y is the observation vector,H
is the non-linear observation operator, also called the “for-
ward model”, (in a 4D-Var system the operator would in-
clude integration of the forecast model) andB andR are the
background and observation error covariance matrices, re-
spectively. The first term is evaluated in model space, and the
second term is evaluated in observation space. The observa-
tion operator is the calculation of the simulated observation
which would be measured given the atmospheric state of a
model field. Satellites measure quantities such as radiance,
excess phase, and not simply atmospheric state quantities
such as temperature or humidity. So, the forward model may
be fairly complex, even if the observations are pre-processed
into quantities more closely related to the model state vari-
ables. It should be emphasised that in variational DA, the
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cost function depends on the “innovations”, i.e.y − H(x)

and not simply the observations themselves. For this reason,
it is just as important to ensure that the forward modelH is
accurate as it is to ensure that the observations are of good
quality. This paper will discuss improvements to the RO re-
fractivity and bending angle forward models which are used
at several NWP centres and form part of the Radio Occul-
tation Processing Package (ROPP), henceforth referred to as
the “ROPP operator” for brevity.

In the case of refractivity assimilation, the observed re-
fractivity values describe the atmosphere at particular points
(with some degree of spatial correlation), so interpolation
of refractivity to this point is necessary. Forward-modelled
bending angles, however, depend on the entire model atmo-
sphere above the tangent point (Fjeldbo et al., 1971). For this
reason, the variation of refractivity with height needs to be
known at all heights, from the tangent point to the top of
the model, including all points between the model levels.
This is necessary in order for the Abel integral, which cal-
culates bending angles from refractivity, to be evaluated (see
Sect.3).

The ROPP operator is based onHealy and Thepaut(2006).
This assumes exponentially varying refractivity,N , as a func-
tion of x between model levelsi andi + 1. The independent
variablex is the product of the refractive indexn and the dis-
tance from the local centre of curvature of the Earthr, i.e.
nr:

N(x) = Ni exp(−ki (x − xi)) for xi ≤ x < xi+1, (2)

where

ki =
ln(Ni/Ni+1)

xi+1 − xi

. (3)

This ensures continuity at the model levels:N(xi) = Ni

andN(xi+1) = Ni exp(−ki (xi+1 − xi)) = Ni+1.
With some further approximations, this variation ofN

with height can allow the bending angle to be calculated via
the Abel transform, resulting in a difference of error func-
tions, see Eq. (9) (Healy and Thepaut, 2006). To a first ap-
proximation the exponential assumption seems reasonable as
the refractivity is given by

N = c1
P

T
+ c2

Pw

T 2
, (4)

whereP is pressure,T is temperature,Pw is the partial pres-
sure of water vapour andc1 andc2 are empirical constants
(Smith and Weintraub, 1953).

In a dry atmosphere, the first term in Eq. (4) effectively
represents the mass field. Where the temperature is constant,
the hydrostatic equation dP/dz = −ρg implies thatP falls
exponentially with height:P(z) = Pi exp(−gz/RT ). There-
fore, N also falls exponentially. This behaviour can be seen
in Fig. 1 for a typical example of how model refractivity
varies with height. If the spacing between model levels is

Figure 1. Logarithm (base 10) of a randomly selected (but fairly
typical) vertical refractivity profile, forward modelled from a 70-
level Met Office background profile. This highlights the approxi-
mately exponential behaviour of refractivity with height. The dry
and wet terms have also been plotted to show their relative contri-
butions.

sufficiently small, this assumption can produce reasonable
refractivities between the levels, and hence bending angles. If
the spacing is large, however, the innovation statistics show
features which indicate failings of this assumption. This pa-
per aims to address refinements to the form of the refrac-
tivity with height used in the refractivity and bending angle
forward models.

2 Refractivity

Currently, bending angles are assimilated operationally at the
Met Office but from 2006 to 2010 refractivity data were as-
similated, and some NWP centres continue to assimilate re-
fractivity operationally. To forward model refractivity at an
observation height which lies between two model levels, the
same exponential assumption was applied (i.e. Eq.2, but in
terms of geopotential height). This is equivalent to perform-
ing a linear interpolation of ln(N) between the two model
levels surrounding the observation height.

Nob_height= exp
[
0 ln(Ni) + (1− 0) ln(Ni+1)

]
, (5)

where

0 =
Zi+1 − Zob_height

Zi+1 − Zi

. (6)

With this assumption applied, the innovation statistics
((O − B)/B) are plotted in Fig.2. All plots in this paper
have had Met Office quality control applied to reject poten-
tially poor quality observations (Rennie, 2010). Note that in
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Figure 2. Refractivity innovations from 25 Met Office (6-hourly)
model cycles, with observation data from all available RO instru-
ments. The period started with the 00 Z analysis on 1 January 2014.
The refractivity between model levels is calculated using Eq. (2).
Typical heights of the model levels are overlaid as horizontal lines.

this context,B denotes the simulated observations forward-
modelled from backgrounds,H(x), on observation levels
and not the background error covariance as above.

The values of(O −B)/B are calculated for each observed
profile (i.e. in observation space), where the background pro-
files are horizontally interpolated from full-resolution (70-
level) Met Office fields. The(O−B)/B values are then verti-
cally interpolated linearly onto a fixed grid with 100 m spac-
ing for statistics to be calculated (mean and standard devi-
ation), thus allowing profiles with different sets of impact
heights to be included in the statistics. All plotted(O−B)/B

statistics in this paper are calculated this way.
The bias above∼ 45 km should be ignored as it is due to

a Met Office-specific model temperature bias, which is an-
ticipated to improve with an upcoming model upgrade. Sim-
ilarly, the growing negative bias above∼ 17 km relates, at
least partly, to a bias arising from the handling of Met Office
levels in the refractivity forward model. This broad bias is
potentially problematic, but is specific to the Met Office. The
cause is understood and is being addressed but is largely in-
dependent of the main topic of this paper, so will be ignored
to avoid complicating the discussion.

The general issue that will be addressed here is the small-
scale undulation that is present in the bias and is most notice-
able between 25 and 45 km. The origin of these fluctuations
is clear when the model levels are overlaid, as in Fig.2.

It can be seen that the magnitude of the oscillatory signal is
smallest when the observations are close to the model levels
and largest in between. This is a real bias and not a feature of
the plotting (the plotting routines have no knowledge of the
heights of the model levels, and work entirely in observation

Figure 3.Bending angle innovations from the same period as Fig.2,
with typical model levels overlaid. The functional form of refractiv-
ity used in the Abel integral is Eq. (2). Note that the model levels are
plotted on geopotential heights and not converted to impact heights.

space). In a DA system (3D-Var for simplicity), the cost func-
tion takes the form of Eq. (1). Therefore, the oscillations in
the innovations (y − H(x)) will be present in this quantity,
and hence they will introduce biases into the DA system.

The origin of these oscillations is apparently the exponen-
tial assumption between model levels.

3 Bending angle

The bending angle forward model is much more sensitive
to subtle changes in the model background and the form of
dN(x)/dx which is integrated above the tangent height, i.e.
the bending angle depends on the vertical gradient of the re-
fractivity. Therefore, it is no surprise that the bending an-
gle statistics show the oscillatory bias even more strongly in
Fig. 3.

These statistics are calculated in a similar way to refractiv-
ity (above), but the values of(O −B)/B for each profile are
interpolated to a fixed grid of impact heights (impact parame-
ter minus the local radius of curvature) rather than geopoten-
tial heights. These fixed heights are spaced by 100 m. Plot-
ting bias statistics with coarse vertical binning (e.g. 1 km)
can hide these features, so we encourage other NWP centres
to follow this methodology to avoid overlooking similar os-
cillations.

The bending angle as a function of impact parameterα(a)

is given by the Abel integral (Fjeldbo et al., 1971; Melbourne
et al., 1994; Kursinski et al., 1997):

α(a) = −2a

∞∫
a

dlnn
dx

√
x2 − a2

dx, (7)
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wherex = nr as before. By assuming exponential refrac-
tivity, and assuming

√
x2 − a2 '

√
2a

√
x − a, the bending

angle contribution from a single layer is given byHealy and
Thepaut(2006):

1αi =10−6
√

2πakiNi exp{ki (xi − a)}× (8)[
erf
{√

ki (xi+1 − a)
}

− erf
{√

ki (xi − a)
}]

. (9)

The implementation of the error function uses an accurate
fit (Eq. 7.1.25,Abramowitz and Stegun, 1965) to minimise
the computational cost.

Because this is an integral from the tangent height upwards
and is weighted most strongly close to the tangent point by
the denominator, it is expected that if the assumption of ex-
ponential refractivity between model levels is less than ideal,
then the magnitude of the bias would be smallest close to the
model levels, whereN(x) is the best representation of the
model field (i.e. without any additional distortion from the
vertical interpolation), and largest in between. This can be
seen in Fig.3, though unlike the refractivity statistics, the os-
cillations in the bending angle bias are not symmetric about
the centres of the layers. Interestingly, these oscillations do
not appear so prominently in the equivalent statistics from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) – results suggest that this is due to the higher ver-
tical resolution (more than two times larger) in the strato-
sphere compared to the Met Office, making the exponential
assumption more accurate. This is discussed later in this pa-
per.

The bending angle operator proposed byCucurull et al.
(2013) assumes a cubic representation of refractivity as a
function of height. This implementation ensures that the ver-
tical refractivity gradients are continuous. The Abel integral
is then computed using the trapezoidal rule. In our tests (re-
sults not presented here), the oscillatory biases in the innova-
tions were increased for both refractivity and bending angles
using this form ofN(x), though in our tests the Abel integral
was solved analytically rather than numerically.

We therefore seek a new form of refractivity with height
as an improvement to the exponential assumption. This can
be applied in a number of ways:

– Use a more physical function ofN(x) as the best ap-
proximation, or “reference”, between model levels and
integrate this or an approximation to it.

– Apply a simple polynomial correction term to the expo-
nential to bring it closer to the reference.

– Use “pseudo-levels”; i.e. evaluate the reference on hy-
pothetical intermediate levels and apply the existing ex-
ponential assumption to integrate between these model
levels.

These methods all require a best guess forN(x). This
should preferably satisfy the following criteria:

– N(x) should be continuous at model levels.

– It should have a physical basis.

– It should take information from as few model levels as
possible.

– It should include atmospheric moisture.

– It should not be prohibitively costly.

3.1 Improved form of N(z)

A form of N(z) used byHealy and Eyre(2000) assumes ex-
ponentially varying specific humidity, linearly varying tem-
perature and hydrostatic pressure. This form will be consid-
ered as the best guess, or “reference” refractivity between
model levels in this paper. In the troposphere, where mois-
ture is most prevalent, the model levels are close together,
so the exact form of humidity variation with height is not
critical, but exponential variation usually produces a more
realistic humidity profile than linear variation in individual
cases. The original paper used linear variation of the virtual
temperature to obtain the hydrostatic pressure. Here, we use
the temperature itself as even at the surface, the difference is
rarely more than 1 % and rapidly decreases with height, so
in the upper-troposphere–lower-stratosphere, the differences
will be negligible. The specific humidity is, however, used in
the moist term of the refractivity equation (note that the vir-
tual temperature should be used to compute the geopotential
heights on pressure coordinates):

N(z) = c1
P(z)

T (z)
+ c2

P(z)Q(z)

(ε + (1− ε)Q(z))T (z)2
, (10)

whereε is the ratio of the molecular mass of water vapour
and dry air andc1 andc2 are as in Eq. (4).

The reference specific humidity (Q), temperature (T ) and
pressure (P ) are defined to behave as

Q(z) = Qi exp(−ηi(z − zi))

T (z) = Ti + βi (z − zi) (11)

P(z) = Pi

(
1+

βi

Ti

(z − zi)

)−g/(Rβi )

= Pi

(
T (z)

Ti

)−g/(Rβi )

.

Between model levelsi and i + 1, ηi is the inverse scale
height of the humidity,βi is the vertical gradient of temper-
ature within the layer,g is the gravitational acceleration and
R is the gas constant for dry air. Note that this form ofP(z)

is different from what is assumed in a previous stage in the
Met Office forward model for refractivity; in order to get all
model variables on one set of the staggered levels, the Exner
pressure values,5 = (P/P0)

R/cp , are interpolated linearly
from their native levels. This discrepancy results in the hy-
drostatic integral producing a discontinuity inN at the model
levels. A solution is to replace the temperature gradientβ in
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Figure 4. Refractivity innovations using the hydrostatic refractiv-
ity expression between model levels (Eqs.10 and11) with typical
heights of the model levels overlaid.

the expression for pressure (Eq.11), with a valueσ that en-
forces continuity, i.e.

P(z) = Pi

(
T (z)

Ti

)−g/Rσi

, (12)

where

σi = −
g

R

ln(Ti+1/Ti)

ln(Pi+1/Pi)
. (13)

A slightly different version of the continuity correction
utilises a factor which scales the pressure linearly within the
layer to force continuity. The computed refractivities are al-
most identical for the two methods, but we choose to pro-
ceed with the neaterσ correction in this description, as this
is the formulation that will form part of the ROPP package.
At the Met Office, the alternative formulation is likely to be
followed operationally for flexibility, though we emphasise
that the underlying assumptions are consistent between these
approaches, i.e. the same reference refractivity variation is
being approximated.

The refractivity, continuous at adjacent model levels, is
simply Eq. (10), usingQ(z) and T (z) from Eq. (11), and
P(z) from Eq. (12).

As stated above, if the forward model handles the model
variables consistently throughout, this correction term should
not be required. When Eq. (10) is used in the refractivity for-
ward model, the vertical profile of the bias becomes signif-
icantly smoother, though a small oscillatory signal remains,
albeit with opposite curvature at 30 to 40 km. See Fig.4.

For bending angles, the independent variable isx = nr =

n(rcurv+ z). Because the refractive index is close to unity
even near the surface (wheren ' 1.0003), the variation of the
refractivity between model levels can reasonably be written

in terms ofz−zi or x −xi interchangeably. Also, the change
to the vertical refractivity gradient arising from this change
of variable has been investigated in computations for a small
number of cases and the differences are very small. Inter-
changing these independent variables is only reasonable if
nr is monotonic, which is ensured by rejecting observations
below any model levels for which the modelnr decreases
with height.

This approach satisfies the criteria specified in the intro-
duction to Sect.3. Although we specify thatN(z) must be
continuous, this new approach does not ensure continuity of
dN/dx, which is the quantity integrated in the Abel trans-
form. The importance of this is thought to be small relative
to the biases caused by the exponential assumption, and Ap-
pendixB contains a specific example and a general demon-
stration that as long asN is continuous at the model levels,
the resulting bending angle profile will also be continuous,
regardless of the continuity of dN/dx.

3.2 Practical considerations

Two situations can arise where the calculated refractivity
is undefined. The first involves the humidity inverse scale
heightη, defined as

ηi =
ln(Qi/Qi+1)

zi+1 − zi

. (14)

In the Met Office 4D-Var system, negative specific hu-
midities can occur throughout the minimisation. This will
clearly cause an undefined value ofηi , and henceN(z). This
is avoided by assuming thatQ(z) varies linearly within the
layer should the humidity at one of the surrounding levels be
negative. In the ROPP package, a positive minimum value of
specific humidity is enforced (10−6 kg kg−1).

The second situation is when the temperatures are identi-
cal at each of the surrounding levels. In this isothermal case,
we initially consider Eq. (11). This means thatβ = 0 and
henceP(z) is indeterminate. In this case we therefore replace
the expression forP(z) in Eq. (11) with its limit asβ → 0,
namely

lim
β→0

P(z) = Pi exp
(
−

g

RT
(z − zi)

)
. (15)

Knowing that in a dry, isothermal atmosphere the pres-
sure varies exponentially in accordance with the hydrostatic
equation, we ensure continuity by replacing the inverse scale
height as follows:

P(z) = Pi exp

(
−

ln(Pi/Pi+1)

zi+1 − zi

(z − zi)

)
. (16)

3.3 Options

Three possible approaches to implement an improved bend-
ing angle operator based on the hydrostatic form of the re-
fractivity are presented here. These approaches each have
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advantages and limitations, and the choice of approach to be
implemented will depend on the particular application, in-
cluding restraints on computational cost.

3.3.1 Expansion ofN(x)

If we assume a dry atmosphere, the refractivity reduces to (in
terms ofx):

N(x) =Ni

(
1+

βi(x − xi)

Ti

)−
g

βiR
−1

for xi ≤ x < xi+1. (17)

The hydrostatic pressure will not necessarily be continu-
ous between model levels, so aσ (Eq. 13) replacesβ in the
exponent to preserve continuity ofP and henceN :

N(x) = Ni

(
1+

βi(x − xi)

Ti

)−
g

σiR
−1

. (18)

This can be expanded in powers of(x − xi) to give a cor-
rection factor to the exponential:

N(x) 'Ni exp(−ki(x − xi))× (19)[
1+ Ai(x − xi) + Bi(x − xi)

2
]
.

This functional form can also be obtained if instead it is
assumed thatki varies linearly within the layer. These two
approaches, including the calculation ofA and B are de-
scribed in detail in the Appendix, and their resulting innova-
tion statistics are almost identical. If the moist term is added,
this form, i.e. Eq. (17), cannot be easily obtained. To use
this dry form, a cut-off height is needed (e.g. 12 km), below
which, an approach is used that does not require the assump-
tion of a dry atmosphere, such as the existing exponential
variation. At these heights, this assumption is reasonable as
the model levels are more closely spaced.

The innovation statistics using Eq. (19) and the coeffi-
cients from the second approach described in AppendixA up
to the quadratic term in the series are shown (with no cut-off
applied) in Fig.5. The oscillations in the mean innovations
are reduced considerably compared to Fig.3. There is still an
oscillatory feature present in the bias, but now the magnitude
is greatest close to the model levels. This may be due to dis-
continuities in the refractivity gradient, though this has not
been investigated.

3.3.2 Polynomial correction

The exponential form ofN(z) can be modified by additional
terms to better approximate the “reference” refractivity, in-
cluding the moist term. For example (redefiningAi andBi):

N(z) =Ni exp(−ki (z − zi)) + Ai (z − zi) (20)

+ Bi (z − zi)
2
+ . . . .

Figure 5. Bending angle innovation statistics using an integrable
approximation to the dry hydrostatic refractivity at all heights, i.e.
Eq. (19). See Sect.A3 for full details.

This could be used to give a very good approximation to
the “reference” (if we know it), and can easily be integrated
in the Abel transform, resulting in extra terms in addition
to the error function. Figure6 shows typical differences be-
tween the hydrostatic refractivity (Eq.10) and the exponen-
tially varying refractivity between two model levels, as well
as a quadratic approximation to this difference as described
below. As a polynomial correction is a fit to the difference
between the “reference” (i.e. the hydrostatic refractivity) and
the exponential form, this difference must be specified at a
number of points that is commensurate with the degree of the
correction in order to fully determine the fit. For the quadratic
example shown in Fig.7, the values of the quadratic correc-
tion at the two surrounding model levels are set to zero to
ensure continuity, and the difference between the corrected
hydrostatic and exponential forms at the centre of the layer
(i.e. the horizontal dotted line) is used to provide the remain-
ing information to fully determine the quadratic correction.

For continuity atzi+1, the following relation must hold,
sinceki is still given by Eq. (3):

Ai = −Bi (zi+1 − zi) . (21)

The value of the quadratic at its turning point is set to be
equal to the difference between the hydrostatic and exponen-
tial forms of the refractivity at the layer midpoint. This is
reasonable to assume, as from visual inspection the differ-
ences are approximately quadratic (Fig.6), and hence fairly
symmetric about the midpoint. The turning point of the cor-
rection is found by setting the first derivative of the correction
to zero:

0 = Ai + 2Bi (z − zi) . (22)

If the turning point is close to the middle of the layer, we
can substitute Eq. (22) into the expression for the quadratic
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Figure 6. The difference of the corrected hydrostatic refractivity
and the exponentially varying refractivity between a single pair
of Met Office model levels (horizontal lines). Also shown is a
quadratic approximation to this difference, as described in the text.
The horizontal dotted line shows the midpoint of the layer where
the quadratic correction is set to be equal to the difference of the
hydrostatic and exponential values.

correction at the midpoint,

Nhyd_mid− Nexp_mid= −
A2

i

2Bi

+
A2

i

4Bi

, (23)

whereNhyd_mid and Nexp_mid are the refractivity values at
the middle of the layer calculated using the hydrostatic and
exponential approaches, respectively. SubstitutingAi from
Eq. (21), we obtain a value forBi :

Bi = −4
(
Nhyd_mid− Nexp_mid

) 1

(zi+1 − zi)2
. (24)

Inserting this form into the Abel integral results in an ad-
ditional term in the expression for bending angle (having
swappedz − zi for x − xi in an intermediate step):

1α =10−6
√

2πakiNi exp[−ki (xi − a)] × (25)[{
erf
√

ki (x − a)
}

− 2× 10−6
{
(Ai − 2Bixi)×

ln
(√

x2 − a2 + x
)

+ 2Bi

√
x2 − a2

}]xi+1

xi

.

This has been extended to include a cubic term to ac-
count for the small asymmetry inNhyd− Nexp at the mid-
layer point. This does not show a significant improvement
and leads to a more complicated form of the integral, so the
results are not presented here.

The polynomial correction has the advantage that the hu-
midity is accounted for, and the first order behaviour is al-
ready accounted for by the exponential, so other reference
refractivities could be used to provide updates to the coeffi-
cients in the future.

Figure 7. Bending angle innovation statistics, using a quadratic ad-
justment to the exponential form of refractivity with height (Eq.20)
to produce a better approximation to the hydrostatic form.

3.3.3 Pseudo-levels

If the “reference” refractivity, including the moist term, is
evaluated at intermediate “pseudo-levels” which lie between
the model levels (having first calculated Eq. (11) on these
pseudo-levels, ensuring continuity of the pressure), then the
exponential assumption can be accurately applied between
these levels (if there are sufficient additional levels), so the
current (exponential) operator can simply be invoked mul-
tiple times within each model layer. For future changes,
this is a flexible approach as the computation only needs
to evaluate the refractivities on the pseudo-levels and the
Abel integral remains unchanged, hence additional assump-
tions/simplifications can be avoided and a more sophisticated
form could potentially be used. The number of pseudo-levels
must be chosen to provide a balance between accuracy and
computational cost. It has been found that using just one ad-
ditional pseudo-level in the middle of each layer gives a good
improvement for the associated cost. Two or more equally
spaced pseudo-levels only provide very small improvements
to the innovation statistics for the single pseudo-level case, so
results with just one pseudo-level are presented here. For the
layer in which the tangent point lies, the refractivity expres-
sion, Eq. (10), is used to evaluateN at the tangent height,
and at an additional pseudo-level halfway between the tan-
gent point and the next highest model level. The resulting
innovation statistics are shown in Fig.8.

A further use of this method has been to examine the ef-
fect of “doubling” the number of model levels by introducing
mid-layer pseudo-levels. This is similar to what is described
above, but the treatment of the layer in which the tangent
point lies is slightly different – the pseudo-level in this layer
is at the layer’s midpoint, rather than halfway between the
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Figure 8. Bending angle innovation statistics, using hydrostatic re-
fractivity (Eq. 10, including the moisture term) evaluated on one
additional pseudo-level per model layer, and using an exponential
function of refractivity with height to evaluate the Abel integral be-
tween the model/pseudo-levels.

tangent height and the next model level as was described
above. The motivation for investigating this is to explain why
the innovations from the L91 ECMWF system (ECMWF,
2007) do not show these oscillations as strongly as in the
L70 Met Office (Davies et al., 2005) statistics. At a height of
35 km, where the oscillations in the bias are prominent, the
level spacing of the L91 ECMWF model is∼ 1.5 km, and at
the Met Office (L70) it is∼ 2.9 km, i.e. a factor of∼ 2 differ-
ent. Figure9 shows the innovations when pseudo-levels are
used in this configuration.

By comparing Figs.9 and3, it can be seen that by dou-
bling the effective number of levels, the oscillations are re-
duced, and hence this provides an explanation as to why the
ECMWF statistics do not display these features as strongly.
In other words, the exponential assumption is more accept-
able with the L91 resolution, but less so for L70.

Similarly, when the ECMWF levels are thinned by a fac-
tor of two, the innovation statistics show the oscillatory bias
much more strongly, and is very similar to the Met Office bias
structure. This is shown in Figs.10and11. The ECMWF im-
plementation used in these plots is described in AppendixA3
and uses a 12 km cut-off, below which the original operator
is used.

Another contributing factor to the smaller oscillatory bias
using ECMWF profiles is that the ECMWF height levels are
more variable in this region than the Met Office levels and
this could lead to the smoothing out of the oscillatory signal,
but this effect has not been investigated here.

For reasons of longer-term flexibility and maintenance,
this approach is due to be implemented at the Met Of-
fice in 2014, whereas the expansion of the dry refractivity

Figure 9. Bending angle innovation statistics, using hydrostatic
refractivity (Eq. 10, including the moisture term) evaluated on a
doubled-resolution vertical grid and using an exponential function
of refractivity with height to evaluate the Abel integral between the
model/pseudo-levels

Figure 10. Bending angle innovation statistics from the 91-level
ECMWF model, using observations from all RO instruments over
a 30-day period (April 2013). Typical model level heights are over-
laid. The statistics generated using the original “ROPP” operator are
plotted in black, and the ECMWF implementation of the improved
operator is plotted in grey (see AppendixA3 for full details).

(described in detail in Sect.A3) will be implemented in
ROPP, though both approaches are based on the same un-
derlying principles.
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Figure 11. Bending angle innovation statistics as per Fig.10, but
with the background profiles thinned to half the vertical resolution
of the 91-level ECMWF model.

4 Conclusions

It has been demonstrated that when the vertical model level
spacing is large, the assumption of exponentially varying
refractivity leads to systematic negative biases in forward-
modelled stratospheric refractivities and bending angles for
which the magnitudes are largest when the observation
height lies between the model levels. The use of a more phys-
ical form of refractivity as a function of height has been in-
vestigated. This function assumes exponentially varying hu-
midity, linearly varying temperature and hydrostatic pres-
sure. Using this function, the magnitude of the oscillatory
bias has been reduced considerably in both refractivity and
bending angle statistics using Met Office background pro-
files. Three approaches to implement such an improvement
have been suggested:

1. integrate an approximation to the dry-hydrostatic refrac-
tivity analytically above a point where the moist refrac-
tivity term is negligible;

2. apply a polynomial correction to the exponential to
make it a better approximation to the hydrostatic form;

3. evaluate the hydrostatic refractivity on mid-layer
pseudo-levels and use the exponential function in the
Abel integral between the model/pseudo-levels.

These methods each have their own merits, and these have
been stated in the text.

In Appendix A, two methods of approximating the dry
hydrostatic form are given and the resulting bending angle
statistics are consistent.

The results presented here should provide an improvement
to operational DA systems. Usually, RO data is assimilated
without a bias correction, and hence acts as an anchor (Poli
et al., 2010; Healy, 2008) to correct biased radiance obser-
vations. It is anticipated that the reduction of this forward-
model bias will improve analyses both directly and indirectly
via bias correction schemes. Findings reported here could
also be used in 1D-Var retrieval chains to improve the quality
of the retrieved quantities, as well as reanalysis and climate
model validation.
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Appendix A: Semi-analytical methods of evaluating the
Abel integral for non-exponential N(x)

A1 Form of N(x) to be integrated

Between two model levelsi andi + 1, we currently assume

N(x) = Ni e
−ki (x−xi ), (A1)

where

ki =
ln(Ni/Ni+1)

xi+1 − xi

. (A2)

It would be desirable to use the form ofN(x) given in
Eq. (18), which guarantees continuity ofN and obeys the
hydrostatic equation, but this will not allow the Abel inte-
gral to be evaluated analytically, so a different approach is
required. We achieve this by approximating the dry hydro-
static refractivity,N(x), as the exponential form multiplied
by an appropriate polynomial factor,K(x):

N(x) = Ni e
−ki (x−xi )K(x). (A3)

To exactly reproduce the adjusted dry hydrostatic form
(with the correction,σ to force continuity),K must take the
form:

K(x) = eki (x−xi )

(
1+

βi(x − xi)

Ti

)−
g

σiR
−1

. (A4)

Simplifying the notation with X = x − xi and γi =(
g

σiR
+ 1

)
:

K(x) = ekiX

(
1+

βiX

Ti

)−γi

. (A5)

A series expansion of this factor aboutX = 0 gives the
following up to the quadratic term:

K(x) ' 1+

(
−

βiγi

Ti

+ k

)
X+ (A6)

1

2

(
β2

i γi (γi + 1)

T 2
i

−
2βiγik

Ti

+ k2

)
X2.

Although this is an expansion of a continuous function, the
truncation of the series will produce small discontinuities.
Therefore, we again enforce continuity as follows:

K(x) '1+

(
−

βiγi

Ti

+ k

)
X (A7)

−
1

Xi+1

(
−

βiγi

Ti

+ k

)
X2,

whereXi+1 = xi+1 − xi .

The form of the refractivity is then

N(x) =Ni e
−k(x−xi ) (A8)[

1+ C1 (x − xi) + C2 (x − xi)
2
]
,

where

C1 =

(
−

βiγi

Ti

+ k

)
(A9)

C2 =
1

xi+1 − xi

(
−

βiγi

Ti

+ k

)
.

A2 Evaluating the integral

With a few steps, this form of the refractivity with height can
be inserted into the Abel integral. First, ln(n) is calculated:

ln(n) ' n − 1 = 10−6N = 10−6Ni e
−k(x−xi )× (A10)[

1+ C1 (x − xi) + C2 (x − xi)
2
]

so the numerator in the integrand of the Abel transform is

d ln(n)

dx
= 10−6Ni e

k(xi−a)e−k(x−a)
× (A11)[

P1 + P2 (x − a) + P3 (x − a)2
]
,

where the following coefficients have been found by express-
ing the polynomial factor in terms of(x − a)

P1 = C1 − k − (2C2 − C1k)(xi − a) − kC2 (xi − a)2

P2 = 2C2 − C1k + 2kC2 (xi − a)

P3 = −kC2.

By assuming that
√

x2 − a2 '
√

2a
√

x − a (this is most
accurate close to the tangent point), the contribution to the
bending angle from a single model layer is given by integrat-
ing the above in Eq. (7):

1α = −10−6
√

2a ek(xi−a)
× (A12)[

erf
{√

k (x − a)
}√

π

(
P1

k1/2
+

P2

2k3/2
+

3P3

4k5/2

)
+

√
x − a e−k(x−a)

(
−

P2

k
+

P3 (−2k (x − a) − 3)

2k2

)]xi+1

xi

.

A3 Alternative approach

A slightly different approach can be used to obtain d lnn/dx

in the form of Eq. (A11). This method provides additional
insight into the reasons for the large bias between model
levels in the exponential approach. This formulation makes
slightly different assumptions, and it is encouraging that the
two approaches produce near-identical results in the innova-
tion statistics; the difference in mean innovations is generally
less than∼ 0.01 % and the difference in standard deviation is
less than∼0.002 % for a day’s worth of occultations.
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Starting with the equation for dry refractivity without the
adjustment for continuity (Eq.17), the refractivity gradient
with height is

dN

dx
= −

(
g

RT (x)
+

β

T (x)

)
N(x) (A13)

= −k(x)N(x),

where N(x) is the refractivity at x, and T (x) = Ti +

β (x − xi). Here,β = dT (x)/dx.
We currently assume a fixedk throughout the layer, com-

puted as in Eq. (A2). Call thiskm and assume that this value
is valid at the centre of the model layerxm = (xi + xi+1)/2.

From Eq. (A13), k is inversely proportional to tempera-
ture:

k =
A

T
, (A14)

whereA is just a constant. So,

dk

dT
= −

k

T
(A15)

in the layer. The change ink can be written as

δk = −
k

T
δT (A16)

= −
k

T
[β δx] .

We can therefore approximate the variation ofk within the
layer as

k(x) ' km −
kmβ

Tm

(x − xm) . (A17)

We then compute the refractivity expression for thisk(x):∫
dN

N
= −

∫ (
km −

kmβ

Tm

(x − xm)

)
dx (A18)

so,

ln(N) = −

(
km (x − xi) −

kmβ

2Tm

(x − xm)2
− c

)
, (A19)

wherec is a constant of integration. To get appropriate values
atxi andxi+1

N(x) = (A20)

Ni exp

(
−km (x − xi) +

kmβ

2Tm

(
(x − xm)2

− d
))

,

whered is chosen to ensure the refractivity is continuous at
the model levels; thus,

d = (xi − xm)2
= (xi+1 − xm)2 . (A21)

If the second term in the exponential is small then we can
approximate

N(x) =Ni exp(−km (x − xi))× (A22)(
1+

kmβ

2Tm

(
(x − xm)2

− d
))

.

This makes the largest change to the pure exponential at
the centre of the layer. Note that the sign of the temperature
gradient determines the sign of the correction. Therefore, in
the stratosphere, whereβ > 0, the forward-modelled refrac-
tivity will be underestimated without the correction, which
is consistent with the oscillatory bias present in Fig.2. The
vertical gradient of ln(n) is

d lnn

dx
' 10−6Ni exp(−ki (x − xi))× (A23)(
−ki −

k2
i β

2Tm

(
(x − xm)2

− d
)

+
kiβ

Tm

(x − xm)

)
,

which can be cast into the same form as Eq. (A11), using the
coefficients:

P1 = −ki −
k2
i β

2Tm

(
(a − xm)2

− d
)

+
kiβ

Tm

(a − xm)

P2 = −
k2
i β

Tm

(a − xm) +
kiβ

Tm

(A24)

P3 = −
k2
i β

2Tm

.

Note that ifβ = 0, P1 = −ki andP2 = P3 = 0, so as ex-
pected, we return to the original equation.

Appendix B: Impact of discontinuity in vertical
refractivity gradients on bending angle

The question of whether it is necessary or desirable for
dN/ dx to be continuous has implications for bending an-
glesα calculated from refractivitiesN by means of the Abel
transform (definingN = n − 1 in this Appendix to avoid the
usual factors of 10−6 in the equations that follow)

α(a) = −2a

∞∫
a

dN/dx
√

x2 − a2
dx (B1)

≈ −
√

2a

∞∫
a

dN/dx
√

x − a
dx.

Consider the effect of a discontinuity inN ′
= dN/ dx at

x = x0. This may be caused, for instance, by a rapid change
in temperature gradient, such as occurs at the tropopause.
For, in a dry atmosphere (cf. Eq.A13),

dN

dx
= −

N

T

(
g

R
+

dT

dx

)
(B2)
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so that a sudden change in dT/ dx would cause a jump in
dN/ dx. Note that we assume thatN itself is continuous ev-
erywhere, and that dN/ dx is finite everywhere.

B1 In particular

To be specific, we assume

N(x) =

{
N0exp(−k1(x − x0)) if x ≥ x0
N0exp(−k0(x − x0)) if x < x0

, (B3)

whereN0 = N(x0) andk1 > k0 (> 0) for definiteness (cor-
responding to a more positive dT/ dx above x0 in the
“tropopause” model above).

This implies

dN/dx =

{
−k1N0exp(−k1(x − x0)) if x ≥ x0
−k0N0exp(−k0(x − x0)) if x < x0

, (B4)

so that there is a jump in dN/ dx of magnitude|k1−k0|N0 at
x0.

Substitution of Eq. (B4) into Eq. (B1) shows that, ifa ≥

x0,

α(a) =

√
2πak1N0exp(−k1(a − x0)) (B5)

and ifa < x0,

α(a) = (B6)√
2πak0N0exp(−k0(a − x0))erf(

√
k0(x0 − a))+√

2πak1N0exp(−k1(a − x0))erfc(
√

k1(x0 − a)).

The key point is that the bending angle is continuous atx0:
α(x+

0 ) = α(x−

0 ) =
√

2πx0k1N0. A secondary point is that
the same cannot be said for the derivative ofα – indeed,
dα/ da (x−

0 ) is formally infinite. In fact, fora just belowx0,
Eq. (B6) implies

α(a)−α(x0) = 2
√

2x0(x0 − a)N0(k0−k1)+O(x0−a). (B7)

Note thatα(a) < α(x0) whenk1 > k0. This is because the
(x − a)−1/2 factor in Eq. (B1) means thatα(a) is dominated
by the contribution fromN ′ just belowx0, which in this case
is smaller (in magnitude) thanN ′ just above it.

Figure B1 shows N , dN/dx and α for a 15 km
“tropopause”.k0 = 0.1 km−1; k1 = 0.2 km−1. The continuity
of α at x0 = 15 km is clear, as is its cusp just below. The re-
fractivity at the “tropopause” is 45 N-units, and the radius of
curvature used in the bending angle calculation is 6350 km.

B2 In general

More generally, suppose that there is a jump in dN/ dx atx0.
Is the bending angle continuous there?

The singular “kernel”(x −a)−1/2 in Eq. (B1) complicates
matters, so we assume initially that dN/ dx varies smoothly
from N ′

− = N ′(x0−δ0) to N ′
+ = N ′(x0+δ1). (Recall that we

Figure B1.Example profiles of (from left to right)N , −dN/ dx and
α when there is a discontinuity in dN/ dx at x0 = 15 km. (For this
plot, N = 106(n − 1) as usual.

assume it remains finite throughout.) We examine the differ-
ence betweenα(x0 − δ0) andα(x0 + δ1) asδ0 andδ1 tend to
0 independently. Equation (B1) implies

α(x0 − δ0) = −

√
2(x0 − δ0)

∞∫
x0−δ0

N ′(x)
√

x − x0 + δ0
dx (B8)

= −

√
2(x0 − δ0)

x0+δ1∫
x0−δ0

N ′(x)
√

x − x0 + δ0
dx −

√
2(x0 − δ0)

∞∫
x0+δ1

N ′(x)
√

x − x0 + δ0
dx, (B9)

while

α(x0 + δ1) = −

√
2(x0 + δ1)

∞∫
x0+δ1

N ′(x)
√

x − x0 − δ1
dx. (B10)

Hence the difference in bending angle across the disconti-
nuity atx0 is given by

α(x0 − δ0) − α(x0 + δ1) =

−

√
2(x0 − δ0)

x0+δ1∫
x0−δ0

N ′(x)
√

x − x0 + δ0
dx (B11)

−

∞∫
x0+δ1

[ √
2(x0 − δ0)

√
x − x0 + δ0

−

√
2(x0 + δ1)

√
x − x0 − δ1

]
N ′(x) dx.
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Firstly,∣∣∣∣∣∣∣
√

2(x0 − δ0)

x0+δ1∫
x0−δ0

N ′(x)
√

x − x0 + δ0
dx

∣∣∣∣∣∣∣ ≤

√
2(x0 − δ0) 2

√
δ0 + δ1 max

−δ0≤x−x0≤δ1
|N ′(x)|. (B12)

Secondly,∣∣∣∣∣∣∣
∞∫

x0+δ1

[ √
2(x0 − δ0)

√
x − x0 + δ0

−

√
2(x0 + δ1)

√
x − x0 − δ1

]
N ′(x) dx

∣∣∣∣∣∣∣=∣∣∣∣∣∣2
∞∫

0

√
2(x0 + δ1)N

′(u2
+ x0 + δ1) du −

2

∞∫
√

δ0+δ1

√
2(x0 − δ0)N

′(u2
+ x0 − δ0) du

∣∣∣∣∣∣∣≤∣∣∣∣∣∣∣2
√

δ0+δ1∫
0

√
2(x0 + δ1)N

′(u2
+ x0 + δ1) du

∣∣∣∣∣∣∣+∣∣∣∣∣∣∣2
∞∫

√
δ0+δ1

[

√
2(x0 + δ1)N

′(u2
+ x0 + δ1) −

√
2(x0 − δ0)N

′(u2
+ x0 − δ0)] du

∣∣∣ . (B13)

The first of these last two integrals satisfies∣∣∣∣∣∣∣2
√

δ0+δ1∫
0

√
2(x0 + δ1)N

′(u2
+ x0 + δ1) du

∣∣∣∣∣∣∣≤√
2(x0 + δ1) 2

√
δ0 + δ1 max

δ1≤x−x0≤δ0+2δ1
|N ′(x)|. (B14)

The second integral is first order inδ0 andδ1. Formally,

2

∞∫
√

δ0+δ1

[

√
2(x0 + δ1)N

′(u2
+ x0 + δ1) − (B15)

√
2(x0 − δ0)N

′(u2
+ x0 − δ0)] du = 2

√
2x0(δ0 + δ1) ×

∞∫
√

δ0+δ1

[N ′(u2
+ x0)/2x0 + N ′′(u2

+ x0) + O(δ2
0,δ2

1)] du.

This final integral is almost certainly bounded asδ0,δ1 →

0; it certainly is ifN ′ andN ′′ decay with height faster than
exp(−κx) for someκ > 0, as is likely to be the case in prac-
tice. Moreover, it is hard to think of a realistic refractivity
profile that would cause the integral to diverge at least as fast
as(δ0 + δ1)

−1 asδ0,δ1 → 0. Hence, with this weak proviso,
Eqs. (B11), (B12), (B14) and (B15) imply

|α(x0 − δ0) − α(x0 + δ1)| ≤ (B16)√
2(x0 − δ0) 2

√
δ0 + δ1 max

−δ0≤x−x0≤δ1
|N ′(x)|+√

2(x0 + δ1) 2
√

δ0 + δ1 max
δ1≤x−x0≤δ0+2δ1

|N ′(x)|+

O(δ0 + δ1),

which tends to zero asδ0 andδ1 tend to 0.
Hence the bending angle is continuous atx0.
As an example, if we just assume a linear ramp inN ′

betweenN ′
− = N ′(x0 − δ) to N ′

+ = N ′(x0 + δ), and (dif-
ferent) exponential declines above and belowx0, as in
Sect.B1, and calculate the resulting bending angles by very
high-resolution numerical evaluation of the Abel integral in
Eq. (B1), then we find thatα(x0 + δ) − α(x0) ∝ δ, and that
α(x0 − δ) − α(x0) ∝

√
δ, so that overall the difference in the

bending angles betweenx0−δ andx0+δ goes as
√

δ, as pre-
dicted by Eq. (B16), and from which the continuity ofα at
x0 follows.
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