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Abstract. Langley plots are used to calibrate sun radiome-

ters primarily for the measurement of the aerosol component

of the atmosphere that attenuates (scatters and absorbs) in-

coming direct solar radiation. In principle, the calibration

of a sun radiometer is a straightforward application of the

Bouguer–Lambert–Beer law V = V0e
−τ ·m, where a plot of

ln(V ) voltage vs. m air mass yields a straight line with in-

tercept ln(V0). This ln(V0) subsequently can be used to solve

for τ for any measurement of V and calculation of m. This

calibration works well on some high mountain sites, but the

application of the Langley plot calibration technique is more

complicated at other, more interesting, locales. This paper

is concerned with ferreting out calibrations at difficult sites

and examining and comparing a number of conventional and

non-conventional methods for obtaining successful Langley

plots. The 11 techniques discussed indicate that both least

squares and various non-parametric techniques produce sat-

isfactory calibrations with no significant differences among

them when the time series of ln(V0)’s are smoothed and in-

terpolated with median and mean moving window filters.

1 Introduction

Langley plots are used to determine the instrumental con-

stant V0, i.e., to calibrate, sun radiometers from a series of

measurements Vi at various air masses mi . According to the

Bouguer–Lambert–Beer (BLB) law, the optical depth τ is de-

termined from pairs of points (Vi,mi) that are fit to the linear

equation

ln(V )= ln(V0)− τ ·m. (1)

If τ is constant, the equation defines a straight line; the graph

is called a Langley plot. When data are not perfect and con-

tain outliers (τ is not always the same for all measurements

when time t and air mass m(t) change), the Langley plot is

obtained after removing the outliers. Thus, one can still ob-

tain V0 from Eq. (1). The derived instrumental constant V0, if

valid, is used to retrieve the optical depth τ(m) for any mea-

sured V and calculatedm: τ(m)=−m−1ln(V /V0). The main

purpose of sun radiometry is to retrieve the optical depth of

atmospheric constituents, mainly aerosols, but also O3, CO2,

SO2, H2O, etc. from the direct beam’s atmospheric transmit-

tance V/V0.

After multiplying the transmittance by the extraterrestrial

solar flux, one obtains the flux measured by the instrument.

The flux at the site of the measurements can be used, e.g.,

to validate radiative transfer models (Mlawer et al., 2000).

The multi-filter rotating shadowband radiometer (MFRSR)

(Harrison et al., 1994) and the rotating shadowband spectro-

radiometer (RSS) (Harrison et al., 1999) measure the diffuse

components of the flux, as well as the direct components.

These instruments were calibrated via the Langley method

and with standard lamps (Kiedron et al., 1999). Schmid and

Wehrli (1995) concluded that when retrieving optical depth

the calibration with Langley plots (Langleys) is superior to

the calibration based on standard light sources; however, the

quality of calibration by Langleys depends on the site at

which the instrument is located.

The Langley plot method of calibration consists of locat-

ing a subset of raw data points (ln(Vi),mi) to which a straight

line can be fit. The intercept of the straight line estimates the

calibration constant ln(V0). This is a consequence of the BLB

law. Often, already processed data of retrieved optical depth
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τi require verification and correction if the sun radiometer

was poorly calibrated or its calibration has drifted. The BLB

law implies that the slope of the straight line fitted to points

τi,1/mi estimates the calibration constant correction factor

(Cachorro et al., 2004, 2008). Finding this slope is a mathe-

matically equivalent approach to finding the intercept in the

Langley plot method. In both approaches the calibration suc-

cess hinges on correctly locating the subset when the optical

depth of atmosphere is constant.

It is often overlooked, that the presence of the straight line

in the data set ln(Vi),mi or τi,1/mi does not imply that the

actual τ is constant. The existence of a straight-line fit is the

necessary condition but not a sufficient one for the constancy

of the optical depth. Shaw (1976) may have been the first

to point this out. He observed that in cases when the op-

tical depth of aerosols is a parabolic function of time the

pairs ln(Vi),mi create a perfect straight line, but its inter-

cept is not the actual ln(V0). Then the intercept is biased, and

thus it cannot be used as a calibration constant. Several au-

thors – Tanaka et al. (1986), Nieke et al. (1999), Harrison et

al. (2003), and Campanelli et al. (2004) – mention this prob-

lem more or less explicitly. More recently, Marenco (2007)

devoted his paper to this phenomenon. Equation (1) implies

that when the actual τA contains a varying component that is

inversely proportional to the air mass

τA = τ + ε/m, (2)

the data align along the straight line with a slope τ , but the

intercept is now ln(V0)−ε. The hyperbolic dependence 1/m

produces a straight line.

The time series of ln(V0)’s over several days are used to

weed out cases when ε is not zero and estimate the true cali-

bration. An individual Langley plot cannot identify the value

of ε. The data (ln(Vi),mi) do not contain information on the

presence of a nonzero ε.

The process of removing outliers from the Langley plot

may actually facilitate selecting a straight line from the data

that will contain a spurious value of ε. Different methods of

removing outliers may cause an inadvertent selection of a

different value of ε, some larger and some smaller (positive

or negative).

We will call a Langley plot with a nonzero ε an anomalous

Langley plot. The anomalous Langley plot cannot be identi-

fied because data (ln(Vi),mi) do not contain information on

the presence of a nonzero ε. Statistical analysis of the time

series of intercepts ln(V0)−ε leads to a better estimate of the

calibration constant ln(V0)=< ln(V0)−ε>= ln(V0)−<ε>,

where < > denotes an average used in time-series analysis

that usually is a combination of mean and median moving av-

eraging windows. When the statistics of ε is unbiased, <ε>

tends to zero as the number of samples in the time series in-

creases.

Mountaintops like Mauna Loa in Hawaii or Izaña on

Tenerife provide environments where the constancy of the

optical depth (ε = 0) is frequent. With a small standard de-

viation SD(ε) at mountaintops a smaller number of Langleys

is necessary to achieve the desired precision of calibration.

A long history of measurements at sites like Mauna Loa also

warrants the belief that the statistics of ε there is considered

to be unbiased. Thus, within the range of validity of this be-

lief an accurate calibration is possible.

In most places where sun photometers are deployed, peri-

ods of stable atmospheres are much less common, and they

are frequently interrupted by cloud passages, changes in at-

mospheric conditions like varying humidity that promulgate

aerosol size changes and by aerosol plume incursions. Large

numbers of outliers call for special Langley plot analyses

going beyond standard straight-line fitting procedures. The

statistics of ε is likely to be biased with a large standard de-

viation SD(ε). This necessitates a larger number of points in

the time series to achieve a desired precision while the fre-

quency of Langley events at sites like these is low. There is

no guarantee that the statistics of ε is unbiased. It should be

emphasized that the difference between easy sites like moun-

taintops and difficult sites like Billings, Oklahoma, is quan-

titative, not qualitative. The same statistical analysis of time

series must be applied in both cases; however, precision and

accuracy of results will differ.

When there are no other available independent measure-

ments, time-series analysis is the only option for in situ cal-

ibration of sun photometers. Photometers that also measure

aureole radiance simultaneously with direct solar flux can be

calibrated when optical depth is not constant (Tanaka et al.,

1986; Nieke et al., 1999; Zieger et al., 2007). These meth-

ods can identify anomalous Langley events and estimate the

value of ε. Then, in principle, a single Langley is sufficient.

The main objective of the paper is to analyze the efficacy

of non-parametric and least squares methods of straight-line

fitting to identify Langley plots useful for calibration. We

use time-series analysis only to determine the impact of the

methods on the estimated calibration constant. While we are

not concerned with the identification of anomalous Langley

plots, their presence is manifested in outliers of the time se-

ries. We do not deal with minor issues related to the differ-

ences in air mass among various air constituents: aerosols,

ozone, and molecular scattering, in particular, and higher-

order effects like atmospheric refraction’s dependence on

wavelength impact air mass. In other words, we presume that

the BLB as given by Eq. (1) is valid.

Non-parametric statistics is the branch of statistics where

no a priori assumptions on the statistical distribution of vari-

ables are made (Kendall, 1938). Non-parametric does not

mean that there are no parameters but that the involved pa-

rameters have no assigned statistical properties a priori. For

instance, a histogram is used as a substitute for the proba-

bility distribution function rather than, for instance, a fitted

Gaussian to the histogram. For Langley plot processing the

non-parametric methods are particularly appropriate. We do

not know the statistical distribution of outliers in a Langley
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plot even if we understand their physical origins. We do not

know the statistics of ln(V0)’s in a time series of them, but we

still want to get the best estimate of the calibration constant

of a sun photometer.

For simplicity of notation in the rest of the paper Eq. (1) is

replaced with a linear equation:

y = α+βx. where y = ln(V ),x =m,

α = ln(V0) and β =−τ.

The organization of the paper is as follows. In Sect. 2 we

define a Langley plot. In Sects. 3 to 7, 11 methods of

finding a Langley plot are described: in Sect. 3, two least

squares methods; in Sect. 4, the so-called objective algorithm

method; in Sect. 5, four non-parametric regressions meth-

ods following Theil (1950) and Siegel (1982); in Sect. 6, a

non-parametric method of identifying outliers and a modi-

fied Siegel (1982) method with sequential removal of out-

liers; and in Sect. 7, a method of analyzing histograms of

slopes and intercepts. In Sect. 8 we describe the set of data

used in the comparisons for all methods. Section 9 presents

results of these analyses and comparisons. The final section

summarizes the paper.

2 Our definition of a Langley plot

For any set of points P = {(xi,yi) : i = 0, . . .,n− 1} and for

any nonnegative δ find a subset L⊂ P for which a line y =

α+βx can be defined such that one of the following metrics

1=

√√√√1

k

k−1∑
j=0

r2
j or

1

k

k−1∑
j=0

∣∣rj ∣∣ or max
j

∣∣rj ∣∣ (3)

that measures the magnitude of residuals is smaller than

δ(1<δ) on the set L, where the rj = yj −α−βxj are resid-

uals and k is the number of points in the subset L. We refer

to the points of the subset L as δ-collinear. The subset L is

not unique, or it may not exist when δ is too small, ignor-

ing subsets consisting of two points only. Therefore, we add

a requirement that L should be the largest subset with this

property of residuals. In other words, a Langley plot is the

most numerous δ-collinear subset of set P . The size of the set

L (i.e., the number of points that “actually” define the line)

is important in judging the viability of the resulting Langley

plot (i.e., the subset L). The quotation marks around “actu-

ally” are justified for non-parametric methods, because they

do not identify outliers explicitly.

This problem is related to the pattern recognition problem.

The human eye and mind are able to solve the problem in a

qualitative way very quickly by identifying points that are ap-

proximately collinear. The human eye and mind can perform

this task regardless of the plot orientation. The result is rota-

tionally invariant: neither of the axes x or y is treated pref-

erentially. Furthermore, the human eye and mind can almost

instantaneously identify a data set P that has no potential of

containing any subset L of a significant size and rejects this

case as not providing a viable Langley plot. Mathematically

this problem reduces to the straight-line fit and to a method

of identifying and removing outliers. Any one of the crite-

ria (Eq. 3) can be used to define the quality of the fit.

Some researchers (Augustine et al., 2003) seemingly avoid

the issue of removing outliers altogether by selecting clear-

sky days based on the method of Long and Ackerman (2000)

for which measurements from collocated broadband shaded

and unshaded pyranometers are required. This approach,

while effective, misses many Langley plots from partially

clear days, so it does not fit the scope of this paper. Further-

more, many sites with sun radiometers do not have collocated

shaded and unshaded pyranometers.

3 LSF with sequential removal of outliers (SRO)

This is the most straightforward and, probably, the most com-

monly used method in existence. The least-square fit (LSF)

is applied to the set of points P , and the largest residual

(negative or positive) is removed. Then the root mean square

(rms) of residuals is calculated. The process is repeated until

rms≤ rmsmax and the number of remaining points k ≥ kmin,

with rmsmax and kmin chosen based on experience. Usually,

most of the outliers are negative (e.g., cloud passages), but

there are less frequent cases when the atmosphere has peri-

ods of stability at larger τ that may be temporarily interrupted

by a cleaner air mass. For this case the outliers at smaller τ

are positive. For this reason the method must allow removal

of the positive outliers. On our data set we note that we ob-

tained good results (meaning that both the number of false

and missed identifications of Langley plots were small) when

about every fifth outlier that was removed was a positive one.

However, we do not claim the value of five is a general rule.

Usually measurements with sun radiometers are per-

formed at equal time steps. This means that the values of

x, the air masses, are not evenly distributed. For 1-minute

intervals 1x at x = 2 might be 10 times smaller than 1x at

x = 6 at midlatitudes, where the air mass x is the Rayleigh air

mass (Kasten, 1965). Some researchers recognized the bias

introduced by the uneven distribution of x on α due to the

larger number of points at low air masses. For example, For-

gan (2000) performed Langley plots on (y/x,1/x) for his

sun photometric studies. In the Dobson ozone spectropho-

tometer community Langley plots for the ozone extraterres-

trial constant (ETC) are performed in coordinates (y/x,1/x)

to give a smaller weight to points that are more sparse at

large air masses (Dobson and Normand, 1958). Note, how-

ever, that for the Brewer UV ozone spectrophotometers the

standard equation y = α+βx is used (Redondas, 2005; Ito

et al., 2014).

The change of variable from x to 1/x leads to the linear

equation y/x = β +α(1/x). This approach is equivalent to
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applying weights w = 1/x2 to the LSF of the original equa-

tion y = α+βx. Herman et al. (1981) considered applying

other weighting methods.

A sequential removal of outliers can be applied and the

method may have the same terminating criterion in terms of

rms < rmsmax; however, the residuals must be calculated for

the equation y = α+βx.

We label these two methods LSFSRO− x and LSFSRO−

1/x, where the subscript SRO stands for “sequential removal

of outliers”.

4 The objective algorithm of Harrison and Michalsky

We describe some aspects of the objective algorithm (OA)

because (a) its development is an excellent example of how a

mathematical method was stimulated by the human eye-and-

mind approach, (b) it is based on physical phenomena that

are responsible for the curve shape and the outliers, and (c)

it is basically a non-parametric method despite the fact that

LSF is used for the final filtering.

When Harrison and Michalsky (1994) developed the OA

they tested it by comparing a set of cases from 384 days

using 500 nm channel data where α and β were obtained

by the eye-and-mind method of Michalsky, who disqualified

the non-viable cases and identified the ones that, after the

removal of outliers, produced Langley plots. Then he per-

formed the LSF on the retained points. The OA did not try

to produce “an artificial intelligence” emulating Michalsky’s

approach. Instead it identified several physical phenomena

(like cloud passages, overcast skies, curvature in the plot,

etc.) that were responsible for outliers and the non-linearity

of the Langley plots. This justifies the term “objective” in the

method’s name. The method applies consecutive filters: each

meant to deal with outliers produced by one of the identi-

fied physical phenomena that produced them. The last filter

is LSF that shaves off outliers larger than 1.5 of the standard

deviation of all residuals of points that survived the previous

filtering.

The successful Langley plot for the OA is the one for

which rms≤ 0.006 (of retained residuals) and the k/n≥ 1/3.

The value of rmsmax = 0.006 was chosen to maximize the

agreement with the eye-and-mind Michalsky method using

143 cases of successful Langley plots. The value of rmsmax is

valid for the wavelength λ= 500 nm. For other wavelengths

the rmsmax will be different because aerosols’ impact on out-

liers is wavelength dependent.

5 Non-parametric fits (NPFs)

LSFs use means of {xi}, {yi}, {x
2
i,}, and {yi,xi}. The so-called

breakdown point of the mean is 0 %: a single outlier can sig-

nificantly change the value of a mean. On the other hand, the

breakdown point of a median is 50 %. Theil (1950) opened

the field of the so-called non-parametric regression fits that

are based on medians and, thus, are much more robust.

The set P produces an nxn matrix of all possible slopes

{bi,j }, where bi,j = (yi−yj )(xi−xj ). The matrix is symmet-

ric with a diagonal that has indeterminate values. Its upper or

lower triangles each have n(n−1)/2 points. They are used to

calculate the slope:

β =med
i<j

{
bi,j

}
. (4)

From the slope β the intercept is obtained also as a median:

α =med
i
{yi −βxi} . (5)

Theil’s (1950) algorithm robustness is 29.3 %, which means

that when outliers exceed 29.3 % of all points the perfor-

mance of the algorithm is not guaranteed; at this level it

reaches its breakdown point. The increase of robustness to

50 % was achieved by Siegel (1982) with his method of “re-

peated medians” that uses two medians in Eq. (4) rather than

one: one median along the rows of the matrix {bi,j } and then

the median of this column of medians

β =med
i

{
med
j
{bi,j }

}
, (6)

where all n(n− 1) values of the matrix {bi,j } are used.

The Langley plot is chiefly concerned with obtaining the

intercept and, unlike Theil’s focus, the slope is secondary.

Instead of obtaining the slope first, one can obtain the inter-

cept first. From the matrix {ai,j } of intercepts ai,j = (yjxi −

yixj )/(xi − xj ), one gets the intercept α with Eqs. (4) or (6)

and then gets the slope from

β =med
i

{
yi −α

xi

}
. (7)

The weighted median methods (Jaeckel, 1972) can also

be applied. The uncertainty of slopes bi,j stems from the

measurement errors of yi values. The uncertainty is in-

versely proportional to |xi − xj | if uncertainties for yi are

the same. When |xi − xj | is small, the measurement er-

rors have inversely proportional 1/|xi − xj | larger impact on

the slope. For the intercepts the weights for ai,j are pro-

portional to
∣∣xi − xj ∣∣/(x2

i + x
2
j )

1/2. The exact formulas for

using weighted medians for Theil (1950) methods can be

found in Birknes and Dodge (1993). The weighted medi-

ans, one would expect, should offer an advantage when xi’s

are not uniformly distributed, which is exactly the case for

air masses. However, our simulations with weighted medians

did not confirm this expectation. In fact, in our experience the

weighted median methods introduced unacceptable biases in

α and β.

The LSF methods have several advantages over NPF meth-

ods. They perform better when data have no outliers, and

they have uniformly distributed noise among y values, par-

ticularly when the noise is Gaussian. The solutions for α and
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β in LSF methods are closed-form formulas derived from

smooth analytic functions. The NPF methods are inherently

discrete. They depend on medians. The “granulation effect”

in a small data sample may lead to errors because of discon-

tinuities. The residuals from the LSF methods are unbiased

(sum of residuals equals zero), while this is not guaranteed

for the methods based on the discreet processes. Theil (1950)

and Siegel (1982) NPF methods do not identify outliers ex-

plicitly. α and β are generated for any set P , but the outliers

must be identified to get the value of the metrics and reach the

decision of whether these particular α and β define a Langley

plot or not. The last problem we solved by using the follow-

ing method of outlier identification.

For a given α and β we sort all points according to the

ascending value of their residuals (rj ≤ rj+1). Then we cal-

culate the root mean square of residuals (rmsJ ) of the first

j = 0, . . .,J − 1 points. We find J for which rmsJ ≤rmsmax

and rmsJ+1 > rmsmax. All points with indices j ≥ J are con-

sidered outliers. Points with indices j < J are retained. They

define the Langley plot, which is considered to be successful

when J ≥ n/3. Residuals of retained points can be de-biased

by performing a LSF on them. This reduces the value of rmsJ
and slightly changes α and β.

We chose to use rms (the first criterion in Eq. 3) because

the data set for OA, which is used in comparisons, is based

on rms metrics. The method of identifying outliers in the set

P , when α and β are given, we label OSM (outlier sorting

method). In Sect. 9 we also apply the OSM to the results

obtained from the OA method.

We described four NPF methods of finding a Langley plot.

We label them as TOSM-β, TOSM-α, SOSM-β, and SOSM-α,

where T and S stand for Theil and Siegel, respectively, and α

and β stand for the “intercept-first” and “slope-first” methods

and OSM for the outlier sorting method with a final residual

de-biasing LSF. The de-biasing on average increases the in-

tercept α. At most (SOSM-β method) α increases by 0.0028

(0.28 % in terms of V0).

6 Identifying outliers from the dispersions of slopes

Neither the Theil (1950) nor Siegel (1982) methods iden-

tify outliers explicitly. They produce the slope and intercept

directly for any set P . In this section we describe a non-

parametric method that identifies outliers without calculating

the values of residuals.

For each row i of matrix {bi,j } we calculate di , which is

the measure of dispersion among the points of the ith row. di
can be the standard deviation of the row or its median abso-

lute deviation (MAD). We used the latter. The “largest” out-

lier is the one for which di is largest. Then we remove row i

and column i from the matrix {bi,j } and calculate new values

di and find the one that is the largest, and so on. The largest

dispersion Dm, where m is the index of the iteration process,

forms a descending sequence with a decreasing steepness.

Large drops in the sequence indicate a removal of a signifi-

cantly “large” outlier. The largeness or smallness of outliers

should be understood as their values of dispersion, though it

may correlate very well with the value of residuals from the

straight line y = α+βx.

One can analyze the sequence of {Dm}. Once it flattens,

this indicates that points that remain approximately a straight

line and the process of outlier removal can be stopped, but if

{Dm} remains strongly decreasing it implies that there is no

“collinear” subset in the data. We did not explore the poten-

tial of finding a criterion for stopping the iteration process

from features and behavior of the {Dm} sequence. Instead

we used the remaining points to calculate rms and stopped

the process when rms became smaller than rmsmax.

We applied the same method to the matrix of intercepts

{ai,j } and obtained similar results: the sequences of removal

of “large” outliers for both {ai,j } and {bi,j }matrices were the

same but not identical when only “small” ones were left.

This approach of outlier identification and removal led us

to a modified Siegel (1982) method. At each stage when a

row and a column are removed we calculate new αm and βm
with the Siegel (1982) method. Initially we were surprised

that after a removal of an outlier the new values of αm+1 and

βm+1 were not always changing significantly until we real-

ized that this is a consequence of the robustness of the Siegel

method. The method is stopped when rmsm ≤ rmsmax, and

the result is retained if (n−m)/n>1/3. This method of find-

ing a Langley plot we label SSRO-β or SSRO-α, where SRO

stands for a sequential removal of outliers. Keep in mind that

SRO from this section is strictly a non-parametric method

unlike SRO in Sect. 3 on LSF methods.

7 Histograms of slopes and intercepts

In this method we analyze a histogram of slopes to identify

the subset of nearly collinear points. The histogram of slopes

is constructed from elements of the matrix {bi, j }. We locate

the cell [b, b+1b] at which the histogram’s counts are max-

imum, where 1b denotes the width of histogram cells. Next

we identify all pairs of points [(yi,xi), (yj ,xj )] that produce

slope bi,j from within the interval [b, b+1b]. We are in-

terested in points yi,xi that create many such pairs. Let ci
denote the number of such pairs that the ith point creates.

The points for which ci = 1 are rejected, and the median

of remaining ci is calculated. Then the points with ci less

than the median are rejected. LSF is applied to the remaining

yi,xi points and the rms is calculated. This method defines

the Langley plot with a small number of points, but it is very

efficient at detecting subsets of collinear points. For this rea-

son we did not require that the number of retained points had

to be larger than n/3 for this method. We labeled this method

H-β.
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Figure 1. Four cases that illustrate how slope and intercept histograms can aid in analysis of points for the extraction of the Langley plot. In

(b) and (d) both the slope and intercept histograms are bimodal. In case (c) only the histogram of intercepts is bimodal. Case (a) has many

outliers, but both histograms are mono-modal indicating the existence of a single Langley plot. Case (d) has no large outliers, but y vs. x is

nonlinear (third-degree polynomial).

A similar process can be performed with the histogram of

intercepts. The results, however, were not as good as with the

histogram of slopes.

In Fig. 1a–d we show three cases in which the H-β method

fails and one case with a large number of outliers for which

H-β works correctly. The cases are shown to illustrate the

usefulness of a histogram analysis in prescreening cases and

possibly designing a more sophisticated method that could

produce not one but several Langley plots from one set of

points P .

In Fig. 1a there are two regions: 2≤ x ≤ 2.12, which

contains 46 points, and 3.51≤ x ≤ 4.16, which contains

19 points. These two regions produced two mono-modal, nar-

row histograms, implying that there are many collinear points

from within two regions.

In Fig. 1b there are two regions with collinear points. How-

ever, each region has a different slope, and it extrapolates to a

different α. Both histograms are bimodal. Two distinct Lan-

gley lines could be produced in this case. Only one, if ei-

ther, can be right. The question that one of them or both are

anomalous Langley plots can be posed.

Figure 1c shows a very interesting case. The histogram of

slopes is mono-modal, but the histogram of intercepts is bi-

modal. The height of the second mode is less than half of

the dominant mode. Two regions 2.25≤ x ≤ 3 and 3≤ x ≤ 6

have similar slopes as they produce the mono-modal his-

togram of slopes. But at x = 3 there is a step change. It is

not possible that it was produced by a change in the opti-

cal depth if one excludes the change in ε responsible for the

anomalous Langley. It is possible that at x = 3 something af-

fected the responsivity of the instrument. In this case we will

get two Langley plots that are almost parallel with different

α’s.

Figure 1d depicts a case without major outliers. The points

can be fairly well approximated with a third-degree poly-

nomial (a thin line is depicted), which means that τ is the

second-degree polynomial of air mass. Both histograms are

bimodal and rather broad. One may pose the question of

whether histograms could be used to detect nonlinearity. The

method proposed by Kuester et al. (2003) has the potential

for detecting the nonlinearities; however, it seems that the

authors did not explore this possibility.

8 The data set

The comparison and analysis of Langley algorithms was

performed on a data set produced by the rotating shadow-

band spectroradiometer (RSS) (Harrison et al., 1999) de-

ployed at the Department of Energy Southern Great Plains
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(SGP) site near Billings, Oklahoma, USA (36.6044◦ N,

−97.4853◦W), between May 2003 and December 2008. The

data set analyzed covers the period from 5 October 2003 to

30 March 2006, i.e., 1055 days. We removed many overcast

days and several corrupted files that, together with the in-

strument down times, reduced the data set to 1023 morning

or afternoon sets P = {(yi,xi) : 2≤ xi ≤ 6}. Data from one

pixel, out of 1024, at approximately λ= 500 nm are used in

this analysis.

The RSS was lamp calibrated every 2–3 weeks with cali-

brators that had lamp calibrations traceable to a NIST stan-

dard. The values of V were normalized by the responsiv-

ity obtained from each lamp calibration and interpolated be-

tween the calibration days. This reduced trends in V0 due

to the instrumental instability caused by optical elements ag-

ing, diffuser degradation, and CCD response changes. Never-

theless, the RSS displayed quasi-periodic instabilities due to

what we later discovered was an outgassing problem that led

to a deposition of a thin film on the cooled windowless CCD.

This resulted in a wavelength- and time-dependent etalon ef-

fect that affected the CCD’s response. Lamp calibrations mit-

igated the effect but did not remove it from the data com-

pletely.

9 Comparison of methods

In the previous sections we described 11 methods to iden-

tify a Langley plot. In this section we compare them at four

different values of rmsmax = 0.010,0.008,0.006, and 0.004

using one data set. First we look at some statistical param-

eters concerning 1α between each two methods, and then

we look at calibration constant time series derived from each

method.

In Table 1 we collected information on the number of Lan-

gley plots for each method (in the diagonal of the table) and

the number of common Langley plots between the two meth-

ods (above the diagonal). Then we included some statistical

parameters on 1α between each of the two methods; there

are 55 combinations. Above the diagonal is the standard de-

viation of 1α, and below the diagonal mean and median of

1α. The order of subtraction in 1α is as follows: α for the

method from the row minus α for the method from the col-

umn.

The LSF methods produce the largest number of Lang-

ley plots (601 and 598) while the OA the lowest (284). The

OA’s α’s are larger than any other method by 0.0026–0.0065,

which translates to 0.26–0.65 % in V0. For most cases me-

dians of 1α are 5 to 10 times smaller than means of 1α.

This is because the main contribution to differences 1α

among methods comes from the tails of 1α distributions. In

other words, outliers are responsible for the main differences

among the methods; however, some biases exist among them.

A large median1α indicates that the bias between the meth-

ods given by a mean is real and does not apply only to the

Figure 2. The average over all methods of standard deviations of

1α as a function of number of points in a Langley plot.

outliers. In Fig. 2 we demonstrate the effect of the number of

outliers on the differences among the methods. The average

of the standard deviations of 1α for all methods is plotted

against the percentage of points retained by Langley meth-

ods. When Langley plots have no more than 10 % outliers,

the standard deviations between the methods are an order of

magnitude smaller than when the number of outliers is up to

67 %. This implies that the main differences between meth-

ods are due to different handling of outliers by each method,

and the outcome is more method dependent when the Lan-

gley plot consists of a smaller number of points. Also, we

plotted the number of Langley plots vs. the number of points

remaining in the Langley plot for the LSFSRO− x method to

demonstrate how strongly the number of available Langleys

diminishes with the number of outliers for the site in Okla-

homa.

Also, we plotted the number of Langley plots vs. the

number of points remaining in the Langley plot for the

LSFSRO− x method.

The Theil and Siegel methods (TOSM-β, TOSM-α, SOSM-β,

SOSM-α) produce very similar results with some of the lowest

means and medians of 1α. In some cases medians are zero.

We could not discern a difference between the “intercept-first

methods” (TOSM-α, SOSM-α) and the “slope-first methods”

(TOSM-β, SOSM-β).

LSFSRO−x yields larger α than LSFSRO−1/x (by 0.0055).

For rmsmax = 0.010,0.008, and 0.004, it is 0.0083, 0.0065,

and 0.0039, respectively. The standard deviation of 0.0198

is not exceptionally large or small in comparison with other

methods.

The Siegel methods with sequential removal of outliers

(SSRO-β, SSRO-α) yield significantly different numbers of

Langley plots (364 vs. 475). But on the common set the mean

and median of 1α are very small.
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Table 1. The comparison among 11 Langley methods for rms≤ 0.006. Number of successful Langley plots is on diagonal. Above the

diagonal the number of common Langley plots for two methods and a standard deviation of differences 1α. Below the diagonal the mean

and median of 1α. The order of subtraction in 1α is as follows: α for the method from row minus α for the method from the column.

LSFSRO-x LSFSRO-

1/x

OA OAOSM SOS-β SOS-α TOSM-β TOSM-α SSRO-β SSRO-α H-β

LSFSRO− x 601 588

0.0198

284

0.0071

485

0.0141

537

0.0190

539

0.0188

522

0.0190

525

0.0190

361

0.0096

450

0.0135

414

0.0164

LSFSRO− 1/x −0.0055

−0.0002

598 283

0.0143

479

0.0258

535

0.0203

537

0.0228

523

0.0217

526

0.0210

361

0.0192

448

0.0171

414

0.0201

OA +0.0043

+0.0029

+0.0065

+0.0035

284 284

0.0037

281

0.0118

281

0.0108

278

0.0103

279

0.0107

264

0.0071

277

0.0075

277

0.0077

OAOSM +0.0051

+0.0009

+0.0111

+0.0017

−0.0028

−0.0026

499 475

0.0178

477

0.0163

463

0.0142

466

0.0148

340

0.0085

411

0.0133

361

0.0113

SOSM-β +0.0029

+2× 10−5
+0.0075

+0.0012

−0.0044

−0.0031

−0.0045

−0.0010

564 561

0.0040

536

0.0103

538

0.0100

351

0.0141

436

0.0144

398

0.0373

SOSM-α +0.0038

+0.0004

+0.0088

+0.0014

−0.0041

−0.0028

−0.0039

−0.0009

+0.0008

0

564 537

0.0096

539

0.0095

353

0.0132

437

0.0137

398

0.0372

TOSM-β +0.0036

+0.0003

+0.0085

+0.0013

−0.0047

−0.0029

−0.0042

−0.0007

+0.0009

0

+0.0001

0

541 541

0.0019

348

0.0097

428

0.0110

390

0.0369

TOSM-α +0.0036

+0.0005

+0.0086

+0.0015

−0.0048

−0.0029

−0.0043

−0.0005

+0.0010

0

+0.0003

0

+0.0002

0

544 350

0.0101

430

0.0110

391

0.0367

SSRO-β −0.0005

−0.0007

+0.0036

−0.0002

−0.0048

−0.0046

−0.0029

−0.0023

−0.0005

−0.0011

−0.0007

−0.0013

+4×10−5

−0.0010

−0.0001

−0.0010

364 352

0.0043

328

0.0061

SSRO-α −0.0004

−0.0007

+0.0038

+0.0006

−0.0054

−0.0045

−0.0053

−0.0031

−0.0011

−0.0014

−0.0016

−0.0015

−0.0011

−0.0011

−0.0012

−0.0011

−0.0008

−0.0004

475 375

0.0064

H-β +0.0006

−0.0006

+0.0031

+0.0001

−0.0046

−0.0037

−0.0035

−0.0023

−0.0039

−0.0010

−0.0046

−0.0014

−0.0042

−0.0011

−0.0043

−0.0011

+4×10−6

+0.0007

+0.0006

+0.0011

434

The results for the histogram method H-β do not indicate

anything extraordinary. Its results are most similar to results

produced by Siegel methods and LSFSRO− x.

The outlier sorting method when applied to OA increases

the number of Langley plots by 75 %. On the common set

of data the OAOSM produces smaller α’s (by 0.0028). This

is the opposite effect of OSM compared to NPF methods

(see Sect. 5). The extra Langleys produced by the OAOSM

method do not necessarily indicate an improvement. Many

of them are large outliers in the time series. We conclude

that the OA, if it errs, it errs on being conservative: it has a

fairly large missed detection rate (rejecting data sets with vi-

able Langley plots), and at the same time the ones that are

detected sometimes could be improved by a removal of few

extra outliers.

When evaluating individual plots, and we looked at almost

all 11× 1023 of them, we found for each method cases when

it went astray. There were cases of missed detection and false

detection when judged by eye. However, we cannot quantify

which of the algorithms has the most favorable missed and

false detection rates. Out of all algorithms used, only OA

deals explicitly with curvature. This perhaps might be a chief

reason why it produces significantly fewer Langleys, which

leads to a smaller number of large outliers in the time series.

The comparison of calibration constants that can be de-

rived from α’s obtained by each method gives us additional

insight about each method as well as a strategy one should

use when generating the calibration constants. We compare

the behavior of time series of derived calibration constants

αcc(d), where d indicates each day from 5 October 2003 to

30 March 2006. The αcc(d)’s are obtained from the time se-

ries of α(dj ) independently for each Langley method, where

dj denotes days at which Langleys were obtained. The αcc(d)

might be considered “the best” estimate of the calibration

constant for a given day, “the best” in the sense of the method

that we use to remove outliers, interpolate and smooth the se-

ries α(dj ).

The method consists of a moving median window of width

dmed days that removes outliers and interpolates, which is fol-

lowed by a moving boxcar filter. For each day d the median

is calculated from dmed number of α(dj ) values: dmed/2 val-

ues for dj ≤ d and dmed/2 values for d<dj . Then the 1055-

long series αcc(d) is smoothed with a boxcar filter of dsmth

days. By trial and error we decided on dmed = 30 days and

dsmth = 25 days.

Prior to applying the method described above, the values

of α are corrected for Earth–Sun distance a by a substitu-

tion α←−α+2ln(a), where a is in astronomical units. The

Earth–Sun distance is calculated with the ephemeris program

published by Michalsky (1988).

One of the methods of time-series smoothing of V0’s to

obtain the absolute calibration constants of a sun photometer

(MFRSR) was validated against calibrations at Mauna Loa

by Michalsky and LeBaron (2013). The discrepancy between

the time-series smoothing and Mauna Loa calibration con-

stants in terms of V0’s was always smaller than 0.6 %. This

at air mass m= 2 translated to aerosol optical depth uncer-

tainty of less than 0.003 and atm= 6 to less than 0.001. This

MFRSR was located in Boulder, Colorado, which in terms of

number of sunny/clear sky days is somewhat superior to the

SGP site. The OA method was used to identify the Langley

plots and obtain individual V0’s.
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Figure 3. Calibration constant curves for all 11 methods (rms < 0.006) and individual intercepts α for OA and H-β methods.

Figure 4. Calibration constants curves for nine methods (rms < 0.01) from Langley plots with no more than 10 % outliers and individual

intercepts α’s for LSFSRO− x and SSRO-α methods. (The OA and H-β results did not pass the filter of 10 % outliers only.)

In Fig. 3 we show all 11 αcc(d) curves and individual in-

tercepts α’s from OA and H-β methods for rms≤ 0.006. In

the course of 1055 days the RSS’s calibration constants vary

within ±3.5 % (in terms of V 0) band. All methods follow

these changes; however, there are differences among them.

Statistically, the differences are ±1.4 for 95 % of days from

the calibration constant curve that is the average of all 11

curves. For other values of rmsmax 0.010, 0.008, and 0.004,

the differences are ±1.6, ±1.45, and ±1.4 %, respectively.

The effect of the maximum rms on the differences between

the αcc(d) curves is not very dramatic. This is because the

parameter dmed = 30 days of the median filter is relatively

large.

In Fig. 4 we show nine calibration constant curves and in-

tercepts α’s for LSFSRO− x and SSRO-α methods for rms≤

0.010. In this case we used α’s from Langley plots that had

no more than 10 % outliers. The OA and H-β results did

not pass the filter of 10 % outliers only. The differences be-

tween the calibration constant curves are±0.8 %. For 40, 30,

and 20 % outliers, the calibration constant curves are within

±1.2, ±0.9, and ±0.87 % bands, respectively. So, the effect

of number of outliers removed to obtain a Langley plot has a

larger effect on the spread among the methods than the effect

of rmsmax.

We note that the OA and H-β calibration constant curves

from Fig. 3 are marginally within the band defined by the

curves in Fig. 4.

The majority of points in Fig. 4 are outliers, and they are

defined by Langley plots with 90 % or more points. By the

criterion rms≤ 0.01 the points are collinear. Nevertheless,

they are off and some by more than±5 % (in terms of V0). In

our opinion, the majority of the outliers are cases of anoma-

lous Langley plots. The topic of anomalous Langley plots

will be pursued in another paper.

10 Conclusions and summary

Eleven Langley plot methods were compared. Two of

them were the least square methods and nine were non-

parametric methods which included the objective algorithm

(OA) method by Harrison and Michalsky (1994).
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We developed two methods to terminate the non-

parametric methods in order to determine the existence of

the Langley plot: the outlier sorting method (OSM) that was

applied to two Theil (1950) and two Siegel (1982) methods,

and a new non-parametric method of sequential removal of

outliers (SRO) was applied to two Siegel methods resulting

in two new iterative Siegel methods.

We found that analysis of histograms of slopes and in-

tercepts can be an excellent tool to prescreen a data set for

Langley-plot viability. The histogram of slopes was used to

generate Langley plots that produce lines defined by a small

number of points. The histogram method offers a possibility

to extract Langley plots when outliers dominate and to find

all subsets of collinear points.

The OA method turned out to be robust though conser-

vative. It identifies the lowest number of Langley plots. It

produces intercepts slightly larger than all other methods.

The Siegel (1982) and Theil (1950) methods with OSM

produce very similar results. The two least square methods

yield the largest number of Langley plots, with expected bias

between them.

The largest differences among methods are on Langley

plot cases that turn out to be outliers in terms of the calibra-

tion constant curve. Predominantly these are the cases that

produce Langley plots but with a small number of points. In

cases that are close to the calibration constant curve the dif-

ferences are small, but there are systematic biases.

We have no way of determining which of the methods pro-

duces results closest to the truth. In fact, the answer may de-

pend on the data set. When the number of outliers in a Lang-

ley plot is small, all methods tend to produce similar results.

The metrics used to define the Langley plot was rms of

residuals. The effect of the value of rms, whether it was

0.10 or 0.06, had no great impact on the calibration constant

curves: all methods produced calibration constant curves

within a band between ±1.4 and ±1.6 % for 95 % of days. It

is the number of outliers in the data set that has a greater im-

pact. The calibration curves generated using a smaller num-

ber of Langley plots with each Langley defined by a larger

number of points produce calibration constant curves that are

less dependent on the method. For instance when Langley

plots retain 80 % of the points all calibration constant curves

are within ±0.9 % band for 95 % of days.

The outliers from the calibration constant curves are pre-

dominantly caused by anomalous Langley plots when the op-

tical depth has a hyperbolic component as a function of air

mass. This effect cannot be detected from the data set, and no

Langley plot method can determine if this hyperbolic change

with air mass is occurring. This effect at difficult sites like

the SGP ARM site in Oklahoma sets the ultimate limit of

accuracy of in situ calibrated sun photometers.
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