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Abstract. Within the Global Climate Observing System

(GCOS) Reference Upper-Air Network (GRUAN) there is

a need for an assessment of the uncertainty in the inte-

grated water vapour (IWV) in the atmosphere estimated from

ground-based global navigation satellite system (GNSS) ob-

servations. All relevant error sources in GNSS-derived IWV

are therefore essential to be investigated. We present two ap-

proaches, a statistical and a theoretical analysis, for the as-

sessment of the uncertainty of the IWV. The method is valu-

able for all applications of GNSS IWV data in atmospheric

research and weather forecast. It will be implemented to the

GNSS IWV data stream for GRUAN in order to assign a

specific uncertainty to each data point. In addition, specific

recommendations are made to GRUAN on hardware, soft-

ware, and data processing practices to minimise the IWV un-

certainty. By combining the uncertainties associated with the

input variables in the estimations of the IWV, we calculated

the IWV uncertainties for several GRUAN sites with differ-

ent weather conditions. The results show a similar relative

importance of all uncertainty contributions where the uncer-

tainties in the zenith total delay (ZTD) dominate the error

budget of the IWV, contributing over 75 % of the total IWV

uncertainty. The impact of the uncertainty associated with the

conversion factor between the IWV and the zenith wet delay

(ZWD) is proportional to the amount of water vapour and in-

creases slightly for moist weather conditions. The GRUAN

GNSS IWV uncertainty data will provide a quantified con-

fidence to be used for the validation of other measurement

techniques.

1 Introduction

In the hydrological cycle, water vapour is an important vari-

able for transferring heat energy from the Earth’s surface to

its atmosphere and in moving heat around the Earth. Mean-

while, water vapour is a very important greenhouse gas due

to its ability to absorb long-wave thermal radiation emit-

ted from the Earth’s surface. Hence, the atmospheric water

vapour is very important for the Earth’s climate system, and

its variability is a key to understanding the hydrological cy-

cle. A variety of systems exist for measuring the atmospheric

integrated water vapour (IWV), e.g. radiosondes (Ross and

Elliott, 1996), microwave radiometry (Elgered, 1993), very

long baseline interferometry (VLBI) (Heinkelmann et al.,

2007), and global navigation satellite systems (GNSSs) (Be-

vis et al., 1992). Standing out from others, GNSS observa-

tions from the ground can be made under in principle all

weather conditions with a high temporal resolution (a few

minutes), and its spatial resolution continuously improves

when more continuously operating stations are installed.

Therefore, using ground-based GNSS measurements to de-
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rive IWV has drawn a lot of scientific attention and has been

investigated (e.g. Wang et al., 2007; Vey et al., 2010; Ning

et al., 2013). In order to interpret GNSS measurements cor-

rectly and draw valid conclusions on the quality of the re-

sulting IWV estimates, the uncertainty of the GNSS-derived

IWV must be carefully evaluated and quantified.

The procedure for the estimation of the atmospheric IWV

from GNSS measurements begins with the refraction of

the GNSS signals (e.g. GPS signals transmitted at frequen-

cies L1= 1.575 GHz and L2= 1.228 GHz) when passing

through the Earth’s neutral atmosphere. The refraction in-

troduces an additional delay to the primary observable, the

signal propagation time. The propagation delay can be esti-

mated in the GNSS data processing, together with other pa-

rameters such as coordinates, as a zenith total delay (ZTD)

which is normally expressed in units of length using the

speed of the light in vacuum. ZTD is separated into two parts:

the zenith hydrostatic delay (ZHD) and the zenith wet de-

lay (ZWD). The ZHD can be determined from surface pres-

sure measurements (Davis et al., 1985), and the ZWD de-

pends on the amount of water vapour in the column of air,

i.e. the IWV, through which the signal passes and can be es-

timated from the data themselves.

All GNSS measurements are subject to error sources that

influence the uncertainty of the estimated ZTD which are

converted from the slant delays using mapping functions

(MFs; Boehm et al., 2006). Since the slant delay is referring

to the delay in the slant range distance between the GNSS

receiver and a satellite, the satellite orbit errors will propa-

gate to the slant delay and the resultant ZTD. The accuracy

of the ZHD depends on the accuracy of the ground pressure.

Additionally, the conversion from the ZWD to the IWV will

add uncertainties, e.g. due to imperfect determination of the

mean temperature of the atmosphere. All those uncertain-

ties shall be included when we calculate the final uncertainty

of the GNSS-derived IWV. Errors in GNSS measurements

can be random or systematic, or more commonly a mixture

of both, depending on the timescale studied. Since the ex-

pected (mean) value of random errors is zero, the impact of

such errors is reduced as the number of measurements in-

creases. Systematic errors cannot be averaged out as the time

series becomes longer. They can however change at a specific

time epoch. For example, a change of the GNSS antenna or

its environment may introduce such an offset. Systematic er-

rors may also change slowly with time; e.g. the impact of

signal multipath at a GNSS site may vary due to growing

vegetation (Pierdicca et al., 2014).

Depending on different applications, the requirement on

the accuracy of the estimated IWV varies. For the forecast-

ing application the demand is mainly the timing of moving

air masses, while the accuracy of individual IWV estimate

and the IWV biases is of less importance. Therefore, less

accurate real-time orbit estimation is accepted in forecast-

ing applications. For climate research, it is crucial to have a

high accuracy with the smallest biases possible in order to

obtain the absolute value over a long timescale. In this case,

the final GNSS orbit estimation with the highest accuracy is

necessary. The focus of this study is to discuss and assess

the accuracy of the IWV derived from ground-based GNSS

measurements obtained from post-processed data and mainly

used for climate research.

Many studies have investigated the uncertainty of the

GNSS-derived IWV either by comparing the GNSS IWV

with data obtained from other independent techniques

(e.g. Pacione et al., 2002; Rózsa, 2014) or by combining

the uncertainties of the input variables used in order to ob-

tain the uncertainty of the GNSS IWV (e.g. Wang et al.,

2007; Ning et al. (2013); and Van Malderen et al., 2014).

In order to conduct a complete and comprehensive investi-

gation on the uncertainty of the GNSS IWV, the two meth-

ods are both discussed in this study in order to develop a

method which is applicable to each individual data point.

The uncertainty method will be implemented to the GNSS

IWV data stream for the GCOS (Global Climate Observing

System) Reference Upper-Air Network (GRUAN). The ob-

jectives of GRUAN are to provide long-term, high-quality

upper-air climate records, to constrain/calibrate data from

more spatially comprehensive global observing systems (in-

cluding satellites) and to measure a large suite of co-related

climate variables (Bodeker et al., 2015). One of the most im-

portant objectives of GRUAN is to collect reference obser-

vations. Each GRUAN reference observation is required to

provide a comprehensive uncertainty analysis (Immler et al.,

2010). Ground-based GNSS IWV was identified as a prior-

ity 1 measurement for GRUAN. This study is intended to

develop methods to calculate GNSS IWV uncertainties for

each data point and to work with the GRUAN GNSS data

processing centre, the German Research Centre for Geo-

sciences (GFZ), to incorporate them into the GRUAN GNSS

data stream.

The paper is structured as follows. Sections 2 and 3 dis-

cuss the two uncertainty analyses: a statistical and a theo-

retical one. A sequence of subsections is given in Sect. 3 in

order to describe each of the errors which contributes to the

final total uncertainty of the GNSS-derived IWV. In the last

subsection, the individual error sources are then summarised

into an overall error budget in order to obtain the final uncer-

tainty of the GNSS-derived IWV. The conclusions are given

in Sect. 4.

2 Statistical analysis

A statistical analysis (Moses, 1986) can be used to evalu-

ate the uncertainty of the GNSS-derived IWV if indepen-

dent estimates are available from at least three co-located

techniques, measuring the same true variability of the IWV.

The individual IWV estimates from techniques A and B are

expressed as
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Table 1. ZWD and corresponding IWV uncertainties given by a statistical analysis using observations from Onsala on the Swedish west

coast.

Standard deviationa
[mm] Mean differencea

[mm] εb
ZWD Mc

ZWD σ d
ZWD σ e

V1
σ f

V2

GNSS VLBI WVR GNSS VLBI WVR [mm] [mm] [mm] [kg m−2
] [kg m−2

]

VLBI absolute offset +2.0 mm

GNSS – 5.1 6.2 – −3.4 −0.3 3.0 −1.4 3.3 0.51 0.52

VLBI 5.1 – 6.8 3.4 – 3.1 4.1 2.0g 4.6 0.70 0.71

WVR 6.2 6.8 – 0.3 −3.1 – 5.4 −1.1 5.5 0.85 0.86

VLBI absolute offset 0.0 mm

GNSS – 5.1 6.2 – −3.4 −0.3 3.0 −3.4 4.5 0.70 0.71

VLBI 5.1 – 6.8 3.4 – 3.1 4.1 0.0g 4.1 0.63 0.64

WVR 6.2 6.8 – 0.3 −3.1 – 5.4 −3.1 6.2 0.96 0.97

VLBI absolute offset −2.0 mm

GNSS – 5.1 6.2 – −3.4 −0.3 3.0 −5.4 6.2 0.95 0.96

VLBI 5.1 – 6.8 3.4 – 3.1 4.1 –2.0g 4.6 0.70 0.71

WVR 6.2 6.8 – 0.3 −3.1 – 5.4 −5.1 7.4 1.14 1.15

a The corresponding values were taken from Table 2 (synchronisation to all data) in Ning et al. (2012). b The uncertainty of the ZWD only addressing the

random errors. c The bias in the ZWD estimates for each technique. d The total uncertainty of the ZWD addressing both the random and systematic errors. e The

uncertainty of the IWV given by dividing σZWD by 6.5 (a mean value of the conversion factor Q, given by radiosonde measurements, for the Swedish west

coast). The uncertainty of Q was neglected. f The uncertainty of the IWV calculated in a similar way as σV1 but taking the uncertainty of 0.1 kg m−2 for Q into

account (σV2 =

√
σ2

V1
+ 0.12). The uncertainty of the ground pressure is insignificant since the ground measurements, accurate to ±0.1 hPa, were used.

g Assumed values in order to relate the comparisons to an absolute scale.

VA(i) = Vi +MA+ εA(i), (1)

VB(i) = Vi +MB + εB(i), (2)

where Vi is the true value of the IWV for the epoch i;MA and

MB are the biases (the systematic error) for each technique,

respectively; and εA(i) and εB(i) are the random errors. The

observed standard deviation (SD) of the IWV difference be-

tween techniques A and B based on N simultaneously sam-

pled data points can be expressed as

SA−B =

√√√√ 1

N − 1

N∑
i=1

(
VA(i)−VB(i)−

(
VA−VB

))2
, (3)

where the overline denotes the mean value. From Eqs. (1)

and (2) we have

VA = V +MA+ εA, (4)

VB = V +MB + εB , (5)

where V is the mean value of the true IWV. If we combin

Eqs. (1), (2), (4), and (5) with Eq. (3), we get

SA−B =

√√√√ 1

N − 1

N∑
i=1

(
εA(i)− εB(i)− εA+ εB

)2
. (6)

For a long time period of measurements giving a zero

mean of random errors (εA= εB = 0), and assuming that εA
and εB are uncorrelated, Eq. (6) can be expressed as

SA−B =

√
ε2
A+ ε

2
B . (7)

After including the third technique C, we will have two

more equations for SD:

SA−C =

√
ε2
A+ ε

2
C, (8)

SB−C =

√
ε2
B + ε

2
C, (9)

where the ε terms can be solved using Eqs. (7) to (9).

Since the ε terms only address the random errors, in or-

der to determine the total uncertainty of the IWV, caused by

both random and systematic errors, the biases (MA and MB )

for two techniques also need to be derived. The mean IWV

difference between two techniques is expressed as

1

N

N∑
i=1

(
VA(i)−VB(i)

)
=

1

N

N∑
i=1

(
V(i)+MA+ εA(i)−V(i)−MB − εB(i)

)
=MA+ εA−MB − εB , (10)

where the output of Eq. (10) is highly dependent on the

length of the timescale of measurements studied. For a short
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time period where the length of measurements is not long

enough to average out random errors, Eq. (10) gives a mix-

ture of random and systematic errors. For a long time pe-

riod giving a zero mean of random errors, the equation gives

MA−MB . A typical formal error of the GPS ZTD is around

3 mm, which approximately corresponds to a formal error of

0.5 kg m−2 in IWV. Assuming that we have one data point for

each day, we need at least 2 years of data in order to reduce

the formal error below 0.001 kg m−2.

From Eq. (10), for a long time period of measurements, the

IWV bias (M) for one technique can only be obtained when

it is compared to a technique with a known IWV bias or no

bias at all. After obtaining the values for both ε and M , the

total uncertainty of the IWV can be determined:

σV =

√
ε2+M2. (11)

One example of a statistical analysis can be found in Ning

et al. (2012). The authors presented the results from com-

parisons of 10-year-long time series of ZWD, estimated us-

ing GNSS, geodetic VLBI, and a water vapour radiome-

ter (WVR). These three techniques are co-located at the

Onsala Space Observatory separated by less than 100 m.

Since the VLBI antenna has a very high directivity, the

VLBI-derived ZWD is not affected by signal multipath.

Meanwhile, no instrument changes have occurred on the On-

sala VLBI antenna for the last 30 years. Therefore, the VLBI-

derived ZWD for the 10-year-long time period can be con-

sidered as having only a small constant bias. Using Eqs. (7)

to (11), we calculated total uncertainties in the ZWD and in

the corresponding IWV, for each technique after assuming a

bias of+2, 0, and−2 mm in the VLBI-derived ZWD. The re-

sults are summarised in Table 1, where, depending on the

assumed VLBI bias, the uncertainties for the GNSS-derived

IWV are around 0.5, 0.7, and 1 kg m−2, respectively.

Since all known biases must be removed before derivation

of the uncertainty, an assumption is made about no bias in

another measurement technique. For most of the GRAUN

sites, measurements simultaneously acquired from at least

three co-located independent techniques are difficult. In this

case, the next approach to calculate GNSS-derived IWV un-

certainty is more useful.

3 Theoretical analysis

A theoretical analysis is desired where the total uncertainty

of the GNSS-derived IWV (σV ) is calculated from the uncer-

tainties associated with the input variables according to the

rule of uncertainty propagation for uncorrelated input quan-

tities. The equation used for a theoretical analysis is (Immler

et al., 2010)

σV =

√√√√ N∑
i=1

(
∂f (v1, . . .,vN )

∂vi
σi

)2

, (12)

where f (v1, . . . , vN ) is the functional relationship between

the GNSS-derived IWV and the input variables; σi is the one

sigma uncertainty of the corresponding variable.

The GNSS-derived IWV, denoted by V , is converted from

the ZWD, denoted by `zw, via the conversion factor Q:

V =
`zw

Q
, (13)

where the ZWD is given by the subtraction of the ZHD, de-

noted by `zh, from the ZTD, denoted by `zt :

`zw = `
z
t − `

z
h. (14)

Combination of Eqs. (13) and (14) gives the functional re-

lationship

V =
`zt − `

z
h

Q
. (15)

Insertion of Eq. (15) into Eq. (12) gives the expression for

the propagation of the uncertainties from different sources to

the total IWV uncertainty:

σV =

√(
σZTD

Q

)2

+

(
σZHD

Q

)2

+

(
V
σQ

Q

)2

. (16)

In order to calculate σV , we first need to study and deter-

mine values for Q, σZTD, σZHD, and σQ.

3.1 Error budget of the GNSS-derived ZTD

The fundamental observable of the GNSS technique is the

propagation time of a signal, transmitted from the GNSS

satellites, passing through the Earth’s atmosphere to the re-

ceivers (ground-based). When we consider the error budget

of the GNSS-derived ZTD, errors from several parts need to

be taken into account, which will be discussed in this section.

3.1.1 GNSS satellite orbits

Errors in the estimates of the satellite coordinates will propa-

gate directly to the estimates of the GNSS parameters. If we

use the precise point positioning (PPP) strategy to process the

data obtained from a permanent GNSS site where the site co-

ordinates are usually kept fixed (one estimate per day), elim-

inate the ionosphere delay to the first order, and use the final

clock product from the International GNSS Service (IGS),

the orbit error is compensated by the ZTD, receiver clock,

and ambiguity parameters (Douša, 2010):

cos9iAσXiRad
+ sin9iAσXiTan

=
1

cosziA

σZTD+ σTA + λf σNi , (17)

with

9iA = arcsin
(

sinziARA/R
i
)
, (18)
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where ziA is the zenith angle seen from the ground receiver A

to the satellite i; RA and Ri are the distances from the top

of the receiver to the geocentre and the geometrical distance

from the satellite to the geocentre, respectively; σXiRad
and

σXiTan
are the radial and the tangential orbit errors, where the

tangential orbit error is expressed by two vectors: along-track

and cross-track; σZTD is the ZTD error; σTA is the receiver

clock error; σNi is the ambiguity error; and λf is the wave-

length of the GNSS signal. Based on Eq. (17), Fig. 1 depicts

the impact of different components of the orbit errors on the

estimated ZTD as the function of zenith angle, and the im-

pact factor indicates how the ZTD error correlates with the

orbit error. The factor was calculated using Eqs. (17) and (18)

and took the unit (1) for the orbit error. It is evident that the

radial orbit error dominates the resulting ZTD error and that

the maximum impact occurs when the satellite is in the zenith

direction. The maximum impact factor due to the tangential

orbit errors is 0.13 and is observed at a zenith angle of 45◦.

Figure 1 was produced by ignoring the parts for the re-

ceiver clock error and the ambiguity error in Eq. (17) and

by assuming that the estimated ZTD compensates for all

the radial and tangential orbit errors. In order to determine

how many of the orbit errors will be mapped into the esti-

mated ZTD when the two other parameters (receiver clock

and ambiguity) are estimated, we carried out simulations for

three GRUAN sites. These are LDB0 (Lindenberg, 14.1◦ E,

52.2◦ N), LDRZ (Lauder, 169.7◦ E, −45.0◦ N), and NYA2

(Ny-Alesund, 11.9◦ E, 78.9◦ N). We first processed the GPS

data for the year 2014 using a PPP strategy. For each site,

we calculated satellite-receiver range based on the estimated

site coordinate and the satellite coordinates provided by IGS

for each epoch where the corresponding estimated ZTD and

receiver clock error from the PPP processing are added back

to the calculated range together with known ambiguities. Fi-

nally, for each satellite-receiver range we added the range

error projected from the corresponding orbit error which was

calculated by the left part of Eq. (17). The ZTD, receiver

clock, and the ambiguity parameters were estimated again

using PPP and compared to the old PPP solution in order to

determine how the orbit errors map to the different estimated

parameters.

Table 2, taken from http://igscb.jpl.nasa.gov/mail/igsmail/

2010/msg00001.html, presents the orbit accuracy for each

component using the IGS reprocessed orbit product, which

should be comparable to the operational final orbits. The

mean and standard deviation were calculated based on satel-

lite position repeatability for each pair of consecutive days.

For the simulation, we used constants 15 and 38 mm for the

radial and the tangential (square root of along and cross) orbit

errors, respectively.

Figure 2 depicts results for the three GRUAN sites where

the ZTD errors from the simulation for one day (1 June 2014)

are plotted along with two other theoretical ZTD errors. One

is calculated by Eq. (17) but only taking the radial orbit errors

Figure 1. The impact of the radial and the tangential orbit errors in

the estimated ZTD.

Table 2. Accuracy of IGS reprocessed orbits for one day∗ (from

http://igscb.jpl.nasa.gov/mail/igsmail/2010/msg00001.html).

Along Cross Radial

track track

[mm] [mm] [mm]

Mean −0.2 −1.2 0.4

Standard deviation 26.0 27.2 15.1

∗ Since the day-boundary differences computed in the table from

http://igscb.jpl.nasa.gov/mail/igsmail/2010/msg00001.html

involve orbits for two consecutive days, the inferred orbit

uncertainty for a single day should be smaller by
√

2, which is

presented here.

into account and assuming that all orbit errors are compen-

sated by the ZTD. The other was calculated in the same way

but only taking the tangential orbit errors into account. The

results indicate that most portion of the orbit errors (> 90 %)

are compensated by other two parameters (receiver clock and

ambiguity). This is due to the fact that major part of the orbit

errors in the satellite-receiver range is constant and is there-

fore to a large extent absorbed by the estimated ambiguities

and the receiver clock parameters (Douša, 2010). The mean

simulated ZTD errors vary from 1.5 to 3 mm, which show

a higher correlation (∼ 0.60) to the theoretical ZTD errors

caused by the radial orbit errors than the one caused by the

tangential orbit errors. The larger uncertainties, seen for the

site LDB0 and after hour 15, are caused both by the larger

radial orbit errors and by a worse geometry of the satel-

lites (smaller number of satellites visible). Similar results are

seen (not shown) if we perform the simulation for 1 year of

data for the three sites. The mean ZTD simulated errors are

around 3 mm for the sites LDB0 and LDRZ, while the one

for the site NYA2 is 1.5 mm. The corresponding standard de-

viations are around 1 and 0.4 mm, respectively.

3.1.2 Ionospheric delay

The Earth’s ionosphere contains electrons in sufficient quan-

tity to significantly delay the propagation of GNSS signals.

www.atmos-meas-tech.net/9/79/2016/ Atmos. Meas. Tech., 9, 79–92, 2016
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Figure 2. The ZTD error due to orbit errors for three GRUAN sites:

(a) LDB0, (b) LDRZ, and (c) NYA2, where the blue dots show the

simulated ZTD error, the red circles show the theoretical ZTD error

caused only by the radial orbit error, and the green squares show the

theoretical ZTD error caused only by the tangential orbit error.

The ionospheric delay is dependent on the total amount of

free electrons along the propagation path, named total elec-

tron content (TEC), and on the carrier frequency of GNSS

signals. Normally, in order to remove the ionospheric impact,

an ionosphere-free linear combination is used:

8ion_free =
f 2

1

f 2
1 − f

2
2

81−
f 2

2

f 2
1 − f

2
2

82, (19)

where 81 and 82 are carrier phase measurements from two

different frequencies (e.g. L1 and L2 for GPS). Since this

virtual measurement can only eliminate the ionospheric de-

lay to the first order (∼ 99.9 % of the total delay), smaller

contributions from higher-order terms remain, which how-

ever have more dramatic impact during strong solar activi-

ties, e.g. ionospheric storms (Pireaux et al., 2010).

Fritsche et al. (2005) carried out an investigation on the

impact of including corrections of the ionospheric delay for

higher-order terms on GNSS estimates using a global net-

work, and with a focus on the solar maximum between 2001

and 2003. The authors found a linear dependency between

the difference in the estimated vertical position and the peak

electron densities (varying approximately from 2 to 12 mm

when the daily means of the TEC unit increase from 25

to 175) when no corrections were applied for second- and

third-order terms. The ZTD difference is approximately a

factor of 3 smaller than the vertical position difference (Hill

et al., 2009). The corresponding ZTD difference is then from

0.6 to 4 mm. This is consistent with the result reported by

Fritsche et al. (2005), where a ∼ 2 mm difference in the

ZTD was observed when the TEC unit (a TEC unit equals

1016 electons m−2) reaches 150. However, over long time pe-

riods the impact on average values is less. A study was per-

formed by Petrie et al. (2010) for the time period from 1995

to 2008. Using approximately 60 globally distributed GNSS

sites, they found that the mean difference in the vertical com-

ponent, after applying second- and third-order terms, was in

the range from −0.3 to 0.5 mm (corresponding to the ZTD

difference from−0.1 to 0.2 mm) for sites with data spanning

at least 10 years. The result indicates that the impact on the

ZTD from the higher-order terms is insignificant over a long

time series.

3.1.3 Signal multipath

Differences in the ZTD caused by signal multipath depend

strongly on the elevation angle of the observation and are

different from site to site due to a changing electromagnetic

environment. In order to demonstrate the impact of multi-

path effects, we carried out analyses using different elevation

cutoff angles in the PPP data processing for three GRUAN

sites (LDB0, LDRZ, and NYA2) together with two other

sites: LDB2 (14.1◦ E, 52.2◦ N) and POTS (13.1◦ E, 52.4◦ N).

One month of GPS data acquired from June 2014 were pro-

cessed using four different elevation cutoff angles: 5, 10, 15,

and 20◦. We calculated the monthly mean of the estimated

ZTD for each solution relative to the value from the solu-

tion using a 5◦ cutoff angle. The results are shown in Fig. 3,

where the most significant elevation-dependent ZTD differ-

ence is seen for the site LDB0, while the least is given by

the site LDRZ. The results indicate that the impact of mul-

tipath effects is highly site-dependent. This is further exam-

ined by the two co-located sites: LDB0 and LDB2, which

are both located at Richard Aßmann Observatory of the Ger-

man Weather Service, Lindenberg, Germany, with a base-

line less than 100 m. The photographs of the two sites are

given in Fig. 4. The two sites use two different antennas. The

one used for LDB2 is LEICA25, which is a choke ring an-

tenna, while the one used for LDB0 is a JAV_GRANT_G3T
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Figure 3. The impact of the elevation cutoff angle on the estimated

ZTD for five GRUAN sites. The result obtained from the 5◦ eleva-

tion cutoff solution is used as the reference, which however does not

necessarily mean that it is the most accurate. Ideally, if all models

are correct, the result shall not depend on the cutoff angle at all.

(www.ngs.noaa.gov/ANTCAL/main.jsp). The choke ring an-

tennas are designed to reduce multipath signals. The result

for LDB2 shows fewer multipath effects than the one for

LDB0 (see Fig. 4). However, the vertical metal rod beside

the LDB2 may cause multipath, while the flat surface below

the antenna may also cause systematic effects. Furthermore,

the LDB2 antenna is covered by a plastic radome, which may

also introduce elevation-dependent impacts (see discussion

in next section).

A similar investigation on the multipath effects was car-

ried out by Ning et al. (2011) using GNSS sites at the On-

sala Space Observatory. Using nearly 80 days of GNSS data,

they found an IWV difference of 1.7 mm (corresponding to

∼ 11 mm in ZTD) between a 5◦ solution and a 20◦ solu-

tion. Such a difference can be significantly reduced by using

microwave-absorbing material, e.g. ECCOSORB®, attached

below the antenna plane.

Signal multipath is highly dependent on the local environ-

ment and can vary in time, e.g. due to changes in soil mois-

ture (Larson et al., 2010) and growing vegetation (Pierdicca

et al., 2014). Therefore, it is difficult to have a general model

to quantify the multipath effect on the estimated ZTD. For all

GRUAN GNSS sites, a microwave-absorbing material, such

as ECCOSORB, is highly recommended to be installed to

the antenna in order to minimise the impact of the multipath

effects. In addition, a careful and continuous documentation

of each site is necessary not only for the change of antennas,

radomes, and receivers but also for changes in the environ-

ment close to the antenna, e.g. a growing vegetation and/or

the cutting of trees.

3.1.4 Antenna-related errors

In order to obtain the highest accuracy in the ZTD estimates,

antenna-related errors, i.e. phase centre variations (PCVs)

and radome effects, need to be removed. Therefore, an ab-

solute calibration of the PCV for all the GNSS satellite-

transmitting antennas and the ground antenna (Schmid et al.,

Figure 4. Photographs of two GRUAN sites: (a) LDB2 and

(b) LDB0.

2007) is necessary to be implemented in the GNSS data pro-

cessing. The difference in the ZTD estimated with and with-

out applying the PCV correction can vary from 2 to 10 mm

(Byun and Bar-Sever, 2009; Thomas et al., 2011). Nowa-

days PCV corrections are normally always applied in order

to eliminate this error source.

To avoid the accumulation of snow and for general pro-

tection, many GNSS antennas are equipped with radomes.

Different shapes of radomes yield different impacts on the

phase of the GNSS signal. Emardson et al. (2000) found that

the IWV offset introduced by a conically shaped radome can

be up to 1 mm (about 6.5 mm in ZTD). A smaller impact (less

than 2 mm in ZTD) was observed by Ning et al. (2011) from

the use of a hemispheric radome, which is recommended if a

GRUAN GNSS site is going to install a radome. Ning et al.

(2011) also found that the impact of the radome depends on

the different geometries of the electromagnetic environment

of the antenna, as well as on the elevation cutoff angle for

the observations used in the analysis. Therefore, applying a

radome calibration in the data processing is necessary in or-

der to reduce the radome impacts. This is done by using cal-

ibration tables provided and updated by IGS which include a

set of calibrations for a particular antenna and for a particular

radome.

3.1.5 Mapping functions

In GNSS data processing, the slant path delay is converted to

the equivalent ZTD (sum of the ZHD and the ZWD) using

MFs:

`zt =mh(ε) · `
z
h+mw(ε) · `

z
w, (20)

where ε is the elevation angle seen from the ground re-

ceiver to the satellite; mh and mw are the hydrostatic

and the wet mapping functions, respectively. Stoew et al.

(2007) evaluated the accuracy of the new mapping func-

www.atmos-meas-tech.net/9/79/2016/ Atmos. Meas. Tech., 9, 79–92, 2016

www.ngs.noaa.gov/ANTCAL/main.jsp


86 T. Ning et al.: The uncertainty of the GNSS-derived IWV

Table 3. Mean and standard deviation (σ ) of the slant delay errors∗.

NMFh NMFw IMFh IMFw

Elevation Mean σ Mean σ Mean σ Mean σ

angle [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

5◦ 10.6 24.87 −3.3 3.91 1.0 13.68 −2.5 1.87

7◦ 3.5 9.60 −1.0 1.20 0.4 4.50 −0.8 0.65

10◦ 0.7 2.30 −0.2 0.21 0.1 0.85 −0.1 0.13

15◦ 0.0 0.21 −0.0 0.01 0.0 0.05 −0.0 0.00

a Corresponding values for M0, σ0, εM , and εσ used in Eqs. (21) and (22) were taken from Table 1 in Stoew et al. (2007).

tions (NMFs) (Niell, 1996) and the improved mapping func-

tions (IMFs) (Niell, 2000) using radiosonde data. The result-

ing mean (M) and standard deviation (σ ) of the slant delay

errors were modelled by

M(ε)=M0 · e
−ε/εM , (21)

σ(ε)= σ0 · e
−ε/εσ . (22)

Values calculated from Eqs. (21) and (22) for four eleva-

tion angles (5; 7; 10; 15◦) are summarised in Table 3. It is

clear that the accuracy of MFs is highly elevation-dependent

and that the MF-induced errors on slant delays are insignifi-

cant when the elevation angle gets larger.

Currently the most popular and accurate MF is the Vienna

Mapping Function 1 (VMF1) since it can capture the short-

term variability of the atmosphere by utilising data from a nu-

merical weather model (Boehm et al., 2006). Zus et al. (2015)

carried out an investigation on the accuracy of the VMF1 by

comparing a MF called GFZ-VMF1, which is based on the

VMF1 concept, with a direct mapping approach. They found

that, if a GPS site is located 2 km above the MF model orog-

raphy and if a low elevation is used (3◦), the error on the esti-

mated vertical component can be up to 1 cm (corresponding

to approximately 3 mm in ZTD). They also pointed out that it

is difficult to distinguish the MF-caused error from a variety

of other errors presented at the low elevation angles, e.g. poor

or missing antenna PCV models and multipath. Given this

fact, for the GRUAN data products, instead of quantifying

the ZTD uncertainty from the applied MF, we may choose

a slightly higher elevation cutoff angle, i.e. > 10◦, for the

GPS data processing in order to significantly reduce the MF-

induced error.

3.1.6 Summary of the ZTD uncertainty

All GRUAN GNSS data will be processed by GFZ using its

inhouse GNSS software package, Earth Parameter and Orbit

determination System (EPOS) (Deng, 2012), where only the

PPP approach will be implemented in the data processing.

The formal error, provided for each time epoch by the esti-

mation process of PPP, is only dependent on the amount of

carrier phase measurements and the constellation of the satel-

lites for a given site (Byun and Bar-Sever, 2009). In order

to take systematic errors in the GPS orbit into account, the

method discussed in Sect. 3.1.1 will be applied and the cal-

culated ZTD error for each time epoch will be added to the

corresponding formal error. In addition, in order to reduce

the ZTD uncertainty due to other factors, i.e. the ones dis-

cussed in Sects. 3.1.2–3.1.5, the following conditions need

to be fulfilled in the GPS data processing:

– Corrections for the second order of the ionospheric de-

lay are applied.

– Final orbit/clock products from IGS or equivalent are

used.

– Absolute satellite and ground antenna PCV models and

radome calibrations are implemented. A hemispheric

radome and an ECCOSORB plate are recommended.

– Signal multipath effects need to be minimised either by

implementing microwave-absorbing material to the an-

tenna or by locating the GNSS antenna in an favourable

place.

– Use an elevation cutoff angle of 10◦ or higher. A higher

elevation cutoff angle will degrade the geometry and in-

crease the formal error of the ZTD estimate. However,

this may still be desired for applications where long-

term trends are estimated and systematic errors such as

signal multipath rather than formal errors are the limit-

ing factor (Ning and Elgered, 2012).

The procedure to determine the total ZTD uncertainty for

each time epoch is described as follows. For each GRUAN

site, the daily GPS data will be processed first using a PPP

strategy in order to obtain the ZTD estimates and correspond-

ing formal errors together with receiver clock errors. There-

after, the estimated ZTD and receiver clock errors will be

used in a simulation in order to estimate the ZTD errors

due to the orbit errors. Then the root sum square (RSS) of

the simulated ZTD error and the corresponding formal error

gives total ZTD uncertainty for each time epoch. Figure 5 de-

picts the estimated ZTD for one day (1 June 2014) for three

GRUAN sites together with the corresponding calculated to-

tal ZTD uncertainty for each time epoch (5 min). The results
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Figure 5. The time series of the estimated ZTD and the correspond-

ing total ZTD uncertainty, for one day (1 June 2014) and for the

three GRUAN sites: LDB0, LDRZ, and NYA2.

show that the daily mean ZTD uncertainty is 3.8 mm for the

site LDB0, while the values for the sites LDRZ and NYA2

are 3.7 and 3.0 mm, respectively. The result also indicates

that the ZTD uncertainty is not correlated with the magnitude

of the ZTD. These values are consistent with the claimed 1σ

uncertainty (4 mm) by IGS’s final ZTD product.

3.2 Uncertainty of the ZHD

The ZHD for a given GNSS site can be calculated using the

ground pressure

`zh = (2.2767± 0.0015)
P0

f (λ,H)
, (23)

Figure 6. Values of f (λ, H) calculated from different latitudes and

from four different site heights.

Figure 7. Differences in the surface pressure measured by three dif-

ferent barometers.

where the constant 2.2767 is calculated from the refractivity

of dry air, the universal gas constant, and an effective value of

the acceleration due to gravity at the site (Bevis et al., 1994).

The resulting uncertainty includes the different contributions

which are assumed to be uncorrelated. In Eq. (23), ZHD is in

units of millimetres (mm), P0 in hectopascals (hPa), and

f (λ,H)=
(

1− 2.66× 10−3 cos(2)− 2.8× 10−7H
)
, (24)

where λ and H are the site latitude in degrees and the height

above the geoid in metres, respectively. The expression f (λ,

H) is used to model the variation of the acceleration due

to gravity in the ZHD. An example, for different latitudes

and heights, is shown in Fig. 6. The uncertainties in the lat-

itude and the height are negligible. The uncertainty of the

ZHD is mainly determined by the uncertainty in the ground

pressure (σP0
) and the uncertainty of the constant (σc). Using

Eq. (12), we have the uncertainty of the ZHD in millimetres:

σZHD =

√(
2.2767σP0

f (λ,H)

)2

+

(
P0σc

f (λ,H)

)2

. (25)

All GRUAN sites should be equipped with surface barom-

eters which provide accuracies much better than 0.5 hPa. One

example is shown in Fig. 7, which depicts the pressure dif-

ferences between three barometers at the Onsala Space Ob-

servatory, Sweden. The barometer from the Swedish Mete-

orological and Hydrological Institute (SMHI) was used as a

reference. The absolute accuracy of the SMHI barometer is
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better than 0.2 hPa. It has been calibrated approximately ev-

ery second year. Additionally the SMHI barometer is trace-

able to the SI unit within 0.1 hPa. The small annual variations

observed from the Setra barometer are likely due to a sen-

sor sensitivity to the temperature. The uncertainty of surface

pressure measured by GRUAN barometers will be estimated

using uncertainty estimation protocols presented in Immler

et al. (2010). It will be used to estimate the ZHD uncertainty

using Eq. (25).

For the GNSS sites which are not equipped with barom-

eters, other methods have been investigated. Wang et al.

(2007) found an average root mean square (rms) difference of

1.7 hPa given by comparisons between the ground pressure

interpolated, both spatially and temporally, from nearby sur-

face synoptic observations and local ground measurements at

48 globally distributed GNSS sites covering an 8-year time

period. Similar comparisons were carried out by Heise et

al. (2009), but using the interpolated ground pressure from

the ECMWF meteorological analysis at more than 60 global

GNSS sites. Using 1 year of data, they obtained a better

agreement with an overall mean bias and a standard devia-

tion of 0.0 and 0.9 hPa, respectively. We did a similar test,

but only for the GNSS site at the Onsala Space Observatory,

using over 14 years of data. The result shows a mean bias

and a standard deviation of 0.1 and 0.6 hPa, respectively. It

should be pointed out here that, if we use the ground pressure

obtained from numerical models interpolated to the height of

the GNSS site, the uncertainty of the GNSS height will have

an impact on the derived ZHD. Snajdrova et al. (2005) found

that 10 m of height difference approximately causes a differ-

ence of 3 mm in the ZHD.

3.3 Uncertainty of the conversion factor Q

The conversion factor Q is defined by

Q= 10−6ρwRw

(
k′2+

k3

Tm

)
, (26)

where ρw is the density of liquid water, in units of kg m−3;

Rw is the specific gas constant for water vapour, in units

of J kg−1 K−1); the values of k3 and k′2 can be esti-

mated from laboratory experiments, in units of K hPa−1

and K2 hPa−1, respectively; and Tm is a mean tempera-

ture, in units of K. In Eq. (26), the uncertainties of the

density of liquid water (ρw) and the specific gas con-

stant for water vapour (Rw) are 0.002 kg m−3 (Wolf, 2008)

and 0.008 J kg−1 K−1 (http://physics.nist.gov/cuu/Constants/

index.html), respectively. Since the impact of the uncertain-

ties from these two parameters is insignificant (less than

0.1 % of the total Q uncertainty), the uncertainty of Q is de-

termined by the uncertainties in Tm, k3, and k′2. The combi-

nation of Equation (26) and Eq. (12) gives

σQ = 10−6ρwRw

√(
σk3

Tm

)2

+ σ 2
k′2
+

(
k3

σTm

T 2
m

)2

. (27)

Figure 8. The uncertainty of the conversion factor Q as a function

of the uncertainty in the mean temperature (Tm) and for three groups

of the uncertainties in the constants k3 and k′
2
: the nominal value

(blue line), double of the nominal value (red line), and half of the

nominal value (green line) for (a) a fixed uncertainty of k′
2

and (b) a

fixed uncertainty of k3.

In order to evaluate the impact of the uncertainty in each

variable on the total uncertainty ofQ, we need to specify val-

ues and uncertainties for the constants k3 and k′2, which are

taken from Bevis et al. (1994). Figure 8 depicts the uncer-

tainty of Q as a function of the uncertainty in Tm assuming

that the value of Tm is 279 K. Three groups of values were

used for the uncertainties of the constants k3 and k′2: the nom-

inal value (given by Table 1 in Bevis et al., 1994), the double

of the nominal value and half of the nominal value. It is ev-

ident that, when the uncertainty of Tm is sufficiently large,

it tends to dominate the uncertainty of Q. Furthermore, the

uncertainty of k3 has a larger impact compared to the uncer-

tainty of k′2.

The parameter Tm can be calculated from the vertical pro-

file of water vapour pressure (pw) and the physical tempera-

ture (T ):∫
S

pw(s)

T (s)
ds = Tm

∫
S

pw(s)

T (s)2
ds. (28)
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Globally, Tm can be derived from numerical weather predic-

tion (NWP) models. An rms difference of 1.3 K in Tm was

claimed by Wang et al. (2005) based on global comparisons

between the NCEP/NCAR reanalysis and the radiosonde

measurements using 6 years of data (NCEP: National Cen-

ters for Environmental Prediction of the US weather service;

NCAR: National Center for Atmospheric Research). The au-

thors also found a better agreement (1.1 K) in Tm obtained

from the ECMWF 40-year reanalysis, ERA-40 (Uppala et al.,

2005).

Due to the fact that the ECMWF data provides a temporal

resolution of 6 h and a horizontal resolution of about 50 km

and there is normally a difference between the model height

and the GPS height, a temporal, horizontal, and vertical in-

terpolation of the ECMWF data to the time and position of

the GPS site is necessary. Details for the interpolation of the

ECMWF data can be found in Heise et al. (2009), which

are summarised as follows. For the horizontal interpolation

the ECMWF interpolation library (EMOSLIB, http://www.

ecmwf.int) was used. The 6-hourly ECMWF data were lin-

early interpolated to the temporal resolution of the GPS ZTD

(1 h). The strategy used for the vertical interpolation depends

on whether the GPS height is above or below the lowest

ECMWF level. For the first case, the temperature and spe-

cific humidity of ECMWF were linearly interpolated, while

pressure was logarithmically interpolated to the GPS height.

For the latter case, the temperature was extrapolated using

the mean temperature gradient of the three lowest ECMWF

layers. The pressure was calculated by stepwise application

of the barometric height formula for each 20 m, while the

specific humidity is estimated in parallel assuming the mean

relative humidity from the two lowest ECMWF levels.

3.4 Summary of the uncertainty of the GNSS-derived

IWV

We now can calculate the total uncertainty of the GNSS-

derived IWV after substituting Eqs. (25) and (27) to Eq. (16):

σV =

√(
σZTD

Q

)2

+

(
2.2767σP0

f (λ,H)Q

)2

+

(
P0σc

f (λ,H)Q

)2

+

(
V
σQ

Q

)2

. (29)

Table 4 summarises the calculated total uncertainties of the

GNSS-derived IWV for three GRUAN sites: LDBO, LDRZ,

and NYA2. For each site, the GPS data acquired from the

year 2014 were processed using a PPP strategy to obtain

ZTD time series. The corresponding total ZTD uncertain-

ties were then determined using the approach discussed in

Sect. 3.1.6 and the mean values over the year were used. The

estimated ZTD was converted to the IWV using the mea-

sured ground pressure and the mean temperature obtained

from the ECMWF reanalysis data, ERA-Interim (Dee et al.,

2011). The values of the conversion factorQ were calculated

using Eq. (26). In Table 4, the corresponding absolute values

for IWV, ZTD, ground pressure, and mean temperature are

given using the mean values of the year 2014 for each site.

Figure 9. The estimated total IWV uncertainty for the month of

June 2014 and for three GRUAN sites: (a) LDB0, (b) LDRZ, and

(c) NYA2.

As shown in Table 4, the uncertainties in the ZTD domi-

nate the error budget of the resulting IWV, contributing over

75 % of the total IWV uncertainty. The impact of the un-

certainty associated with the conversion factor Q increases

slightly when the weather conditions get moist.

The IWV uncertainty is calculated for each data point in

the GRUAN data products. Therefore, we first calculated the

time series of the total ZTD uncertainty using the method

discussed in Sect. 3.1.1. Thereafter, the uncertainties for

the ZHD and the conversion factor Q were determined us-

ing the uncertainties listed in Table 4 for each input vari-

able. Finally, the total IWV uncertainty was calculated using

Eq. (29). One example of the calculated total IWV uncer-

tainties is shown in Fig. 9 for the month of June 2014. The

mean IWV uncertainties are 0.68, 0.65, and 0.53 kg m−2 for

LDB0, LDRZ, and NYA2, respectively. The corresponding

variations of IWV uncertainties, given by the standard de-

viations, are 0.16, 0.13, and 0.06 kg m−2. As expected, the

variation in the IWV uncertainties is highly correlated to the

variation in the ZTD uncertainties, and the larger uncertain-

ties, as discussed in Sect. 3.1.1, are caused both by the larger

radial orbit errors and by a worse geometry of the satellites

(less number of satellites visible).
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3
).

As discussed above, currently the total IWV uncertainty

obtained from a theoretical analysis is calculated by ignor-

ing the site-dependent effects, i.e. signal multipath. If the

GRUAN site is co-located with other techniques, the to-

tal IWV uncertainty can be estimated from the statistical

method. One example is seen for the IGS station ONSA at

the Onsala Space Observatory. The mean total uncertainty

obtained from the theoretical analysis is 0.59 kg m−2, while

the uncertainty, given by a statistical analysis, presented in

Table 1 is 0.7 kg m−2 when assuming no bias in the VLBI

data. We interpret the difference to be mainly due to site-

dependent effects ignored in the theoretical analysis.

4 Conclusions

Two methods were discussed in order to determine the to-

tal uncertainty of the GNSS-derived IWV. When there are

at least three co-located techniques available, measuring the

variability of the IWV at the same time, a statistical analy-

sis is applied. This method is, however, difficult to apply on

the present observational network because three independent

methods for IWV measurement are not available. Therefore,

a theoretical analysis, where the total uncertainty of the IWV

is calculated from each one of the input variables according

to the rule of uncertainty propagation for uncorrelated errors,

is used.

In order to minimise the ZTD uncertainty caused by the

factors discussed in Sects. 3.1.2–3.1.5, some conditions (see

Sect. 3.1.6) need to be fulfilled in the GPS data processing.

The method discussed in Sect. 3.1.1 was applied to calculate

the ZTD errors caused by the orbit errors for each time epoch

which were added to the corresponding formal error. The cal-

culated total ZTD uncertainties for three GRUAN sites are at

the same level as the 1σ ZTD uncertainty (4 mm) calculated

by the IGS. The uncertainty of the total IWV is dominated

by the uncertainties in the ZTD, which contributes more than

75 % of the total IWV uncertainty.

The theoretical method will be implemented in the

GRUAN GNSS central data processing. In summary, the fol-

lowing steps will be taken to calculate IWV uncertainty for

each data point. Firstly, the ZTD uncertainty, including the

systematic satellite orbit error and the formal error, is calcu-

lated. Secondly, the ZHD uncertainty is obtained using the

uncertainty of ground pressure, estimated using the method

presented by Immler et al. (2010), and the uncertainty in

Eq. (23). Thirdly, the uncertainty for the conversion factorQ

is calculated using the uncertainties of the mean tempera-

ture, k3, and k′2 listed in Table 4. Finally, the total IWV un-

certainty for each data point is calculated using the uncer-

tainties for the ZTD, the ZHD, and the conversion factor Q

using Eq. (29).

For sites where two additional independent techniques are

available, the IWV uncertainty estimated from the statisti-

cal method can be used to assess the stability of the data
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quality and potentially improve the operational theoretical

method. For example, the statistical method can be used to

quantify the ZTD uncertainty, which may change due to site-

dependent effects such as signal multipath.

Although the method presented in the work is based on

a PPP analysis, it can be applied to calculate uncertain-

ties of the ZTD obtained from a network solution, but with

some modifications. In PPP, the receiver clock parameters

can partly compensate for the orbit errors. It is, however, not

the case for a network solution where both satellite and re-

ceiver clock errors are cancelled out. Meanwhile, the base-

line length and orientation in a network solution have a sig-

nificant impact on the resultant ZTD uncertainties.
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