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Abstract. Field deployments of the Aerodyne Aerosol Mass

Spectrometer (AMS) have significantly advanced real-time

measurements and source apportionment of non-refractory

particulate matter. However, the cost and complex mainte-

nance requirements of the AMS make its deployment at suf-

ficient sites to determine regional characteristics impracti-

cal. Furthermore, the negligible transmission efficiency of

the AMS inlet for supermicron particles significantly limits

the characterization of their chemical nature and contribut-

ing sources. In this study, we utilize the AMS to character-

ize the water-soluble organic fingerprint of ambient particles

collected onto conventional quartz filters, which are routinely

sampled at many air quality sites. The method was applied to

256 particulate matter (PM) filter samples (PM1, PM2.5, and

PM10, i.e., PM with aerodynamic diameters smaller than 1,

2.5, and 10 µm, respectively), collected at 16 urban and ru-

ral sites during summer and winter. We show that the results

obtained by the present technique compare well with those

from co-located online measurements, e.g., AMS or Aerosol

Chemical Speciation Monitor (ACSM). The bulk recoveries

of organic aerosol (60–91 %) achieved using this technique,

together with low detection limits (0.8 µg of organic aerosol

on the analyzed filter fraction) allow its application to envi-

ronmental samples. We will discuss the recovery variability

of individual hydrocarbon ions, ions containing oxygen, and

other ions. The performance of such data in source apportion-

ment is assessed in comparison to ACSM data. Recoveries

of organic components related to different sources as traffic,

wood burning, and secondary organic aerosol are presented.

This technique, while subjected to the limitations inherent

to filter-based measurements (e.g., filter artifacts and limited

time resolution) may be used to enhance the AMS capabil-

ities in measuring size-fractionated, spatially resolved long-

term data sets.

1 Introduction

Aerosols affect climate, air quality, ecosystems, and human

health (Kelly et al., 2007; Griggs and Noguer, 2002). Organic

aerosol (OA), a significant fraction of the dry particle mass

(Jimenez et al. (2009) and references therein), is either di-
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Table 1. Filter samples and available supporting measurements used in this study.

Location Campaign Sampling Samples Size Supporting

period duration (h) measurements

Zurich (urban background) Apr 2011 12 11 PM1 PM2.5 fingerprints and OA, SO2−
4

a,

gas-phase measurements (CO)

Aug 2008–Jul 2009 24 42 PM10 OC/EC, ions

Feb 2011–Feb 2012 24 41 PM10 PM1 fingerprints and OA,

SO2−
4

b, eBC, WSOC

Paris (urban core) Jul 2009 12 12 PM1 OC/EC, PM1 fingerprints

and OA, SO2−
4

a

Jan–Feb 2010

15 NABEL stations in Switzerlandc Dec 2007–Feb 2008 24 150 PM10 OC/EC, ions

Dec 2008–Feb 2009

a HR-ToF-AMS; b Quadrupole ACSM; c NABEL (Swiss National Air Pollution Monitoring Network): the stations represented in the study are Basel, Bern, Chiasso, St. Gallen,

Magadino, Massongex, Moleno, Payerne, Reiden, Roveredo, Sissach, Solothurn, San Vittore, Vaduz, and Zurich (Zotter et al., 2014).

rectly emitted (primary organic aerosol, POA), or formed

in the atmosphere through gas-phase oxidation of anthro-

pogenic and biogenic volatile organic compounds and subse-

quent condensation or nucleation (secondary organic aerosol,

SOA). Characterization of OA chemical composition and

sources is necessary for understanding the corresponding at-

mospheric processes and mitigating the adverse effects of

aerosols. Previous studies have shown that OA contains a va-

riety of organic species, including hydrocarbons, alcohols,

aldehydes, and carboxylic acids. However, only about 10–

30 % of OA has been chemically speciated so far (Hoffmann

et al., 2011).

The High-Resolution Time-of-Flight Aerosol Mass Spec-

trometer (HR-ToF-AMS, Aerodyne Research, Inc.) has been

widely used for characterizing OA in both field and labo-

ratory studies. This instrument couples thermal vaporization

with electron ionization (EI, 70 eV) and provides quantita-

tive mass spectra of non-refractory aerosol components in-

cluding OA, NH+4 , NO−3 , SO2−
4 , and Cl−. Application of ad-

vanced factor-based receptor models such as positive matrix

factorization (PMF, Paatero and Tapper, 1994) to these spec-

tra has been proven effective in apportioning OA into dif-

ferent factors (e.g. Lanz et al., 2007, 2010; Jimenez et al.,

2009; Zhang et al., 2011; Ng et al., 2010; Crippa et al., 2014).

These factors are subsequently related to primary sources

like biomass burning (BBOA), traffic (HOA), and cooking

(COA), as well as oxygenated organic aerosol (OOA), which

is often attributed to SOA.

The cost and complex operation required by the AMS

makes its simultaneous long-term deployment at many sites

impractical. Consequently, current data sets are typically lim-

ited to few weeks and specific sites or measurements from

mobile platforms (Mohr et al., 2011). Recently, a robust, less

expensive, Aerosol Chemical Speciation Monitor (ACSM,

Ng et al., 2011b) and a time-of-flight aerosol chemical speci-

ation monitor (ToF-ACSM, Fröhlich et al., 2013, 2015) were

developed to overcome some of these shortcomings. How-

ever, the low mass resolution of these instruments reduces

their utility. Meanwhile, other studies have proposed the use

of the HR-ToF-AMS for the analysis of aqueous or organic

solvent extracts of filter samples, which are already routinely

collected at many sites worldwide, offering a greater cov-

erage than with ACSMs (Mihara and Mochida, 2011; Lee

et al., 2011; Sun et al., 2011). While such methodologies may

greatly extend the ability of the AMS to measure spatially re-

solved long-term data sets, the results obtained only pertain

to a sub-fraction of the total organic aerosol and are subject to

inherent artifacts of filter-based measurements. It is not clear

whether this fraction adequately reflects the chemical nature

of the entire bulk OA and whether these results may be used

for OA source apportionment. Here, we have adopted such

an approach based on measurements of the water-soluble or-

ganic fraction. We present a methodology to generalize the

results to bulk OA, based on the analysis of 256 filter sam-

ples from 16 urban to rural sites during different seasons and

its comparison to online measurements. These results are ex-

pected to significantly broaden the spatial, temporal, and par-

ticle size ranges accessible to AMS measurements of organic

aerosol.

2 Methods

2.1 Aerosol sampling

Particulate matter (PM) of different sizes (PM1, PM2.5, and

PM10, representing aerodynamic particle sizes smaller than

1, 2.5, and 10 µm, respectively) were collected onto pre-

heated (800 ◦C, 12 h) Pall quartz filters (diameter 14.7 cm)

using HiVol samplers (500 Lmin−1). Field blanks were col-

lected using the same method as for the exposed filters.

The filters were stored in sealed bags at −18◦ C and only

transported cooled. Before handling the filters, they were

left at room temperature in the sealed bags in order to

avoid condensation of volatile compounds on the cold sur-
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face (> 15 min). The offline AMS analysis of the filters col-

lected in April 2011 in Zurich were conducted in October

2011. The other filters were analyzed between April and Oc-

tober 2012. While samples were collected at different sea-

sons at 16 sites including urban, suburban, and rural sites

(Table 1), we will mainly focus on the Zurich data sets (filters

evenly distributed in the years 2011–2012) because of the ex-

tensive supporting measurements performed there. Measure-

ments on the remaining samples are used for the assessment

of the bulk OA water solubility.

The urban background site Kaserne in Zurich is located in

a park in the middle of the urban core of a densely populated

area (1.2 million inhabitants, including surrounding commu-

nities). In addition to filter sampling, an Aerosol Chemi-

cal Speciation Monitor (ACSM) was operated with a PM1

(standard) aerodynamic lens in Zurich from February 2011

to February 2012 (Canonaco et al., 2013, 2015, 2016). The

ACSM provides quantitative unit mass resolution (UMR)

mass spectra with a time resolution of 30 min. These mass

spectra can be used to determine the concentration of species

such as OA and SO2−
4 , while the OA mass spectra are suit-

able for source apportionment (Ng et al., 2011b). At the same

site, equivalent black carbon (eBC) was monitored using an

aethalometer, AE 31 (Magee Scientific Inc.) (Hansen et al.,

1984; Herich et al., 2011), and CO by non-dispersive Fourier-

transform infrared spectroscopy (APNA 360, Horiba, Kyoto,

Japan). During spring 2011, PM2.5 filter samples were also

collected and a HR-ToF-AMS equipped with a (PM2.5) lens

(Williams et al., 2013) was operated at the same site.

During the winters of 2007/08 and 2008/09, offline AMS

measurements (PM10) were conducted for 15 sites spread

over Switzerland including flatland and alpine sites with

varying population density and local emissions. A yearly cy-

cle (August 2008–July 2009) from the urban background sta-

tion in Zurich described above completes this data set. For

this campaign, measurements of organic carbon (OC), ele-

mental carbon (EC) (Zotter et al., 2014), and the most com-

mon ions are available. Finally, we have also analyzed 12

filter samples collected in Paris during summer 2009 and

winter 2010, where concomitant online HR-ToF-AMS PM1

measurements are available (Crippa et al., 2013a, b, c; Freu-

tel et al., 2013).

2.2 Offline AMS

2.2.1 Sample extraction

Sample fractions (2 cm2 or 1.2 % of the entire filter sample,

may be increased for low filter loadings) are collected from

each filter sample and extracted in 10 mL ultrapure water

(18.2 M�cm, total organic carbon (TOC) < 5 ppb, 25 ◦C)

by means of an ultrasonic generator for 20 min at 30 ◦C.

Samples are then briefly vortexed (1 min), to ensure their

homogeneity. The extracts are subsequently filtered with

0.45 µm nylon membrane syringe filters, prior to AMS anal-

ysis.

2.2.2 Offline AMS analysis

The water extracts are aerosolized using a custom-built nebu-

lizer designed to work with small liquid volumes (5–15 mL).

When passing through the nebulizer nozzle, an air stream is

accelerated. Simultaneously, liquid is sucked into the nebu-

lizer. The high velocity air stream breaks up the solution and

forms particles. The resulting particles are dried by a silica

gel diffusion dryer, and subsequently analyzed by the HR-

ToF-AMS (V-mode). For each sample, spectra are recorded

in the range of 12–300 amu, with a collection time for each

spectrum of 30–60 s. To reduce memory effects, ultrapure

water is nebulized before every sample measurement. This

information is used as a system blank. Raw data depicting the

measurement procedure are presented in Fig. 1. Field blanks

are analyzed using the same procedure as the sample filters,

and the retrieved signals are statistically equal to those ob-

tained from the direct nebulization of ultrapure water. During

each experiment, the nebulizer air is also filtered and mea-

sured with the AMS to remove gas-phase contributions from

the mass spectra (Allan et al., 2004).

The HR-ToF-AMS operating principles, calibration pro-

cedures, and analysis protocols are described in detail else-

where (DeCarlo et al., 2006). The instrument provides quan-

titative mass spectra of non-refractory PM1 (vacuum aero-

dynamic diameter (Dva) 60–600 nm) components, at 600 ◦C

and 10−7 Torr (1.3×10−5 Pa). These include organic aerosol

and ammonium nitrate and sulfate. Data are analyzed using

high-resolution analysis fitting procedures, Squirrel v1.52L

(SeQUential Igor data RetRiEvaL) and Pika v1.10C (Peak

Integration by Key Analysis, D. Sueper), in the IGOR Pro

software package (Wavemetrics, Inc., Portland, OR, USA).

2.3 Other chemical analysis

Cations (e.g., K+, Na+, Mg2+, Ca2+, NH+4 ) and anions

(e.g., SO2−
4 , NO−3 , Cl−) were analyzed using an ion chro-

matographic system (850 Professional, Metrohm, Switzer-

land) equipped with a Metrosep C4 cation column and

a Metrosep A anion column, respectively. For this analysis,

1 cm2 filter fractions were extracted in 15 mL ultrapure water

(18.2 M�cm). Filters (1.5 cm2) were also analyzed for EC

and OC content by a thermo-optical transmission method on

a Sunset OC/EC analyzer (Birch and Cary, 1996), following

the EUSAAR-2 thermal-optical transmission protocol (Cav-

alli et al., 2010). Replicate analysis shows a good analytical

precision with relative standard deviations of 7.7, 14.8, and

8.1 % for OC, EC, and TC (total carbon), respectively (Zot-

ter et al., 2014). The water-soluble organic carbon (WSOC)

estimates from the offline AMS analyses are compared to

WSOC measured using a standard method. Following this

method, filter samples are extracted in ultrapure water, they
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Figure 1. Data recorded with HR-ToF-AMS of filter samples collected in Zurich (2011–2012). Data from a typical measurement cycle

are underlaid in gray. (a) Raw signals obtained for organic aerosol (OA, green), nitrate (NO−
3

, blue), sulfate (SO2−
4

, red), and ammonium

(NH+
4

, orange), where AMS filter air as well as blank and sample measurements are indicated. (b) OA average signal for samples and blanks

(logarithmic scale), blank correction curve and the noise (smoothed standard deviation of the blank) associated with the signal of different

species used for the calculation of errors. On the y axes, a.u. denotes arbitrary units.

are gently shaken for 24 h, and the extracts are subsequently

analyzed with a TOC analyzer. The bulk of these offline mea-

surements are used as reference methods to assess the offline

AMS approach.

2.4 PMF using ME-2

The ability of the offline AMS analysis to characterize the or-

ganic aerosol sources compared with other online techniques

(i.e., ACSM) is evaluated by analyzing the obtained mass

spectra from online and offline measurements using positive

matrix factorization (PMF, Paatero and Tapper, 1994) for the

case of the yearly cycle from Zurich (2011–2012). PMF is

a bilinear unmixing receptor model used to describe mea-

surements (in this case AMS or ACSM organic mass spectra

time series) as a linear combination of static factor profiles

and their time-dependent source contributions, as expressed

in Eq. (1):

xij =

p∑
k=1

(
gik × fkj

)
+ eij . (1)

Here xij , fkj , gik , and eij are matrix elements of the mea-

surement, factor profile, factor time series, and residual ma-

trices, respectively. The subscript j corresponds to a mea-

sured ion or m/z, i corresponds to a measured time stamp,

and k to a discrete factor. The user determines the number

of factors, p, returned by the PMF algorithm. PMF requires

non-negative entries for fkj and gik , suitable for environmen-

tal measurements such as OA mass concentrations. The PMF

algorithm solves Eq. (1) by iteratively minimizing the object

function Q, defined as

Q=
∑
i

∑
j

(
eij

σij

)2

, (2)

where σij are the elements of the error matrix (measure-

ment uncertainties), which together with xij and p are pro-

vided as model inputs. Measurement uncertainties consid-

ered in the error matrix include electronic noise, ion-to-ion

variability at the detector, and ion counting statistics (Al-

lan et al., 2003). For offline AMS analyses, both sample

and blank uncertainties are incorporated. Following the rec-

ommendation of Paatero and Hopke (2009), variables with

low signal-to-noise (SNR< 0.2) are removed (no variables

affected), whereas “weak” variables (0.2< SNR< 2) are

downweighted by a factor of 3 (26 variables in the PMF input

affected). Further, 19 variables were not considered in PMF

because they were not present in the reference spectra used.

In this study, PMF is solved using the multi-linear engine

(ME-2) (algorithm Paatero (1999) and references therein),

with the toolkit Source Finder (SoFi version 4.7, Canonaco

et al., 2013) for IGOR Pro (Wavemetrics, Inc., Portland, OR,

USA) employed as a front end for the model. PMF was op-
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erated using the robust outlier treatment mode, in which out-

liers were dynamically downweighted. Most published anal-

yses using PMF are limited in their ability to explore rota-

tional ambiguity in the solution space, which is typically ac-

cessible only in a single, random dimension (Zhang et al.,

2011). As a consequence, these analyses do not guarantee the

access to environmentally optimal solutions. In contrast, the

ME-2 implementation of PMF allows efficient exploration

of the entire solution space, including approximate matrix

rotations. In the present study, the solutions were directed to-

wards environmentally meaningful rotations by constraining

the elements of one or more profiles in the factor profiles

matrix (fkj ) to a predetermined range defined by a center

value (f ′kj ) and a scalar defining the width of range (a), such

that the returned profile satisfies fkj = f
′

kj±a×f
′

kj . This ap-

proach has previously been utilized for AMS data sets to sep-

arate distinct sources with correlated mass spectra profiles or

time series (Lanz et al., 2008; Crippa et al., 2014) and shown

to provide improved factor separation compared to conven-

tional PMF (Canonaco et al., 2013).

In the case of the offline AMS, the HR data matrices were

arranged as follows: in the measurement matrix, each filter

sample is represented by on average eight high-resolution

mass spectra (see description above and Fig. 1), corrected

for the corresponding average blank measured before the

sample. Each mass spectrum is composed of 154 HR ions

(m/z 12–96). 41 samples were considered in this analy-

sis (total of 41 time points and matrix total dimension of

334×154= 51 436). The corresponding error matrix has the

same dimensions. The elements of the error matrix, σij , in-

clude the uncertainties related to the AMS measurements as

discussed above (computed according to Allan et al., 2003;

Ulbrich et al., 2009), denoted by δij , added in quadrature to

the variability of the preceding blank βij , which includes the

AMS measurement precision but also accounts for possible

drifts in the nebulization:

σij =

√
δ2
ij +β

2
ij . (3)

In order to allow comparisons with external data, the

offline AMS data and error matrices are converted to ambient

concentrations. The contribution of δij and βij to σij depends

on the ion in question, but in general δij dominates (98 %,

first and third quartiles of 89 and 100 %). Since the measured

data points are not averaged prior to the ME-2 analysis, but

rather used individually, their variability is not included in

the error matrix, but instead directly reflected in the results.

This also provides a metric for the mathematical stability of

the ME-2 solution and thus a part of the uncertainties of the

source apportionment results.

In order to assess the performance of offline AMS data

in source apportionment we compare the obtained results to

source apportionment results using online ACSM data. For

an ideal offline/online comparison, the online data set should

resemble the offline data set as closely as possible. However,

the low mass resolution of the ACSM spectra prevents satis-

factory factor resolution, when using 24 h averages of ACSM

data for the selected days. Moreover, running ME-2 on the

selected days for the entire year (retaining 30 min time res-

olution) results in biases between winter and summer resid-

ual distributions, which was not the case for the offline data.

That is, the model tends to explain the diurnal variation of

the online ACSM data, rather than seasonal differences. For

these reasons, a rolling window ME-2 approach was devel-

oped to perform source apportionment analysis on the yearly

online UMR ACSM data (Zurich 2011–2012) (Canonaco

et al., 2016). The approach can be described as a controlled

bootstrap technique applied to sorted data, which would help

represent summer and winter data and provide an estimate

of the uncertainties (Paatero et al., 2014). In this approach,

a rolling window is capable of capturing seasonal variations

in the aerosol factors and/or variations driven by meteorol-

ogy. Within a window, which is considerably shorter than the

yearly data set, the ME-2 model is applied, allowing the fac-

tors to adapt to the measured data. A rolling window corre-

sponds to 4 weeks of measurements and rolls over the whole

set of data with a 1 day time step. The PMF window was

rolled over the temperature-sorted Zurich data (by daily av-

erage temperature). By sorting the data with respect to tem-

perature, days with similar conditions in terms of SOA for-

mation and dominant primary sources (e.g., BBOA at lower

temperature) are grouped together. For every window the so-

lution was optimized using criteria based on correlations be-

tween the time series and the diurnal cycles of the factors

and those of the markers. This novel approach was com-

pared to classical source apportionment results for the win-

ter part of this data set presented in Canonaco et al. (2013).

The rolling window solution presents an improved represen-

tation of OOA (r2 with NH+4 0.69 vs. on average 0.53 for

the PMF solution in Canonaco et al., 2013) for the overlap-

ping period, which is consistent with the variable character of

OOA. The correlation of HOA and BBOA with their respec-

tive markers is comparable to Canonaco et al. (2013). For the

reasons described above and with the lack of standard tech-

niques to apply PMF to yearly organic mass spectral data,

the rolling window source apportionment results are chosen

as reference.

3 Results and discussion

3.1 Signal-to-noise, quantification and detection limits

Figure 1a shows a typical time pattern of OA, NO−3 , SO2−
4 ,

and NH+4 from offline AMS measurements. The signal in-

tensity of offline AMS measurements can be expressed in

µgm−3 (of nebulized aerosol), but for simplicity we denote

this as arbitrary units (a. u.) to avoid confusion with concen-

trations in ambient air (µgm−3). This conversion between

AMS signals and real concentrations is explained below. The

intensity of OA is typically 1–2 orders of magnitude higher

www.atmos-meas-tech.net/9/23/2016/ Atmos. Meas. Tech., 9, 23–39, 2016
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than that of the measurement blanks (see Fig. 1b). The blank

offline AMS signal is typically below 2.1 a. u., with inter-

day and intraday variation (standard deviation) of 0.3 and

1.5 a. u., respectively. The nebulization efficiency assessed

based on the SO2−
4 signal is 3.8 mLsolution m−3

air (first and third

quartile of 1.2 and 7.3 mLsolution m−3
air ). The particles gener-

ated with this nebulizer have a mode diameter of ∼ 200 nm

(dV /dlogDp).

The SO2−
4 detected by the offline AMS is related to SO2−

4

loadings on the filter area (calculated from ACSM mea-

surements) analyzed by a power relationship (Fig. 2). How-

ever, the offline AMS measurements described herein can-

not be directly quantified, without external measurements of

e.g., OC, due to variability in the nebulization process. An-

other significant source of uncertainty is the ACSM cutoff

(Dva 600 nm).

The detection limit (dlj ) of species j (e.g., SO2−
4 ), in µg on

the analyzed filter fraction, is evaluated based on the blank

variability of j in comparison to the signal in the sample,

σblank,j . We define dlj as the mass of j in µg required to

produce a signal equal to 3×σblank,j . dlj is inferred using the

existing relationship between blank corrected offline AMS

signals, Ij in a. u., and the mass concentration of j , Mj in

µg, in the analyzed filter fractions (e.g., Fig. 2). We estimated

the detection limits for OA and SO2−
4 as 0.80 and 0.25 µg on

the analyzed filter area, corresponding to 80 and 25 µgL−1,

respectively.

3.2 OA recovery

The loss of hydrophobic or volatile organic species dur-

ing sample collection, handling, extraction, and nebulization

may significantly hinder the applicability of the offline AMS

technique. In the following, the organic aerosol signals are

normalized to the sulfate mass, in order to evaluate OA re-

coveries. This is based on the assumption that sulfate is quan-

titatively extracted and measured by the AMS, which is ex-

pected since sulfate is mostly bonded to ammonium (water-

soluble and non-refractory). This is not given at all sites, e.g.,

in the strong presence of potassium. We also assume that

the fractional composition in the size range sampled by both

ACSM and filter samples is the same. Accordingly, the com-

parison of Ij and Mj both normalized to SO2−
4 yields the

recovery Rj :

Rj =

(
Ij

I
SO

2−
4

)
offline(

Mj

M
SO

2−
4

)
online

. (4)

The extraction time does not have a statistically significant

effect on OA/SO2−
4 ratios and fingerprints when increasing

the extraction time from 20 to 60 min. Likewise, multiple ex-

tractions did not significantly enhance the recovery of the

particulate compounds as the OA signal from the second ex-

traction was below 8 % of that from the first extraction and

only 3 times higher than the blank signal. Therefore, we have

concluded that a single extraction step was sufficient in our

case to obtain the water-extractable material.

We have evaluated the recovery of the bulk OA (Mj here

representing OA), by comparing the offline AMS OA/SO2−
4

ratios with OA/SO2−
4 from reference measurements using

the Sunset OC/EC analyzer and ion chromatography (IC)

(described in Sect. 2.3). The recovery of complex mixtures

such as ambient OA depends on the water solubility of its

numerous compounds. Figure 3a compares offline AMS and

reference measurements for 15 stations in Switzerland where

the reference measurements were performed on the same fil-

ters (150 PM10 samples, Table 1), using IC and the Sunset

OC/EC analyzer for SO2−
4 and OA measurements, respec-

tively. The latter were calculated by multiplying the Sun-

set OC/EC analyzer OC with the OM/OC ratios from the

HR analysis of the AMS spectra. While we acknowledge

that also OM/OC from offline AMS is subjected to errors

caused by compound-dependent extraction efficiencies and

filter sampling artifacts, such errors do not significantly af-

fect the results and the OM/OC range found here (median

of 1.84, first quartile of 1.80 and third of 1.87) compare well

with previously measured online ratios (e.g., 1.80 provided

by Favez et al. (2010) for Grenoble, January 2009, 1.66 by

Crippa et al. (2013c) for Paris, and 1.6 and 2.0 by Minguil-

lón et al. (2011) for Barcelona and Montseny, respectively).

From this, we estimate a median Rbulk of 0.60 (first and third

quartiles of 0.49 and 0.80), which suggests that the technique

can capture a large part of the organic fraction.
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Figure 3. Estimated recoveries of organic compounds based on the

comparison of OA/SO2−
4

ratios using the offline AMS method to

reference measurements for different days. The error bars represent

the variability of the offline OA/SO2−
4

ratio within a sample and

were obtained from different runs during the same measurement

of the same sample. (a) The reference OA/SO2−
4

ratio is obtained

by OC filter measurements (Sunset OC/EC analyzer) scaled to OA

using OM/OC values from the HR offline AMS data and SO2−
4

from IC. (b) OA/SO2−
4

ratios from online measurements were used

as reference values. For both Paris campaigns and the Zurich spring

campaign, the online measurements were conducted using HR-ToF-

AMS and for the yearly cycle in Zurich by a quadrupole ACSM.

(c) For Zurich (2011–2012), probability density functions of Rbulk

are presented both using the offline AMS measurements as well as

using WSOC from the Sunset OC/EC Analyzer (in combination

with OM/OC ratios from offline AMS).

Similar comparisons between offline AMS results and ref-

erence measurements were also performed for other data sets

where online AMS data were available (Zurich spring and

Paris campaigns). Offline AMS measurements of filter sam-

ples collected in Paris (summer 2009 and winter 2010) and

Zurich (spring 2011) were compared with online HR-ToF-

AMS with the same size cutoff (PM1) (Fig. 3b). For these
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Figure 4. Comparison between 24 h average online and offline

AMS (both PM2.5) spectra for winter (a) and spring (b) sam-

ples, collected in Zurich. Fragments (m/z) commonly considered

as source-specific markers are explicitly labeled with their nominal

mass.

data sets, OA recoveries range between 64 and 76 %. For

Zurich, it should be noted that PM1 filter samples are not

available and therefore offline PM10 HR-ToF-AMS measure-

ments are compared to online data from ACSM (yearly cy-

cle) and HR-ToF-AMS equipped with a PM2.5 lens (spring).

We show that for both campaigns the overall Rbulk is in

the same range as values obtained for the other data sets

inspected here, despite the potential contribution of coarse

mode OA (median= 0.91; first and third quartiles of 0.66

and 1.32, respectively for the yearly cycle and median=

1.05; first and third quartiles of 0.99 and 1.26, respectively

for the spring campaign). This implies that the contribu-

tion of the latter is not dominant, consistent with previous

measurements at this site, suggesting that the fine particle

mass constitutes on average 75 % of the PM10 mass (Putaud

et al., 2010). Note that outliers in Rbulk higher than 1 are as-

sociated with very low, and therefore highly uncertain sul-

fate concentrations. For the Zurich yearly cycle campaign

(2011–2012), we validated the Rbulk calculation approach

adopted here to a more conventional approach for the deter-

mination of WSOC (Fig. 3c; water-soluble organic aerosol,

WSOA=WSOC×(OM/OC)offline AMS). We show that both

approaches give similar estimates (based on the WSOC me-

dian Rbulk = 0.74 compared to Rbulk = 0.91 if the calcula-

tion is based on the ACSM), suggesting that offline AMS

measurements are related to WSOA and that a great part of

the organic mass is accessible by the analysis procedure fol-

lowed here.

3.3 Mass spectral analysis

Results above raise the question as to whether the offline

AMS analysis maintains the mass spectral signature of the

ambient OA. We have addressed this question by compar-

ing online and offline OA mass spectra in Fig. 4, illustrat-

ing an example of the results obtained from Zurich win-
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Figure 5. Median recovery of single organic fragments, and chemical families for the Zurich spring campaign (offline vs. online PM2.5

AMS). The first and third quartiles of the inter-sample variability are shown as error bars. A ratio of 1 indicates a recovery of 100 %.

The fragments are color-coded with the family (CH (hydrocarbon fragments, split into saturated and unsaturated), CHOz=1 and CHOz>1

(oxygenated fragments), and CHN, nitrogen-containing hydrocarbon fragments). Numbers across the top of the plot indicate the fragments’

nominal mass. Families include all respective fragments weighted by their mass contribution.

ter and spring campaigns. Such a comparison implicitly as-

sumes that the mean organic composition across the entire

size range collected by the filter (up to PM10) is identical to

that of the approximately 60–600 nm particles measured by

the online ACSM. Although this assumption will not hold

for all conditions, the comparison is nonetheless useful for

characterization of the offline AMS technique. The compar-

ison of offline and online spectra shows a high correlation

(R2 > 0.97) irrespective of the seasonal variation in aerosol

composition. More importantly, it can be observed that this

method is also able to capture variations in the aerosol fin-

gerprints between the two seasons. For instance, both online

and offline methods show higher contributions from BBOA-

and HOA-related fragments (e.g., m/z 60, 73, and m/z 55,

57, 69, respectively) for the winter samples and higher con-

tributions from OOA-related m/z values (e.g., m/z 43, 44)

for the spring sample.

HR-ToF-AMS data enable the analysis of individual ions

at the same integer m/z, which in turn provides better as-

sessment of the recovery of the initial parent organic com-

pounds or ion families. For this analysis, we use Eq. (4) to

describe the recovery of individual ions Rfrag withMj and Ij
defined as the concentration of an individual ion (cfrag). We

have grouped the fragments into five different families, based

on their heteroatom content and degree of unsaturation,

including N-containing hydrocarbon ions (CHN), mono-

oxygenated (CHOz=1) and poly-oxygenated (CHOz>1) ions

and pure hydrocarbons (CH) divided into saturated (CHsat)

and unsaturated hydrocarbons (CHunsat).

Figure 5 presents Rfrag for the Zurich spring (2011) cam-

paign (see Fig. 3b, green points for Rbulk = 0.65 (first and

third quartiles of 0.62 and 0.70). Results show that highly

oxygenated fragments (CHOz>1, mainly organic acids) are

well recovered, RCHOz>1
= 67 % (first and third quartiles of

65 and 72 %). This proportion slightly decreases to 64 %

(first and third quartiles of 63 and 71 %) for the CHOz=1

(RCHOz=1
) family, which could mainly be composed of al-

cohols, aldehydes, and ketones. In contrast, Rfrag for non-

oxygenated species are in general lower, i.e., 55 % (first and

third quartiles of 51 and 60 %) for the CHN family (RCHN),

and 61 % (first and third quartiles of 55 and 64 %) for the

CH family (RCH). Within the CH family, the saturated hy-

drocarbon fragments (CnH+2n+1), which stem at least in part

from the fragmentation of hydrophobic normal and branched

alkanes (Alfarra et al., 2004), are especially strongly under-

estimated (RCnH+2n+1
= 44%, first and third quartiles of 42

and 48%). Note that a higher variability in the Rfrag value is

also observed for the CH fragments, probably due to the vari-

ability in the water solubility of their parent molecules. This

may lead to higher uncertainties in the source apportionment

of hydrocarbon-like OA and even to an underestimation of

such sources, using the offline AMS technique, as will be

shown below.

3.4 Source apportionment results

Differences between offline and online HR-ToF-AMS spec-

tra caused by e.g., compound-dependent recoveries may also

influence source apportionment results. Therefore, we assess

the ability of the offline AMS in the apportionment of OA

sources, by analyzing the offline Zurich yearly data set us-

ing ME-2 and comparing the source apportionment results to

those obtained by applying ME-2 to online ACSM data.

3.4.1 ME-2 output evaluation

A key consideration for PMF analysis is the number of fac-

tors selected by the user. As mathematical criteria alone are
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Figure 6. Change in the time-dependent contribution of Q/Qexp

as a function of the number of factors 1
(
Qi,cont/Qexp,i,cont

)
for

a chosen offline solution (for aHOA = 0.0 and aCOA = 0.0).

insufficient for choosing the right number of factors, this se-

lection must be evaluated through comparisons of factor and

tracer time series, analysis of the factor mass spectra, and

the evolution of the residual time series as a function of the

number of resolved factors. As described below, a five-factor

solution was selected as the best representation of the offline

AMS data. To improve the resolution of the POA sources by

the model, literature profiles were used to define the range of

acceptable profiles (using the a value approach – Sect. 2.4).

SOA factors are not constrained because of the complex de-

pendence of SOA composition on source, atmospheric age,

processing mechanisms, and meteorological conditions. This

is consistent with the approach of Crippa et al. (2014). After

determining the optimal number of factors (and their iden-

tity) required for explaining the variability in the data set, we

thoroughly assessed the sensitivity of the PMF results to the

selection of the a values.

Previous studies at this site have shown the influence of

traffic, cooking, biomass burning, and secondary organic

aerosol (Lanz et al., 2008; Canonaco et al., 2013). Here,

we have constrained HOA and COA (profiles adapted from

Mohr et al., 2012) and optimized the solution by inves-

tigating different combinations of a values for the con-

strained factors. In the selected five-factor solution, the

non-constrained factors extracted by ME-2 were related to

BBOA, a highly oxygenated (OOA1) and moderately oxy-

genated (OOA2) organic aerosol; the sum of OOA1 and

OOA2 will be henceforth considered as a proxy for sec-

ondary organic aerosol (referred to as OOA) which can,

though, be mixed with aged primary organic aerosol. These

designations are based on the correlation between OOA time

series and that of secondary inorganic species (i.e., SO2−
4 and

NH+4 ) and the comparison of OOA profile mass spectra with

those extracted from previous AMS data sets.

Number of factors

Figure 6 shows the change in the time-dependent Q/Qexp

when increasing the number of factors for the offline data

set 1(Qi,cont/Qexp,i,cont): contribution to Qi,cont for the (p)-

factor solution minus that of the (p+ 1)-factor solution.
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Figure 7. Residuals weighted with the uncertainty (residu-

als/uncertainty) of the offline solutions for the periods April–

September and October–March (example shown for one chosen so-

lution, aHOA = 0.0; aCOA = 0.0). Panels (a, b) show residuals as

a function of m/z averaged over the whole periods color-coded

with the probability that the residuals for April–September are the

same as for October–March (Wilcoxon–Mann–Whitney test). Pan-

els (c, d) shown the probability distribution function (pdf) of R/U

during the same periods.

A significant decrease in 1(Qi,cont/Qexp,i,cont) signifies that

structure in the residuals disappeared with the additional fac-

tor. Removed structure is evident up to five factors. This be-

havior indicates that while the ME-2 solution is clearly en-

hanced when increasing the number of factors to five, addi-

tion of further factors does not improve the model descrip-

tion of the input data. For this solution, there is no statis-

tically significant difference in the residual distributions of

most variables between winter and summer (Fig. 7), indicat-

ing that the modeled profiles represent the sources over the

entire year well. Lower order solutions (three and four fac-

tors) show one or two OOA factors besides the constrained

HOA and COA. Higher order solutions were explored but

yielded additional OOA factors, which could not be clearly

attributed to a distinct source or process. Given this lack of

improvement in1(Qi,cont/Qexp,i,cont) and in the understand-

ing of aerosol sources and formation processes, and the ab-

sence of external tracers supporting the additional OOAs in

the high order solutions, the five-factor solution was consid-

ered as being optimal. Furthermore, we consider only the

sum of OOAs to facilitate the inter-method comparison (as

explained below). Note that PMF model uncertainties, i.e.,

imperfect mathematical unmixing of sources, propagate into

this comparison. This setting allows a direct comparison be-

tween the offline and online methodologies, as the same set

of factors are obtained.
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Figure 8. Relative width of the distributions
(
cj /cmarker

)
displayed as a function of aHOA and aCOA. Panel (a) shows the sum of the criteria

for HOA, BBOA, and OOA being the sum of OOA1 and OOA2. (The chosen solutions are pointed out in the white area.) Panels (b–d) show

the individual criteria as a function of the a values of HOA and COA aHOA, aCOA.

a value optimization

The a values are independently varied for all constrained fac-

tors within a wide range (a values from 0 to 1 with a step

size of 0.1) for offline data in order to find an optimal solu-

tion. Amongst the different solutions obtained, we selected

those with factor time series with the strongest correlation

with those of the corresponding tracers. The a value com-

binations of the chosen solution are specific for the data set

used herein and the selected reference profiles used, i.e., they

may not be directly applicable to other cases.

For this selection, the approach described above is adopted

for the offline data (illustrated in Fig. 8). For each set of

a values selected as ME-2 input parameters (two a values

to constrain HOA and COA) five-factor time series are first

generated by ME-2. The ratios between factor and marker

time series are then displayed as probability density func-

tions (pdf). The width of this distribution is used as a quality

criterion, since the narrower it is, the closer the linear re-

lation of the factor is to the marker. Here, eBC, CO, and

NH+4 are used as markers for HOA, BBOA, and OOA, re-

spectively. For COA, no specific marker has yet been iden-

tified and studies presenting online data validate this factor

using the daily pattern of its concentration, which typically

peaks at lunch- and dinner-time (e.g. Crippa et al., 2014).

For 24 h integrated filter data, this diagnostic cannot be used

and therefore the optimization of COA separation by ME-

2 is not used as a quality criterion. In practice, the solu-

tion with the narrowest factor-to-marker distributions is de-

fined as the best solution with respect to its interpretability

in the environment. For the other factors, we have exam-

ined the variability in the ratio, x, between factor and cor-

responding marker: x =
(

HOA
eBC

)
;

(
BBOA

CO−CO0

)
;

(
OOA

NH+4

)
. CO0

is the background concentration, which is estimated to be

100 ppb. This is both in agreement with measurements at

this site and also literature presenting measurements of back-

ground air masses (e.g. Griffiths et al., 2014, for Jungfrau-

joch). In practice, the best solution is obtained by minimiz-

ing the sum of the ratios of the logarithmic geometric stan-

dard deviations (σg) to the logarithmic geometric averages

(µg) of x
(∑

x |
log(σg(x))

log(µg(x))
|

)
. Besides using eBC as an HOA

marker, the quality of the solution was also checked using

eBCtr. For both markers, the same a value combination was

considered best according the overall criterion. All solutions,

for which none of the single distributions showed a different

relative variance than the best solution, were also accepted

(this comparison was performed using an F test). Note that

the determination of the a value ranges resulting in the most

satisfactory solutions for the offline data set is performed

independently from the online measurements. The compar-

ison between source apportionment from offline and online

data sets provides, therefore, a direct measure of the abil-

ity of the offline AMS technique to resolve aerosol sources

and formation processes. Systematically stepping through

the multi-dimensional a value space, as opposed to most pub-

lished analyses using one-dimensional a-value-based ME-2
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Figure 9. Comparison of overall factor profiles obtained for the chosen solutions both from the offline (left, for HOA and COA, spectra from

Mohr et al. (2012) were used as reference) and the retrieved factor profiles from the online source apportionment (right).

or PMF, offers a more effective and objective exploration of

the solution space. Environmentally reasonable factors are

obtained by selecting the subset of solutions that optimizes

factor-to-marker relationships.

The chosen offline solutions lie in general in a part of the

solution space with low a values for HOA and COA (the sin-

gle chosen a value combinations are shown as white boxes

in Fig. 8a). The relative variability of the signatures of the

constrained factors among the different accepted solutions

for the offline source apportionment is below 6 and 3 % for

HOA and COA, respectively. Note that this is an incomplete

exploration of the rotational ambiguity and thus does not de-

scribe the complete model uncertainty.

Online ACSM solution

Like the offline solution, the online ACSM solution yielded

a five-factor solution representing HOA (constrained using

the profile reported by Crippa et al., 2013b), COA (con-

strained using the profile reported by Crippa et al., 2013b),

BBOA (constrained using the profile reported by Ng et al.,

2011a), SV-OOA, and LV-OOA. In contrast to the offline so-

lution, ME-2 could not extract BBOA independently; thus

this factor was constrained as suggested by Crippa et al.

(2014).

Comparing the offline to online PMF source apportion-

ment results obtained with the approaches described earlier

has the obvious drawback that we compare OOA factors ex-

tracted in winter-only or summer-only (online) vs. combined

winter and summer (offline). However, this is mitigated by

two factors. First, the discrimination between OOAs for the

offline solution is largely driven by seasonal differences (av-

erage relative contributions: in winter OOA2 9 %, OOA1

91 % and in summer 87, 13 %, respectively), indicating only

small biases in the composition. Second, the residuals for

both winter and summer are normally distributed and cen-

tered around zero (Fig. 7), indicating negligible seasonally

dependent bias in the apportioned mass. Therefore, while this

comparison method may contribute somewhat to the overall

uncertainties, it is unlikely to significantly affect the conclu-

sions or values reported below.

Factor profiles

The averages of factor profiles of the selected ME-2 online

and offline solutions are presented in Fig. 9. Apart from the

good correlations between factors and external markers time

series used as an acceptance criteria, our results show that the

factors retrieved by ME-2 exhibit spectral profiles are consis-

tent with previous studies. The BBOA profile extracted from

the offline data set closely resembles those reported in the

literature for other locations (Crippa et al., 2013b), charac-

terized by the contribution of oxygenated fragments at m/z

29 (CHO+), 60 (C2H4O+2 ), and 73 (C3H5O+2 ), from frag-

mentation of anhydrous sugars (Ng et al., 2011a). The OOA

mass spectra retrieved by ME-2 for both online and offline

data sets is characterized by a typical fingerprint, domi-

nated by oxygenated fragments at m/z 43 (C2H3O+) and 44

(CO+2 ) characteristic of secondary compounds. The consis-

tency of these spectral profiles with previously reported pro-
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files from online measurements provides additional support

to the source apportionment results presented here.

3.4.2 Recoveries of different OA categories (HOA,

COA, BBOA, OOA)

While results above show that the bulk OA recovery lies be-

tween 60 and 91 % (Sect. 3.2), for the current analysis we

assess the recovery of the different factors as representative

of ambient compound classes from various sources/processes

determined by ME-2. This is based on the comparison be-

tween online and offline source apportionment results. How-

ever, for this comparison, the approach presented in Eq. (4)

cannot be adopted because of the noisy data and/or low

sulfate content during periods critical for recovery deter-

mination of a specific factor. We therefore perform a self-

consistent calculation of factor-dependent recoveries, which,

when applied to the offline data, yield (1) fractional composi-

tion consistent with online measurements, and (2) calculated

bulk recovery consistent with the measured bulk recovery us-

ing WSOA measurements. The implementation is described

below (Eq. 5). Let i denote the time index and k the factor

index. We define the time-dependent recovery of a factor k

(Ri,k) as the time-dependent ratio of the contribution of this

factor in the offline (offi,k) and in the online (oni,k) solution

multiplied by the time-dependent bulk recovery of WSOA,

Ri,WSOA (Eq. 5):

Ri,k = Ri,WSOA×
offi,k

oni,k
. (5)

Finally, Rk , the median of Ri,k over time, is computed.

Rk reflects not only the bias caused by the water extrac-

tion but also filter sampling/storage effects and differences

between the individual ME-2 solutions. The uncertainty of

Rk depends both on the uncertainty related to the single

offline solution point in time as well as on their spread in

comparison to the online solution. The first can be quanti-

fied by assessing the model error for the offline and online

using the variability of the solution for different model runs.

The offline approach adopted here, including several mea-

surements of the same sample in ME-2 (in general eight

spectra, called repeats, per sample), enables assessing the

performance of the ME-2 solution for different samples and

different factors. For this reason, we have repeatedly calcu-

lated Rk using randomly chosen combinations of (1) differ-

ent ME-2 offline solutions (selected in Sect. 3.4.1 and ref-

erence online solutions (due to the rolling window approach

providing individually optimized periods) and (2) different

repeats of the offline AMS measurements for the same sam-

ples. The result is an ensemble of Rk (for each factor 100 000

Rk values are calculated) displayed in Fig. 10 as probabil-

ity density functions. The range of these distributions re-

flects both model and measurement uncertainties. Note that

this range does not reflect the variability in time of Ri,k .

The retrieved factor recoveries are consistent with our un-

40
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Figure 10. Recoveries Rk for HOA, COA, BBOA, and OOA

(OOA1+OOA2) obtained from the intercomparison of source ap-

portionment results of offline AMS to online ACSM data (Zurich

2011–2012). 100 000 random combinations of offline and online

solutions and randomly chosen offline repeats result in the same

amount of time-independent Rk , which are expressed as probability

density functions (pdf).

derstanding of the chemical nature of the different OA com-

ponents, with primary hydrophobic species less efficiently

extracted than secondary oxygenated species. As expected,

the most hydrophobic component, HOA, has the lowest re-

covery with a median RHOA of 11 % (first and third quar-

tiles of 10 and 12 %). We note that RHOA is lower than the

RCH,sat (see Sect. 3.3), which seems to indicate that these

ions can also originate from more hydrophilic molecules than

those in traffic emissions. COA appears to be moderately

soluble, with RCOA = 54 % (first and third quartiles of 48

and 60 %). BBOA and OOA species were largely recovered

with RBBOA = 65 % (first and third quartiles of 62 and 68 %)

and ROOA = 89 % (first and third quartiles of 87 and 91 %).

Uncertainties in RWSOA are not included in the calculation.

Further, online measurements have a lower size cutoff than

the offline data (600 nm vs. 10 µm), and large accumulation

mode particles are expected to preferentially contain OOA,

due to their extended aging. This might provide a positive

bias to the OOA Rk and a negative bias to Rk of the other

factors.

3.4.3 Quantitative comparison of offline and online OA

factors

We assume that the Rk values calculated in the previous sec-

tion are characteristic properties of the retrieved OA compo-

nents, i.e., that they can be applied throughout the analyzed

offline data sets. This allows us to quantitatively compare

the mass concentrations of offline and online OA factors re-

trieved throughout the year. By applying the Rk obtained to

the offline data set, the source apportionment results (rela-

tive composition) can be corrected. In a second step the re-

sults can be scaled to ambient concentrations. Here OA con-
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Figure 11. Comparison of factor contributions from separate of-

fline (PM10 AMS, two constrained factors: HOA, COA) and online

(PM1 ACSM) source apportionment using ME-2 (traffic (HOA),

cooking (COA), biomass burning (BBOA), and oxygenated organic

aerosol; OOA=OOA1+OOA2). Factor-specific recoveries (Rk)

are applied to the offline contributions. Error bars (in gray) denote

the variability between the different ME-2 solutions and for dif-

ferent recorded spectra per sample for offline and for online only

the first of the two. Panels (a–d) show scatter plots comparing

the absolute contribution of the respective source/OA category for

offline AMS and online ACSM measurements. The color code dis-

tinguishes all factor contributions (bullets, saturated colors) from

winter points (open circle, light colors). The gray dashed line indi-

cates the 1 : 1 line. Panels (e–g) show the correlation with the re-

spective markers: black symbols represent the absolute contribution

of the respective source for the online ACSM measurements and

the colored symbols represent the absolute contribution of the same

source for the offline AMS measurements.

centrations from the ACSM measurements are used. The Rk
corrected offline source apportionment results are compared

to results from the ACSM analysis and respective marker

concentrations (Fig. 11). The displayed error bars reflect the

variability of a factor’s contribution for one offline sample

assessed by the repeats, and also using the different cho-

sen ME-2 solutions provides an estimate of the measurement

and (partial) model uncertainties. Overall the variability of

the offline factor contributions for an individual sample is

0.1 µgm−3. The factors with a lower recovery Rk (HOA and

COA), reveal also bigger differences between the time series

for the offline and online data and thus more scattering. In

Figure 12. Ranges of ratios of the contribution of different factors to

their markers for the offline (corrected with Rk) and online ACSM

source apportionment results. Note that OOA is the sum of OOA1

and OOA2.

general, the variability of the offline factor contributions for

an individual sample increases when moving away from the

1 : 1 line. This is especially apparent for BBOA, where out-

liers with low offline concentrations are much more uncertain

than the points matching the contribution in the online solu-

tion (Fig. 11c, f). All factors but COA (for which no marker

is known) show similar relationships with their marker for

both offline and online data (Fig. 11e–g).

Figure 12 presents the ratio of factor contributions and

their respective marker concentrations for the online and

corrected offline solutions. The medians and spreads of

the distributions are comparable between offline and on-

line solutions. Only for BBOA is the distribution wider

(also seen in Fig. 11). Chirico et al. (2011) and El Had-

dad et al. (2013) report HOA/EC ratios of 0.4, which is

close to the median found in this study (HOAoff/eBC= 0.57

(first and third quartiles of 0.42 and 0.74), HOAon/eBC=

0.64; first and third quartiles of 0.42 and 0.79). The ratio

BBOA/(CO−CO0) is 6.1 (first and third quartiles of 2.2

and 7.8) and 5.7 µgm−3 ppm−1 (first and third quartiles of

4.5 and 8.4) for offline and online, respectively. However, this

ratio has to be considered as a lower limit, as CO may also be

emitted by non-biomass-burning sources (e.g., traffic). While

this ratio is significantly lower than values reported for pre-

scribed/open burns (De Gouw and Jimenez, 2009), values

found here are within the same range as those measured for

modern stoves used in Switzerland (Heringa et al., 2011).

Crippa et al. (2014) reported OOA/NH+4 ratios for 25 sites,

with an average of 2.0 (0.3 for the site with the lowest ra-

tio and 7.3 for the one with the highest). Lanz et al. (2010)

reported values of 5.6 and 1.5 for Zurich in July 2005 and

January 2006, respectively. The values for Zurich during the

period analyzed here are 5.1 (offline, first and third quartiles
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of 3.0 and 11.50) and 5.1 (online, first and third quartiles of

3.0 and 10.5). The examination of these ratios and their com-

parison with previously reported values provide additional

support to the offline AMS methodology and resulting source

apportionments. Indeed, the application of this methodology

to additional filters from other locations where accompany-

ing online AMS measurements are available may aid the fur-

ther constraint of the Rk estimates presented here.

4 Conclusions

In this study, we developed and evaluated an offline method

using an HR-ToF-AMS for the characterization of the chem-

ical fingerprints of aerosol collected on filters (Pall quartz fil-

ters for the current study). Particulate matter on filters is ex-

tracted in water and introduced into the HR-ToF-AMS using

a nebulizer. The method was applied to more than 250 filters

from different seasons in different environments in Europe.

The detection limits depend on the nebulizer and species; for

the current setup for OA and SO2−
4 they are 80 and 25 µgL−1,

respectively. External data are needed for quantification. We

recommend the use of OC analysis from a Sunset OC/EC

analyzer and ion chromatography data for the determina-

tion of the inorganic fraction. Estimates of the recovery of

bulk OA using different reference measurements show that

OA is largely captured (60–91 % depending on the data set).

The obtained organic mass spectra are comparable to online

HR-ToF-AMS spectra, although hydrocarbons are underesti-

mated. Rbulk also shows a good agreement with the WSOA

fraction.

Source apportionment on offline AMS data is conducted

with positive matrix factorization, implemented using the

ME-2 algorithm. We investigate a set of PMF solutions,

for which the different OA components show tight relation-

ships with their respective markers. Thereby, we demonstrate

that organic mass spectral data generated using this method

are suitable for identifying different OA sources as HOA,

COA, BBOA, and OOA. By comparing the results for offline

AMS and ACSM data, we retrieved recoveries of the dif-

ferent OA components (Rk): traffic (RHOA = 0.11), cooking

(RCOA = 0.54), biomass burning (RBBOA = 0.65), and sec-

ondary OA (ROOA = 0.89). Qualitatively, Rk also relates to

the water solubility of the respective source, e.g., primary OA

related to hydrocarbons (e.g., HOA) shows a low Rk caused

by its low water solubility. Such Rk should be determined at

other sites where also additional sources might be important,

providing an assessment of site-to-site variability. Neverthe-

less, these best estimates of Rk may be used to correct source

apportionment results from offline AMS measurements (as

in Huang et al., 2014). When combined with WSOC mea-

surements, one might also be able to assess the applicability

of these values at the site in question by comparing overall

modelled Rbulk to RWSOA. Even though the offline AMS ap-

proach might poorly capture sources exhibiting fast changes,

this method broadens the applicability of the AMS to long-

term size-segregated (PM1, PM2.5, PM10) measurements (in

contrast to online campaigns of typically 1 month) for ex-

tended monitoring networks.
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