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Abstract. This study investigates the performances of dif-

ferent optical indices to estimate gross primary production

(GPP) of herbaceous stratum in a Mediterranean savanna

with different nitrogen (N) and phosphorous (P) availabil-

ity. Sun-induced chlorophyll fluorescence yield computed

at 760 nm (Fy760), scaled photochemical reflectance index

(sPRI), MERIS terrestrial-chlorophyll index (MTCI) and

normalized difference vegetation index (NDVI) were com-

puted from near-surface field spectroscopy measurements

collected using high spectral resolution spectrometers cov-

ering the visible near-infrared regions. GPP was measured

using canopy chambers on the same locations sampled by

the spectrometers. We tested whether light-use efficiency

(LUE) models driven by remote-sensing quantities (RSMs)

can better track changes in GPP caused by nutrient supplies

compared to those driven exclusively by meteorological data

(MM). Particularly, we compared the performances of differ-

ent RSM formulations – relying on the use of Fy760 or sPRI

as a proxy for LUE and NDVI or MTCI as a fraction of ab-

sorbed photosynthetically active radiation (fAPAR) – with

those of classical MM.

Results showed higher GPP in the N-fertilized experimen-

tal plots during the growing period. These differences in GPP

disappeared in the drying period when senescence effects

masked out potential differences due to plant N content. Con-

sequently, although MTCI was closely related to the mean

of plant N content across treatments (r2
= 0.86, p < 0.01),

it was poorly related to GPP (r2
= 0.45, p < 0.05). On the

contrary sPRI and Fy760 correlated well with GPP during

the whole measurement period. Results revealed that the

relationship between GPP and Fy760 is not unique across

treatments, but it is affected by N availability. Results from

a cross-validation analysis showed that MM (AICcv = 127,

MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv =

0.8737) when soil moisture was used to constrain the sea-

sonal dynamic of LUE. However, residual analyses demon-

strated that GPP predictions with MM are inaccurate when-

ever no climatic variable explicitly reveals nutrient-related

changes in the LUE parameter. These results suggest that

RSM is a valuable means to diagnose nutrient-induced ef-

fects on the photosynthetic activity.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Human-induced nutrient imbalances are affecting essential

processes that lead to important changes in ecosystem struc-

ture and functioning (Peñuelas et al., 2013). In spite of the

crucial role of nutrients in regulating plant processes, ef-

forts to describe and predict the response of photosynthesis

to such changes with remote-sensing information have been

limited. In the framework of the classical Monteith light-use

efficiency (LUE) model (Monteith, 1972), estimates of pho-

tosynthesis (hereafter gross primary productivity, GPP) are

based on three key quantities: (i) the fraction of photosynthet-

ically active radiation (fAPAR) absorbed by the vegetation;

(ii) potential LUE (or maximum, LUEm), normally taken

from lookup tables and associated with plant functional types

(Heinsch et al., 2006); and (iii) correction factors related to

meteorological conditions that limit LUEm. Although nitro-

gen (N) deficiencies have been recognized as one of the main

correction factors of LUEm (Madani et al., 2014), the predic-

tive capability of LUE models is usually circumspect as they

operate based on the general assumption that plants are under

non-limiting nutrient conditions.

Very little attention has been given to nutrient-induced

effects on fAPAR and LUE in common formulations of

LUE models. Light absorption by plants is given by chloro-

phyll pigments that enable photosynthetic processes. As-

suming a correlation between leaf chlorophyll pigments and

leaf N content, noting that N atoms are basic components

of the chlorophyll molecular structure, several studies have

demonstrated that leaf N content can be estimated through

chlorophyll-related hyperspectral vegetation indices (Baret

et al., 2007; Schlemmer et al., 2013). Among these in-

dices, the MERIS (Medium Resolution Imaging Spectrom-

eter) terrestrial-chlorophyll index (MTCI; Dash and Curran,

2004) has been used as a proxy for fAPAR (Rossini et al.,

2010; Wang et al., 2012). However, leaf N content is a func-

tional trait that controls GPP not only because it scales with

chlorophyll but also because it regulates enzyme kinetic pro-

cesses driving photosynthesis and hence the physiological

status of the plant (Huang et al., 2004; Walker et al., 2014).

Then, prescribing biome-specific LUE parameters and cor-

recting LUEm only for climatic and environmental condi-

tions may hamper the accurate prediction of GPP (Yuan et

al., 2014). For these reasons, recent literature has called for

better physiological descriptors of the dynamic behavior of

LUE (Guanter et al., 2014).

The sun-induced chlorophyll fluorescence (SIF) or

physiological-related reflectance indices such as the pho-

tochemical reflectance index (PRI) provide a new optical

means to spatially infer LUE (Damm et al., 2010; Guanter

et al., 2014; Rossini et al., 2015) and can provide diagnos-

tic information regarding plant nutrient and water status (Lee

et al., 2013; Pérez-Priego et al., 2005; Suárez et al., 2008;

Tremblay et al., 2012). From a physiological perspective,

the efficiency of green plants to transform absorbed light

into chemical energy during photosynthesis can be charac-

terized by two main photoprotective mechanisms: (i) non-

photochemical quenching that can be detected using the Pho-

tochemical Reflectance Index (PRI), originally proposed by

(Gamon et al., 1992) to track changes in the de-epoxidation

state of the xanthophyll cycle pigments, and (ii) chlorophyll

fluorescence, the dissipation of energy that exceeds photo-

synthetic demand (Krause and Weis, 1984). The PRI has

been directly correlated with LUE (Drolet et al., 2008; Ga-

mon et al., 1997; Nichol et al., 2000; Peñuelas et al., 2011;

Rahman et al., 2004). However, such a relation may vary be-

cause of the sensitivity of the PRI to confounding factors like

those associated with temporal changes in the relative frac-

tion of chlorophyll : carotenoid pigment composition (Filella

et al., 2009; Porcar-Castell et al., 2012), viewing angles and

vegetation structure (Garbulsky et al., 2011; Grace et al.,

2007; Hall et al., 2008; Hilker et al., 2008).

Alternatively, the estimation of SIF by passive remote-

sensing systems has been proven feasible in recent years

from satellites (Frankenberg et al., 2014; Lee et al., 2013;

Parazoo et al., 2014) to the field (Damm et al., 2010;

Guanter et al., 2013; Meroni et al., 2011), and opens fur-

ther possibilities to directly track the dynamics of LUE

(Damm et al., 2010; Guanter et al., 2014). Although SIF

correlates with LUE, such relations might not be conserva-

tive since chlorophyll fluorescence emission varies among

species types (Campbell et al., 2008) or with stress condi-

tions such as nutrient deficiencies (Huang et al., 2004; Mc-

Murtrey et al., 2003) or drought (Flexas et al., 2002; Pérez-

Priego et al., 2005). Likewise with the PRI, the retrieval of

SIF from the apparent reflectance signal is not trivial as long

as it is affected by the vegetation structure or canopy back-

ground components (Zarco-Tejada et al., 2013).

Comparable spatial and temporal resolutions of radio-

metric and ground-based GPP measurements are essential

to accurately optimize LUE model parameters, particularly

in heterogeneous ecosystems. Previous studies have related

ecosystem-scale eddy covariance fluxes to radiometric mea-

surements taken in single points to constrain LUE models.

However, the explanatory power of LUE models might be

greatly reduced by the spatial mismatch between radiomet-

ric and eddy covariance flux footprints (Gelybó et al., 2013;

Porcar-Castell et al., 2015). Similar issues occur in small-

scale factorial experiments where comparable measurements

on an intermediate scale between leaf-scale cuvette measure-

ments and ecosystem-scale eddy covariance measurements

are required. Here, we tried to overcome such limitations

by combining ground-based radiometric and CO2 flux mea-

surements with a similar extension of the measurement foot-

print using portable spectrometers and canopy chambers in a

nutrient-manipulation experiment.

The main objective of this study was to evaluate whether

traditional LUE models driven by meteorological and phe-

nological data (MM) entail a limited assessment of the envi-

ronmental controls on GPP. More particularly, we evaluated
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Abbreviations

a, ao, and a1 model parameters

b0, b1, b2, and b3 fitting parameters of RSM

EFPs ecosystem functional properties

f (meteo) limiting functions relying on meteorologically driven data

fAPAR fraction of absorbed photosynthetically active radiation

f PAIg fraction of PAIg in different plant forms

Fy760 sun-induced chlorophyll fluorescence yield at 760 nm

GPP gross primary productivity

GPP2000 gross primary productivity estimated at 2000 of PAR

LUE light-use efficiency

LUEm potential or maximum LUE

MM meteorologically driven model

MM-VPD simplifier model of the original MOD17 that accounts for VPD in f (meteo)

MM(SWC-VPD) meteorologically driven model that accounts for VPD and soil moisture in f (meteo)

MTCI MERIS terrestrial-chlorophyll index

NDVI normalized difference vegetation index

NEE net ecosystem CO2 exchange

PAIg green plant area index

PAR photosynthetically active radiation

ph physiologically related parameter of RSM referring to either sPRI or Fy760 as a proxy for LUE

PLRC photosynthetic light response curve

PRI photochemical reflectance index

Reco daytime ecosystem respiration

RSM remote-sensing-based model

SIF sun-induced chlorophyll fluorescence

sPRI scaled photochemical reflectance index

St structurally related parameter of RSM referring to either NDVI or MTCI as a proxy for fAPAR

SWC soil water content

SWCmax parameter of the f (meteo) term

VPD vapor pressure deficit

VPDmax and VPDmin fitting parameters of the f (meteo) term

α a parameter describing the photosynthetic quantum yield

β the parameter that extrapolates to GPP at saturating light condition

whether the effects of varying nutrient availability on GPP

estimates as tracked by chlorophyll fluorescence and PRI can

be equally explained by meteorology-driven models. To ad-

dress the main objective we

a. assess the effect of different nutrient supplies on grass-

land photosynthesis and optical properties and their re-

lationships during a phenological cycle, including both

growing and drying periods;

b. evaluate the performance of different LUE modeling ap-

proaches with varying nutrient availability and environ-

mental conditions.

2 Material and methods

2.1 Site description and experimental design

A small-scale nutrient manipulation experiment (SMANIE)

was set up in a Mediterranean savannah in Spain

(39◦56′24.68′′ N, 5◦45′50.27′′W; Majadas de Tiétar,

Cáceres; Fig. 1). The site is characterized by a mean annual

temperature of 16 ◦C, mean annual precipitation of ca.

700 mm, falling mostly from November until May, and by a

very dry summer. Similar to most Mediterranean grassland,

grazing (< 0.7 cows ha−1) is the main land use at the site.

The site is defined as a typical Mediterranean savanna

ecosystem, with low density of oak trees (mostly Quercus

Ilex (L.), ∼ 20 trees ha−1) dominated by a herbaceous

stratum. The experiment itself was restricted to an open

grassland area which was not influenced by tree canopy.

The herbaceous stratum is dominated by species of the three

main functional plant forms (grasses, forbs and legumes).

The fraction of the three plant forms varied seasonally

according to their phenological status (Table 1). Overall, leaf

area measurements of the herbaceous stratum characterized

the growing season phenology as peaking early in April and

achieving senescence by the end of May (Table 1).

The experiment consisted of four randomized blocks of

about 20 m× 20 m. Each block was separated into four plots

of 9 m× 9 m with a buffer of 2 m in between to avoid bound-
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Table 1. Ancillary data resulting from the analysis. Green plant area index (PAIg), fraction of PAI in different plant forms (fPAI), and C, N,

and P plant content. The N : P ratio also is shown. Data correspond to the mean value and standard deviation (SD) of the subsamples taken in

each plot and treatment.

Campaign Treatment Total Total Forbs fPAI Grass fPAI Legumes Total C Total C Total N Total N Total P Total P N : P

PAIg PAIg fPAI content content content content content content (mg g−1)

(m2 m−2) (m2 m−2) (mg g−1) (mg g−1) (mg g−1) (mg g−1) (mg g−1) (mg g−1)

Date – mean SD % % % mean SD mean SD mean SD –

no. 1 C 0.85 0.18 35.5 56.8 7.7 425 – 17.7 – 2.08 – 8.5

20 March 2014 N 0.76 0.21 39.2 45.1 15.0 463 – 18.6 – 1.99 – 9.34

Growing period NP 1.03 0.30 29.1 54.3 12.9 421 – 18.1 – 1.90 – 9.52

Pretreatment P 0.95 0.21 26.6 66.6 6.9 369 – 16.9 – 1.94 – 8.71

no. 2 C 2.02 0.43 14.5 85.2 0.3 413 152 14.6 0.8 2.23 0.02 6.6

15 April 2014 N 2.17 0.91 11.9 87.6 0.4 384 121 23.7 2.0 1.68 0.03 14.2

Growing period NP 2.46 0.45 4.1 95.6 0.3 377 330 23.5 4.1 3.95 0.04 6.0

Posttreatment P 1.66 0.58 14.2 85.7 0.1 394 212 15.4 1.7 4.22 0.06 3.7

no. 3 C 1.08 0.27 43.0 55.1 1.9 447 52 14.2 1.3 2.41 0.02 5.9

7 May 2014 N 1.29 0.58 28.3 70.7 1.0 449 114 20.1 3.1 1.86 0.03 10.8

Dry period NP 0.84 0.21 27.2 71.8 1.0 438 64 20.6 1.2 3.50 0.04 5.9

P 1.37 0.57 39.5 58.5 2.0 444 206 14.7 0.8 3.83 0.03 3.8

no. 4 C 0.44 0.10 66.7 33.3 0.0 442 2 13.8 1.2 2.12 0.01 6.5

27 May 2014 N 0.48 0.28 36.4 63.6 0.0 448 3 19.0 2.8 1.93 0.02 9.8

Dry period NP 0.53 0.26 40.6 59.4 0.0 442 1 18.5 3.4 2.63 0.02 7.1

P 0.71 0.31 56.1 43.9 0.0 441 72 13.2 0.7 2.62 0.02 5.0

Figure 1. Overview of the experimental site (SMANIE): the experi-

mental blocks are drawn on an image acquired with the 80-band air-

borne hyperspectral line-scanner radiometer (Sensytech Inc., Bev-

erly, MA, USA) sensor during April 2014.

ary effects. In each block, four treatments were applied (see

Fig. 1):

1. control treatment (C) with no fertilization

2. nitrogen-addition treatment (+N) with an application of

100 kg N ha−1 as potassium nitrate (KNO3) and ammo-

nium nitrate (NH4NO3)

3. phosphorous-addition treatment (+P) with an appli-

cation of 50 kg P ha−1 as monopotassium phosphate

(KH2PO4) and

4. N- and P-addition treatment (+NP), juxtaposing treat-

ments 1 and 2.

Each fertilizer was dissolved in water and sprayed on fo-

liage early in the growing season (21 March 2014). The same

amount of water used in the fertilizer solutions (∼ 2 L m−2)

was sprayed on the C treatment to avoid water imbalances

among treatments.

Within each plot, two permanent, non-disturbed parcels

(32 in total, see black squares in Fig. 1) were dedicated to

monitoring CO2 fluxes (net ecosystem CO2 exchange, NEE;

and daytime ecosystem respiration, Reco). While NEE mea-

surements were performed over the course of the day (from

early in the morning to late afternoon), spectral measure-

ments were conducted simultaneously with flux measure-

ments only around noon on half of the parcels (16 in total).

Flux and spectral measurements were carried out in four

field campaigns:

– campaign no. 1: before fertilization (20 March 2014),

– campaign no. 2: 3 weeks after fertilization

(15 April 2014) during the peak of the growing

period,

– campaigns no. 3 and no. 4: on 7 and 27 May 2014, re-

spectively, concurring with the drying period were per-

formed to evaluate joint effects related to physiological

senescence processes.

Ancillary measurements were taken in every field campaign

as follows: green plant area index (PAIg) and aboveground

biomass were directly measured by harvest in four parcels

(0.25 m× 0.25 m) within each plot in the surrounding area

where spectral and flux measurements were taken. All sam-

ples were refrigerated just after collection and transported for

laboratory analyses. Fresh samples were separated into func-

tional groups; the sample was scanned and green plant area

Biogeosciences, 12, 6351–6367, 2015 www.biogeosciences.net/12/6351/2015/
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was measured using image analysis (WinRHIZO, Regent

Instruments Inc., Canada). Afterwards, fresh samples were

dried in an oven at 65 ◦C for 48 h and weighed to determine

dry biomass. To analyze the nutrient content in leaf mass,

biomass subsamples were ground in a ball mill (RETSCH

MM200, Retsch, Haan, Germany) and total C and N concen-

trations were determined with an elemental analyzer (Vario

EL, Elementar, Hanau, Germany). P concentrations were

also measured: 100 mg biomass subsamples were diluted in

3 mL of HNO3 65 %, (Merck, Darmstadt, Germany) and mi-

crowave digested at high pressure (Multiwave, Anton Paar,

Graz, Austria; Raessler et al., 2005). Afterwards, elemental

analysis was conducted using inductively coupled plasma–

optical emission spectrometry (ICP-OES, Optima 3300 DV,

Perkin Elmer, Norwalk, USA).

2.2 Flux measurements and meteorological data

Net CO2 fluxes were measured with three transparent cham-

bers of a closed dynamic system. The chambers consisted

of a cubic (0.6 m× 0.6 m× 0.6 m) transparent low-density

polyethylene structure connected to an infrared gas analyzer

(IRGA LI-840, Lincoln, NE, USA), which measures CO2

and water vapor mole fractions (W ) at 1 Hz. The chambers

were equipped with different sensors to acquire environmen-

tal and soil variables, all installed at the chamber ceiling:

photosynthetically active radiation (PAR) was measured with

a quantum sensor (Li-190, Li-Cor, Lincoln, NE, USA) placed

outside of the chamber to be handled and leveled; air and veg-

etation temperatures were measured with a thermistor probe

(Ta, type 107, Campbell Scientific, Logan, Utah, USA) and

an infrared thermometer (Tc, IRTS-P, Apogee, UT, USA);

atmospheric pressure (P ) was measured inside the chamber

using a barometric pressure sensor (CS100, Campbell Scien-

tific, Logan, Utah, USA). The chambers were also equipped

with soil temperature and humidity sensors; soil water con-

tent was determined with an impedance soil moisture probe

(Theta Probe ML2x, Delta-T Devices, Cambridge, UK) at

5 cm depth and soil temperature (type 107, Campbell Sci-

entific, Logan, Utah, USA) at 10 cm depth. Saturation vapor

at surface temperature (i.e., air-to-leaf vapor pressure deficit,

VPD) was computed using Tc and relative humidity, which

was derived from water vapor molar fraction measured with

the IRGA (Perez-Priego et al., 2015).

The chamber operated as a closed dynamic system. A

small pump circulates an air flow of 1 L min−1 through

the sample circuit: air is drawn from inside the chamber

– through three porous hanging tubes spatially distributed

through the chamber headspace – to the infrared gas an-

alyzer; this air flow is then returned to the chamber. The

hanging tubes allowed spatially distributed sampling, obviat-

ing the need to homogenize air during chamber deployment.

Nevertheless, one small fan (12 V, 0.14 A) was fixed at 0.3 m

on a floor corner of the chamber and angled 45◦ upward.

A 0.6× 0.6 m metal collar was installed in each perma-

nent parcel of each plot. The collar provided a flat surface

onto which the bottom of the chamber was placed. The cham-

ber was open and ventilated for 1 min prior to measurement

so that initial air composition and temperature in the con-

fined environment of the chamber represented natural atmo-

spheric conditions (as much NEE as Reco). For the NEE

measurement, the transparent chamber was placed on the col-

lar (closed position, lasted 3 min as a general rule), and fluxes

were calculated from the rate of change in the CO2 molar

fraction (referenced to dry air) within the chamber. A simi-

lar procedure was carried out for Reco but using an opaque

blanket that covered the entire chamber and kept it dark dur-

ing the measurements (PAR values around 0). Fluxes were

calculated according to Pérez-Priego et al. (2015).

Shortly, the flux calculation algorithm reduces flux uncer-

tainties (i.e., NEE and Reco) by including the change-point

detection method to determine the stabilization time, which

defines the initial slope of the regressions, and a bootstrap

resampling-based method to improve confidence in regres-

sion parameters and to optimize the number of data points

used for flux calculation. In addition, a statistical analy-

sis of residuals was performed to automatically detect the

best fit among alternative regressions (i.e., quadratic, hyper-

bolic tangent saturating function, exponential, linear). These

analyses were implemented in a self-developed R Package

(available upon authors request or at the following link http:

//r-forge.r-project.org/projects/respchamberproc/). NEE and

Reco measurements were taken over the course of the day

(from sunrise to sunset) for each field campaign. Chamber

disturbance effects and correction for systematic and random

errors (i.e., leakage, water dilution and gas density correc-

tion, and light attenuation by the chamber wall) were applied

according to Perez-Priego et al. (2015).

2.3 Field spectral measurements

Midday spectral measurements at canopy level were car-

ried out under clear-sky conditions using two portable spec-

trometers (HR4000, OceanOptics, USA) characterized by

different spectral resolutions. Spectrometer 1, characterized

by a full width at half maximum (FWHM) of 0.1 nm and

a 700–800 nm spectral range, was specifically designed for

the estimation of sun-induced chlorophyll fluorescence at

the O2-A band (760 nm). Spectrometer 2 (FWHM= 1 nm,

400–1000 nm spectral range) was used for the computation

of reflectance and vegetation indices. Spectrometers were

housed in a thermally regulated Peltier box, keeping the

internal temperature at 25 ◦C in order to reduce dark cur-

rent drift. The spectrometers were spectrally calibrated with

a source of known characteristics (CAL-2000 mercury ar-

gon lamp, OceanOptics, USA), while the radiometric cal-

ibration was inferred from cross-calibration measurements

performed with a calibrated FieldSpec FR Pro spectrometer

www.biogeosciences.net/12/6351/2015/ Biogeosciences, 12, 6351–6367, 2015
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(ASD, USA). This spectrometer was calibrated by the man-

ufacturer with yearly frequency.

Incident solar irradiance was measured by nadir observa-

tions of a leveled calibrated standard reflectance panel (Spec-

tralon, LabSphere, USA). Measurements were acquired us-

ing bare fiber optics with an angular field of view of 25◦. The

average canopy plane was observed from nadir at a distance

of 110 cm (43 cm diameter field of view) allowing for col-

lecting measurements of 50 % of the surface area covered by

the chamber measurements. The manual rotation of a mast

mounted horizontally on the tripod allowed sequential obser-

vation of the vegetated target and the white reference cali-

brated panel. More in detail, every acquisition session con-

sisted in the consecutive collection of the following spec-

tra: instrument dark current, radiance of the white reference

panel, canopy radiance and radiance of the white reference

panel. The radiance of the reference panel at the time of the

canopy measurement was then estimated by linear interpola-

tion.

For every acquisition, 3 and 10 scans (for spectrometers

1 and 2, respectively) were averaged and stored as a single

file. Five measurements were collected for each plot. Spec-

tral data were acquired with dedicated software (Meroni and

Colombo, 2009) and processed with a specifically developed

IDL (ITTVIS IDL 7.1.1) application. This application al-

lowed the basic processing steps of raw data necessary for

the computation of the hemispherical conical reflectance fac-

tor described by Meroni et al. (2011).

The following indices were selected as suitable to investi-

gate long-term nutrient-mediated effects on photosynthesis.

The normalized difference vegetation index (NDVI; Rouse

et al., 1974) was selected because it correlates well with

plant area and among traditional spectral vegetation indices

is used worldwide by classical LUE models as a surrogate

for fAPAR (Di Bella et al., 2004). The MTCI (Dash and

Curran, 2004) was selected because it was specifically de-

signed for canopy chlorophyll content estimation, and re-

cently used as a proxy for fAPAR as well as NDVI. In this

study we used the PRI and SIF as surrogates for LUE. A

scaled PRI (sPRI) calculated as (PRI+1)/2 was used. SIF

was estimated by exploiting the spectral fitting method de-

scribed in Meroni et al. (2010), assuming linear variation

of the reflectance and fluorescence in the O2-A absorption

band region. The spectral interval used for SIF estimation

was set to 759.00–767.76 nm for a total of 439 spectral chan-

nels used. For methodological distinction among existing ap-

proaches, hereafter SIF is referred to as F760. Because F760

is affected by PAR we use the apparent chlorophyll fluores-

cence yield (Fy760; Rossini et al., 2010) computed as the ra-

tio between F760 and the incident radiance in a nearby spec-

tral region. A summary of the formulation to compute the

vegetation indices and their corresponding target and proxy

in the LUE model approach are presented in Table 2.

2.4 Relationship between GPP and remote-sensing

data

Ecosystem-level GPP was computed as the difference be-

tween NEE and daytime Reco taken consecutively with the

chambers. To assess how GPP is modulated by light among

treatments and over the phenological cycle of the herbaceous

stratum, we computed the parameters of photosynthetic light

response curve (PLRC). Specifically, the Michaelis–Menten

function was fitted to GPP and PAR data taken throughout

the course of the day (from sunrise until sunset) for each field

campaign and treatment as follows:

GPPi =
α×β ×PARi

β +PARi ×α
, (1)

where α is a parameter describing the photosynthetic quan-

tum yield (µmol CO2 µmol photons−1), and β is the param-

eter that extrapolates to GPP at saturating light condition

(µmol CO2 m−2 s−1). According to Ruimy et al. (1994), we

used the optimized parameters of the PLRC as defined in

Eq. (1) to estimate the GPP at 2000 µmol quantum m−2 s−1

of PAR (hereafter referred to as GPP2000).

We evaluated direct relationships between those GPP mea-

surements taken around noon (between 11:00 and 15:00 solar

time) with the chamber (GPPnoon) and sequentially measure-

ments of Fy760 and spectral indices (NDVI, sPRI, MTCI).

In addition, to avoid confounding factors in the relationship

between Fy760 and sPRI and photosynthesis, we also used

GPP2000 as a maximum photosynthetic capacity descriptor.

2.5 Monteith’s light-use efficiency modeling

approaches

Following Monteith’s LUE framework (Eq. 2) two alterna-

tive modeling approaches were used:

GPP= LUE× fAPAR×PAR, (2)

2.6 Statistical analysis and model performance

All model formulations were optimized using GPPnoon and

spectral measurements taken at midday. Since the means

of spectral measurements per treatment could have unequal

variance, a Welch’s t test was performed to evaluate sig-

nificant differences between the mean values of the differ-

ent vegetation indices for each treatment and over the four

field campaigns. In addition, an analysis of covariance (AN-

COVA) was used to test whether or not there was a signifi-

cant interaction by the treatment effect between GPPnoon and

Fy760 and different spectral indices. Like vegetation indices,

a t test was performed to the daily average of GPP taken over

the course of the day (GPPdaily).

Cross-validation analyses and model evaluation

Different model formulations were evaluated in leave-one-

out (LOO) cross-validation: from the whole data set com-
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Table 2. Spectral vegetation indices computed in this study. Vegetation indices are classified into two major classes based on their suitability

in inferring fAPAR (structural related indices) and LUE (physiologically related indices) parameters. R denotes the reflectance at the

specified wavelength (nm). NDVI: normalized difference vegetation index; MTCI: MERIS terrestrial-chlorophyll index; NDI: normalized

difference index; sPRI: scaled photochemical reflectance index; Fy760: apparent fluorescence yield at 760 nm.

Index Target Model proxy Formulation References

NDVI Green biomass

&

leaf area

fAPAR (R800-R680) / (R800+R680) Rouse et al. (1974)

MTCI Chlorophyll &

nitrogen con-

tent

fAPAR (R754 - R709) / (R709−R681) Dash and Curran (2004)

sPRI Physiology LUE (R531-R570) / (R531+R570) Gamon et al. (1992)

Fy760 Physiology LUE Chlorophyll

fluorescence in-filling of the

O2-A band

Meroni and Colombo (2009)

posed by n observations, one data point at a time was re-

moved. The model was fitted against the n−1 remaining data

points (training set), while the excluded data (validation set)

were used for model evaluation. The cross-validation process

was then repeated n times, with each of the n observations

used exactly once as the validation set. For each validation

set of the cross-validated model, statistics were calculated.

Model accuracy was evaluated by means of different

statistics according to Janssen and Heuberger (1995): root

mean square error (RMSE), relative root mean square er-

ror (rRMSE), determination coefficient (r2), and model ef-

ficiency (ME). The model performances in LOO cross-

validation were also calculated and reported as RMSEcv,

rRMSEcv, r2
cv, and MEcv.

The Akaike information criterion (AICcv) was used to

evaluate the trade-off between model complexity (i.e., num-

ber of parameters) and explanatory power (i.e., goodness of

fit) of the different model formulations proposed. The AICcv

is a method based on information theory that is useful for

statistical and empirical model selection purposes (Akaike,

1998). Following Anderson et al. (2000), in this analysis we

used the following definition of AICcv:

AICcv = 2(ρ+ 1)+ n

[
ln

(
RSScv

n

)]
, (3)

where n is the number of samples (i.e., observations), p is

the number of model parameters, and RSScv is the residual

sum of squares divided by n.

The LUE model formulations proposed in Sect. 2.4 can

be ranked according to AICcv, where the model with low-

est AICcv is considered the best among the different model

formulations.

All model parameters (MM, and RSM) were estimated

by using a Gauss–Newton nonlinear least-square optimiza-

tion method (Bates and Watts, 2008), and standard errors

of parameters were estimated by bootstrapping (number of

sampling, n= 500; Efron and Tibshirani, 1994), both imple-

mented in the R standard package (R version 3.0.2, R Devel-

opment Core Team, 2011).

3 Results

3.1 Effects of fertilization on plant nutrient contents

and GPP

Fertilization caused strong variations in leaf N and P content

among treatments, plant forms and across field campaigns

(Table 2), while total N content in plants ranged slightly be-

tween 13.8± 1.2 and 15.4± 1.7 mg g−1 for the C and +P

treatments over the whole experiment. The largest increases

in total N content were found in the peak of the growing sea-

son (no. 2, 20 March 2014), when +NP and +N treatments

reached values of up to 23.7± 2.0 and 23.5± 4.1 mg g−1, re-

spectively. Although slightly lower, the differences in total

N content between C and +P, and +NP and +N remained

high over the drying period. Total P content was higher in

+NP and +P treatments after fertilization, as compared to

+N and C treatments. Consequently, the N : P ratio at the first

campaign after fertilization (no. 2) achieved values of up to

14.2, 6.6, 6, and 3.7, in +N, C, +NP, and +P treatments,

respectively. Similar differences in N : P between treatments

were also observed during the drying period (no. 3 and no.

4, Table 2). On the other hand, PAIg ranged from 0.4 m2 m−2

in campaign no. 4 to up to 2.5 m2 m−2 in campaign no. 2.

No differences were found in PAIg among treatments since

grazing apparently offset any potential difference in the green

aboveground production. Regarding variations in the fraction

of plant forms, no significant differences were found between

treatments.
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Figure 2. Photosynthetic light response curves derived for each growing period: (a) pretreatment and (b) posttreatment and drying periods (c

and d). Treatments are presented in different colors. Lines represent the Michaelis–Menten function fitting gross photosynthesis (GPP, µmol

CO2 m−2 s−1) and photosynthetic active radiation (PAR, µmol m−2 s−1).

Fertilization caused significant differences in the GPPdaily

(p < 0.05) between N-addition treatments (mean values

of 19.62± 4.15 and 18.19± 5.67 µmol CO2 m−2 s−1 for

+N and +NP, respectively) and C and +P treatments

(14.31± 5.39 and 14.40± 4.09 µmol CO2 m−2 s−1, respec-

tively) in the peak of the growing season (campaign no. 2); a

relative difference of 37 % in GPPdaily values was found be-

tween+N and+NP and C treatments. During the drying pe-

riod, however, GPP was substantially downregulated (cam-

paign nos. 3 and 4), and no significant differences were found

in GPPdaily, regardless of differences in plant N content ob-

served among treatments. The potential photosynthetic ca-

pacity GPP2000 (Fig. 2) derived from PLRC was similar in

the four treatments in the pretreatment period (campaign no.

1; Fig. 2a). GPP2000 varied throughout the season and peaked

in the campaign no. 2 (15 April) in all treatments. At this

time PLRC of the +N and +NP treatments diverged clearly

from no N-addition treatments (C and +P; Fig. 2b). GPP2000

was higher in +N and +NP treatments (18.6 and 20.1µmol

CO2 m−2 s−1, respectively) compared to C and +P treat-

ments (14.9 and 15.4 µmol CO2 m−2 s−1, respectively). Af-

ter campaign no. 2, when the soil layer at 5 cm depth dried

out appreciably (volumetric water content achieved values of

3 % vol., data not shown), vegetation progressively senesced

and GPP2000 in turn was downregulated and converged to

similar values in all treatments, regardless of the higher N

content observed in +N and +NP treatments as compared

with C and +P treatments (Table 1). During the dry season,

GPP2000 decreased in all treatments ranging between 5.6 and

8 µmol CO2 m−2 s−1 and no differences among treatments

were observed (Fig. 2c and d). These results indicate that the

senescence of the herbaceous stratum, which is regulated by

water availability, strongly modulated the photosynthetic ca-

pacity of the vegetation over the season.

3.2 Effects of fertilization on remote-sensing data

Optical properties of the analyzed plots were similar dur-

ing campaign no. 1, before the nutrient application. A pro-

nounced seasonal time course was observed for both Ph

(sPRI and Fy760) and structural indices (St; NDVI and

MTCI) with maximum values during the second campaign. It

is interesting to note that, while for St indices the maximum

values were reached in +N plots, +NP plots showed maxi-

mum Ph values. Vegetation indices and Fy760 then decreased

in the drying period (Fig. 3). As for GPP, differences between

treatments were more evident during campaign no. 2 when C
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Figure 3. Seasonal time course of mean midday physiologically driven vegetation indices; (a) scaled photochemical reflectance index, sPRI

(b) apparent fluorescence yield (Fy760), and structure-driven vegetation indices, (c) NDVI, and (d) MTCI among C, +N, +NP and +P

treatments in a Mediterranean grassland in Spain. Bars indicate standard deviation, N = 4. Different letters denote significant differences

between treatments (Weilch t test, p < 0.05).

plots showed statistically lower values for all the indices con-

sidered, while only MTCI was able to detect significant dif-

ferences between N-fertilized plots (+N and +NP). Further-

more significant differences in Fy760 and MTCI between C

and the other three treatments were found (p < 0.05) in the

drying period (campaign no. 4). NDVI varied significantly

with changes in PAIg with values of 0.4 in the campaign no.

4 up to 0.8 in the campaign no. 2 (p < 0.001, r2
= 0.79).

3.3 Relationship between remote-sensing data and

GPP

While Ph indices (Fy760 and sPRI) varied linearly with

GPPnoon in all treatments (p < 0.001, r2
= 0.66 for Fy760

and p < 0.001, r2
= 0.79 for sPRI, respectively; Fig. 4a and

b), different patterns were observed for St: NDVI and GPP

were best fitted by an exponential regression p < 0.001,

r2
= 0.77 (Fig. 4c), while a weak linear relationship between

MTCI and GPPnoon p < 0.05, r2
= 0.45 (Fig. 4d) was found.

Although a weak relation between MTCI and GPPnoon was

found, MTCI was strongly correlated with plant N content

(y = 14.17x− 2.49, p < 0.001, r2
= 0.86). Note that these

results are computed excluding data taken in the pretreat-

ment campaign (no. 1) and differences in the relationship be-

tween remote-sensing data and GPPnoon among treatments

can be only attributed to nutrient-induced effects. The AN-

COVA test did not show significant differences in slope or

intercept of the relationship between GPPnoon and sPRI, and

NDVI across treatments. However, barely significant dif-

ferences were found in the relationship between GPPnoon

and Fy760 (p < 0.1; Fig. 4b) and significant ones between

GPPnoon and MTCI (p < 0.01; Fig. 4d) between N-addition

treatments (+N and +NP) and C treatments (C and +P).

Similar to GPPnoon, GPP2000 was also significantly related

to mean midday sPRI (r2
= 0.76, p < 0.001; Fig. 5a) and

Fy760 (r2
= 0.76, p < 0.001; Fig. 5b). As expected, an ex-

ponential regression fitted best for NDVI, while a poor rela-

tionship with MTCI was found (data not shown).
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Figure 4. Relationship between GPPnoon and remote-sensing data: (a) scaled photochemical reflectance index (sPRI), (b) apparent fluo-

rescence yield, (c) normalized difference vegetation index (NDVI), and (d) MTCI. Square symbols represent measurements taken in the

pretreatment (no. 1) and circles after fertilization (nos. 2–4). Data were obtained at midday and lines represent results from the regressions

for each treatment excluding measurements in the pretreatment.

Figure 5. (a) Relationship between GPP2000 and average values of sPRI and (b) apparent fluorescence yield (Fy760). Lines represent results

with the best linear regressions fitting the data.

3.4 Modeling GPP

Based on the AICcv criterion, MM (VPD-SWC) outper-

formed MM-VPD, MM-SWC and RSMs. Although MM

(VPD-SWC) showed high accuracy in the predictions

(MEcv = 0.879, r2
cv = 0.881), this model had a tendency

to underestimate observation at high GPPnoon values (see

comparison between model predictions and observations,

Fig. 6a–c). Note that the highest biases in modeled GPPnoon

values among MM models belong to +N and +NP treat-

ments in field campaign no. 2. Since the four treatments ex-

perienced the same environmental conditions (i.e., compara-

ble values of SWC, VPD, air temperature), this bias can be

attributed to the higher N content (+N and +NP treatments)

as compared to C and +P treatments. Remarkably, residu-

als of the MM (VPD-SWC) taken from periods with moist
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Figure 6. Comparison between measured GPP and GPP modeled with the best performing LUE model for each kind of formulation: MM

(VPD, a), MM (SWC, b), MM (including VPD and SWC, panel c), RSM (sPRI-NDVI, d), and RSM (Fy760-NDVI, e). Results from the

cross-validation analysis are presented in Table 3.

soil (SWC> 15) were significantly correlated with sPRI and

Fy760 (p < 0.05; Fig. 7a and b, respectively). However, no

biases between residuals and predictions were observed in

RSM over the span of values and treatments (Fig. 8). Re-

sults from the evaluation of model performance indicated

that RSM performs best when NDVI, rather than MTCI, is

used as St in the Eq. (7) and, hence, as a proxy for fAPAR

(Table 3). Our results indicated that RSM performs best when

either Ph (sPRI or Fy760) is combined with NDVI as St.

4 Discussion

4.1 Effects of nutrients on GPP and remote-sensing

data and their relationships

Nutrient fertilization, particularly N inputs, induced phys-

iological changes manifested as an increase in photosyn-

thetic capacity under high light conditions (Fig. 2; Hirose

and Werger 1994). As we expected, plant N content has

shown to be a trait of photosynthesis that influences a va-

riety of aspects of photosynthetic physiology (Ciompi et al.,

1996; Sugiharto et al., 1990). These physiological changes

were reflected on the optical properties, particularly on flu-

orescence and sPRI. The increase in fluorescence with N

fertilization inputs was recently explained as the combined
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Figure 7. Correlation between residuals of the MM (VPD-SWC) model and (a) scaled photochemical reflectance index (sPRI) and (b)

chlorophyll fluorescence yield (Fy760) taken from periods with high soil water content (SWC> 15 %, red circles). No correlation was

observed when SWC< 15 % (p > 0.5, black circles).

Table 3. Results from the model evaluation leave-one-out cross-validation analysis across LUE model configurations and vegetation indices.

Based on AICcv, the best performance among formulation tests for each method is highlighted in bold.

LUE model Variable RMSE rRMSE r2 ME RMSEcv rRMSEcv r2
cv MEcv AICcv

MM-VPD NDVI 3.041 23.439 0.894 0.802 3.143 24.671 0.877 0.788 160.887

MM-SWC NDVI 2.663 32.909 0.849 0.848 2.769 34.840 0.835 0.829 148.417

MM (VPD-SWC) NDVI 2.230 21.727 0.894 0.893 2.357 23.266 0.881 0.879 127.478

RSM PRI-NDVI 2.390 24.112 0.879 0.877 2.760 30.832 0.844 0.837 140.627

RSM PRI-MTCI 3.113 35.793 0.794 0.792 3.489 42.123 0.751 0.739 171.125

RSM Fy760-NDVI 2.490 27.743 0.868 0.867 2.835 34.242 0.834 0.828 144.116

RSM Fy760-MTCI 3.676 46.770 0.710 0.710 4.074 52.224 0.654 0.644 191.275

effect that a higher N content has on (1) chlorophyll con-

tent, which magnifies APAR and enhances fluorescence sig-

nal, and on (2) the increased photosynthetic capacity that re-

sults in reduced non-photochemical quenching activity and

consequently increases the fluorescence signal (Cendrero-

Mateo et al., 2015). The relationships between GPPnoon and

Fy760 is not unique and may vary from optimal to nonop-

timal environmental conditions (i.e., nutrient deficiencies,

water stress), when other regulatory mechanisms might re-

duce the degree of coupling between fluorescence and pho-

tosynthesis (Cendrero-Mateo et al., 2015; Porcar-Castell et

al., 2012). Although Fy760 was positively correlated with

GPPnoon, barely significant differences in the slope of this re-

lationship were observed between treatments (Fig. 4b). Fur-

ther studies are needed to fully explore the relationship be-

tween Fy760 and GPPnoon under different stress conditions

and over different ecosystems. However, if confirmed, the

effect of nutrient availability on the relationship between

Fy760 and GPPnoon could have important implications in

GPP modeling. This result suggests that the inclusion of a

correction factor related to leaf N : P stoichiometry should be

considered when modeling GPP assuming a linear relation-

ship with fluorescence at plant functional type level (Guanter

et al., 2014; Joiner et al., 2013).

In this study we also explored the capability of remote

sensing to describe ecosystem functional properties defined

as those quantities that summarize and integrate ecosystem

processes and responses to environmental conditions and can

be retrieved from ecosystem-level fluxes (e.g., GPP2000) and

structural measurements (Reichstein et al., 2014). GPP at

light saturation (i.e., GPP2000) is one example of an ecosys-

tem functional property, shown here to be quite correlated to

sPRI and Fy760 (Fig. 5). This result suggests that sPRI and

Fy760 open also new opportunities for remote-sensing prod-

ucts to describe the spatiotemporal variability of essential

descriptors of ecosystem functioning (Musavi et al., 2015).

Inferring GPP2000 using remote sensing has important im-

plications both for monitoring global carbon cycle and for

benchmarking terrestrial biosphere models.

MTCI was closely related to N content (r2
= 0.86,

p < 0.001), independent of other structural variables (i.e.,

PAIg) and can be used as a good indicator of N availability.
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Figure 8. Plot between residuals of both the meteo-driven model

(MM-VPD) and remote-sensing-based method (RSM) and modeled

GPP values. Both lines represent the local polynomial regression

fitting of the residuals against predicted values.

Although MTCI has been proven to be very sensitive to vari-

ations in chlorophyll contents (Dash and Curran, 2004) and

hence linkable with light absorption processes, it was weakly

correlated with GPP, particularly in plots added with N (+N

and +NP; r2
= 0.27, p < 0.01; Fig. 4d). A quite wide range

of GPPnoon values were found at high values of MTCI – high

GPPnoon values corresponding to the growing season and low

ones to the drying period – which can be explained by two

simultaneous mechanisms.

First, despite the high plant N content, physiological

mechanisms including stomatal control or reduced carboxy-

lation efficiency downregulate GPP (Huang et al., 2004) and

ultimately might break the relationship between GPPnoon and

MTCI. Second, MTCI tracks changes in N content regard-

less of changes in canopy structure occurring during the dry

season when grass achieved senescence (i.e., green to dry

biomass ratio, PAIg). More studies aimed at the separation of

the combined effects of N and changes in green/dry biomass

fractions on fAPAR are essential. On the other hand, al-

though NDVI followed the seasonal dynamic of PAIg, it satu-

rated at high GPPnoon values indicating the low ability of this

index to detect spatial variations induced by N fertilization.

Although optical measurements were taken at high spatial

resolution (< 0.36 m2), the separation of confounding factors

affecting sPRI or Fy760 is essential to elucidate the mech-

anistic association between sPRI or Fy760 and GPP. Like

sPRI, the retrieval of Fy760 from the apparent reflectance

signal can be also affected by vegetation structure or canopy

background components (Zarco-Tejada et al., 2013). After

optimization and selection of the best model parameters us-

ing NDVI and sPRI (or Fy760) as drivers, we analyzed the

response of simulated GPP to variations in NDVI and sPRI

((or Fy760; Fig. 9). Results indicate that, at high GPP lev-

els, it is Fy760 and sPRI but less NDVI that responded to

GPP. However, at low GPP levels, either Fy760 or sPRI re-

sponded to GPP on a small scale (Fig. 9b). Figure 9 suggests

that the relationship between NDVI and sPRI or Fy760 is

not unique and NDVI may play an important role in driving

GPP in ecosystems characterized by marked seasonal vari-

ations. Our results highlight the complementarity between

NDVI and Fy760 or sPRI. Particularly, NDVI assisted Fy760

or sPRI in predicting GPP under conditions with low biomass

(i.e., low leaf area index), when confounding factors may

affect Fy760 or sPRI. In semiarid ecosystems, the lack of

sensitivity of sPRI or Fy760 to changes in GPP during dry

conditions has been explained by the soil background effect

on the reflectance signal (Barton and North, 2001; Mänd et

al., 2010; Zarco-Tejada et al., 2013). Accordingly, Rahman

et al. (2004) pointed out that conditions where sPRI performs

best are in dense canopies with a low portion of bare soil.

4.2 Performances of different LUE modeling

approaches

Here we aim at answering the question of how we can bet-

ter simulate GPP using LUE modeling with varying nutrient

availability and environmental conditions by drawing com-

parisons between the two model philosophies: RSM against

MM approaches. There are an increasing number of stud-

ies focused on the development of LUE models driven by

remotely sensed information to better explain spatiotempo-

ral variations of GPP (Gitelson et al., 2014; Rossini et al.,

2012, 2014). However, nutrient availability (and in particu-

lar N) greatly influences the spatial variability of LUE even

within the same plant functional type (e.g., grasslands), and

further studies are essential. The slightly better performance

in cross-validation of the MM (VPD-SWC) against all model

configurations, including RSM, supports the importance of

a joint use of SWC and VPD as key parameters to con-

strain LUE in arid and semiarid ecosystems (Prince and

Goward, 1995). However, residual analyses demonstrated

that MM (VPD-SWC) was unable to track N-induced differ-

ences in GPP during the growing period, when both parame-

ters are not limiting (Fig. 7). By contrast, accurate estimates

of GPP were obtained with RSM both over the drying and the

growing periods. These results also indicate the importance

of physiological descriptors to constrain LUE, which pre-

vails over structural factors controlling fAPAR (i.e., green

biomass) under given environmental conditions and encour-

age the use of hyperspectral remote sensing for diagnostic

upscaling of GPP.

With sPRI or Fy760 as a proxy for LUE, RSM is presented

as a valuable means to diagnose N-induced effects on physi-

ology. Our results show the limits of MM in predicting the

spatial and temporal variability of GPP when LUE is not

controlled by meteorological drivers alone (VPD, tempera-

ture, soil moisture). Accordingly, GPP is eventually biased

whenever neither climatic nor structural state variables ex-

plicitly reveal spatial changes in the LUE parameter associ-

ated with plant nutrient availability; residuals showed a clear
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Figure 9. Contour plot indicating how variations in photosynthesis (GPP, µmol CO2 m−2 s−1) are explained by variations in the LUE and

f PAR parameters of the RSM. While (a) sPRI and (b) Fy760 are indistinctly used as a proxy of LUE, the NDVI is taken as f PAR.

tendency to underestimate the highest modeled GPP values,

significantly correlated to Fy760 and sPRI (Fig. 7). From

a practical point of view, the forcing variables of RSM ap-

proaches may show a better observational coverage. In effect,

the satellite-based retrievals of RSM forcing variables could

additionally overcome representativeness limitations and po-

tential regional or seasonal biases in meteorological fields

(Dee et al., 2011). The uncertainties in forcing variables of

MM (i.e., temperature, VPD and soil moisture) could propa-

gate and affect the GPP estimates.

5 Concluding remarks

1. Fy760 and sPRI correlated well with GPP: both in-

creased with N content and decreased with senescence.

2. MTCI can be used as a good descriptor of N content in

plants, but the relationship with GPP breaks down under

drought conditions.

3. Meteo-driven models were able to describe temporal

variations in GPP, and soil moisture can be a key pa-

rameter to better track the seasonal dynamics of LUE in

arid environments. However, meteo-driven models were

unable to describe N-induced effects on GPP. Important

implications can be derived from these results, and un-

certainties in the prediction of global GPP still remain

when meteo-driven models do not account for plant nu-

trient availability.

4. sPRI or Fy760 provides valuable means to diagnose

nutrient-induced effects on the photosynthetic activity

and, therefore, should be included in diagnostic GPP

models.
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