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Abstract. Global climate change is predicted to alter the
ocean’s biological productivity. But how will we recognise
the impacts of climate change on ocean productivity? The
most comprehensive information available on its global dis-
tribution comes from satellite ocean colour data. Now that
over ten years of satellite-derived chlorophyll and productiv-
ity data have accumulated, can we begin to detect and at-
tribute climate change-driven trends in productivity? Here
we compare recent trends in satellite ocean colour data to
longer-term time series from three biogeochemical models
(GFDL, IPSL and NCAR). We find that detection of cli-
mate change-driven trends in the satellite data is confounded
by the relatively short time series and large interannual and
decadal variability in productivity. Thus, recent observed
changes in chlorophyll, primary production and the size of
the oligotrophic gyres cannot be unequivocally attributed to
the impact of global climate change. Instead, our analyses
suggest that a time series of∼ 40 years length is needed to
distinguish a global warming trend from natural variability.
In some regions, notably equatorial regions, detection times
are predicted to be shorter (∼ 20− 30 years). Analysis of
modelled chlorophyll and primary production from 2001–
2100 suggests that, on average, the climate change-driven
trend will not be unambiguously separable from decadal vari-
ability until ∼ 2055. Because the magnitude of natural vari-
ability in chlorophyll and primary production is larger than,
or similar to, the global warming trend, a consistent, decades-
long data record must be established if the impact of climate
change on ocean productivity is to be definitively detected.
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1 Introduction

Ocean primary production (PP) makes up approximately half
of the global biospheric production (Field et al., 1998), so
detecting the impact of global climate change on ocean pro-
ductivity and biomass is an essential task. The consequence
of increasing global temperatures, in combination with al-
tered wind patterns, is to change the mixing and stratification
of the surface ocean (e.g. Sarmiento et al., 2004). Reduced
mixing and increased stratification at low latitudes will fur-
ther limit the supply of nutrients to the euphotic zone, and
is predicted to result in reduced PP. The canonical view is
that at high latitudes, where phytoplankton growth is light
limited during winter, decreased mixing may result in earlier
re-stratification and a lengthened growing season, resulting
in increased PP (Bopp et al., 2001; Doney, 2006). In con-
trast, recent analyses by Behrenfeld et al. (2008a and 2009)
suggest that increasing sea surface temperature (SST) cor-
responds to reduced PP in sub-polar regions (although the
response is weaker than for the sub-tropics). Water tempera-
ture also has a direct influence on phytoplankton growth and
metabolic rates. Production increases with increasing tem-
perature until a species-specific maximum is reached, after
which rates decline rapidly (Eppley, 1972). Rising temper-
atures will also result in changes to the distribution of phy-
toplankton species. Some species, adapted to warm temper-
atures and low nutrient levels (usually small picoplankton)
will expand their range, whilst others that prefer turbulent,
cool and nutrient-rich waters (mostly large phytoplankton,
e.g. diatom species) may migrate poleward as temperatures
rise. Polar and ice-edge species will have to adapt to warmer
conditions and associated changes in stratification and fresh-
water input, or risk extinction. These shifts in species compo-
sition may alter carbon export and the availability of food to
higher trophic levels. Large phytoplankton, such as diatoms
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and coccolithophores, are believed to be responsible for the
majority of carbon export (e.g. Michaels and Silver, 1988;
Brzezinski et al., 1998). If replaced by smaller warm-water
species, the export of carbon from surface waters may be
reduced. Phytoplankton are also the base of the marine
food web and shifts in the dominant species or overall abun-
dance may alter fishery ranges and yields (e.g. Iverson, 1990;
Chavez et al., 2003; Ware and Thomson, 2005; Cheung et al.,
2009a, 2009b).

Because of ocean productivity’s key role in the global car-
bon cycle, many studies have sought to quantify the vari-
ability and climate response of biomass and/or PP (for a re-
cent review of studies using satellite data, see McClain et al.,
2009). Long (∼ 20 years) time series of chlorophyll and PP
have been measured at the BATS and HOT stations. These
time series stations have the advantage of measuring sub-
surface and biogeochemical properties that cannot be esti-
mated using satellite data. However, the principal source
of global, multi-year ocean productivity data are the Sea-
WiFS and MODIS-Aqua ocean colour instruments. Sea-
WiFS has been operating since September 1997 (continu-
ously until December 2007, and intermittently thereafter),
and MODIS-Aqua since July 2002. In addition, limited
ocean colour data are available from the Coastal Zone Color
Scanner (CZCS), which operated from 1978–1986 (Madrid
et al., 1978), although difficulties cross-calibrating the CZCS
and contemporary records have hampered efforts to study
multi-decadal variability (Antoine et al., 2005; Gregg et al.,
2003). Notwithstanding this, Martinez et al. (2009) demon-
strated that the first principal component of CZCS (processed
using the Antoine et al. (2005) methodology) and SeaWiFS
chlorophyll-a (chl) show similar responses to SST. However,
a direct comparison of changes in the magnitude of chl or PP
between the CZCS and SeaWiFS datasets remains problem-
atic.

With over 10 years of data now available, SeaWiFS prod-
ucts are being used to explore variability and trends in sub-
tropical productivity (e.g. Behrenfeld et al., 2006; McClain
et al., 2004; Gregg et al., 2005; Behrenfeld and Siegel, 2007),
high latitude productivity (Behrenfeld et al., 2008a; Behren-
feld et al., 2009), coastal productivity (Kahru and Mitchell,
2008; Kahru et al., 2009) and extent of the oligotrophic gyres
(McClain et al., 2004; Irwin and Oliver, 2009). These studies
found that trends in the SeaWiFS record are often dominated
by natural decadal variability, as embodied in indices such
as the Pacific Decadal Oscillation or the Multivariate ENSO
Index. However, one study concluded that the size of the
oligotrophic gyres had increased over the span of the SeaW-
iFS record as a response to global warming (Polovina et al.,
2008).

Models have also been used to investigate the interplay
between natural variability and global climate change trends.
For example, Boyd et al. (2008) demonstrated that, in the
Southern Ocean, the magnitude of long-term changes in
stratification and mixed layer depth in an earlier version of

the NCAR model run under global warming conditions were
small relative to the interannual variability; and that a defini-
tive climate-warming signal in modelled mixed layer depth
could not be detected until∼ 2040 in Southern Ocean po-
lar waters and no unequivocal trend at all was detected in
the sub-polar region (their analysis extended to 2100). Boyd
et al. (2008) speculated that the gradual changes in physical
properties would result in similarly slow changes in phyto-
plankton populations. Similarly, an experiment with an ear-
lier version of the IPSL model, forced with a CO2 doubling
scenario, demonstrated that it took between 30 and 60 years
to detect changes in export production in the equatorial Pa-
cific (Bopp et al., 2001).

Here, we use both satellite ocean colour data and out-
put from 3 coupled physical-biogeochemical models (GFDL,
IPSL and NCAR) to explore the decadal variability, historical
trends and future response of chlorophyll concentration and
PP. We examine trends in both chl and PP here, as the chl
product from the SeaWiFS instrument is better validated and
has lower errors than PP. This is partly because the database
of in situ observations used to calibrate the algorithms con-
tains many more chl than PP measurements, and partly be-
cause chl is more closely related to what SeaWiFS actually
measures (water leaving radiances). In addition, the chl prod-
uct represents surface concentrations, whereas PP is an es-
timate of the depth-integrated productivity. Algorithms to
derive PP from satellite data are still subject to fairly large
uncertainties (e.g. Joint and Groom, 2000), partly because
satellite ocean colour instruments only measure surface con-
ditions and extrapolating to a depth-integrated quantity poses
additional difficulties. Uncertainties also arise from errors in
the input parameters to PP algorithms (i.e. chl, SST and pho-
tosynthetically available radiation; Friedrichs et al., 2009).
Indeed, in some instances, satellite PP algorithms are no
more skilful at reproducing in situ PP measurements than
biogeochemical models (Friedrichs et al., 2009). We inves-
tigate both chl and PP here because chl can change without
corresponding changes in phytoplankton biomass or PP, due
to the ability of cells to alter their chlorophyll to carbon ratio
in response to light or nutrient stress (e.g. Laws and Ban-
nister, 1980; Geider, 1987). An investigation of how this
might be manifested in the SeaWiFS record can be found in
Behrenfeld et al. (2008b). Primary production, on the other
hand, is the parameter that will have a more direct impact on
the global carbon cycle.

A note on terminology is warranted here to avoid confu-
sion. Throughout the paper, we use the phrase “natural vari-
ability” to refer to interannual, decadal or multi-decadal vari-
ability in PP or chl driven by oscillatory or transient physical
forcing (e.g. El Nĩno events, shifts in the phase of the North
Atlantic Oscillation etc). This is contrasted with “trends”,
which we use to indicate long-term (multi-decadal or longer)
changes in PP or chl driven by persistent anomalous forcing
(i.e. global warming). We first investigate whether the trends
in PP, chl and oligotrophic gyre size observed in the 10-year
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satellite record are likely to be reflecting climate change, and
conclude that the dataset is not yet long enough to unequivo-
cally detect a global warming trend. A statistical analysis of
biogeochemical model output suggests that a PP or chl time
series of∼ 40 years duration will be needed to distinguish
a climate change signal from natural interannual to decadal
variability. We also explore predictions of when the impact
of global climate change on chl and PP will exceed the range
of natural variability and become unambiguously detectable.
The analyses presented here have significant implications for
our ability to recognise the impacts of climate change on
ocean productivity, and for strategies for monitoring ocean
biology into the future.

2 Methods

2.1 Satellite data

Monthly mean level-3 chlorophyll concentration data (de-
rived from algorithm OC4, reprocessing v5.2) for Septem-
ber 1997–December 2007 were downloaded fromhttp://
oceancolor.gsfc.nasa.gov/. Satellite-derived chl, SST and
photosynthetically available radiation were used to esti-
mate PP using three different algorithms (Behrenfeld and
Falkowski, 1997; Carr, 2002; Marra et al., 2003). Each
algorithm has been validated against a database of in situ
measurements, but each is formulated somewhat differently.
To minimise potential biases or errors associated with any
one algorithm, we use the PP estimated from all three meth-
ods. Each of these three algorithms produced PP trends
of similar magnitude and spatial distribution. A fourth PP
algorithm, the Carbon-based Productivity Model (CbPM),
was also tested (Behrenfeld et al., 2005). Calculation of
PP using the CbPM requires knowledge of the mixed layer
depth (MLD). We calculated PP using MLD estimated from
the ECCO (Estimating the Circulation and Climate of the
Ocean;www.ecco-group.org) and the SODA (Simple Ocean
Data Assimilation;www.atmos.umd.edu/∼ocean) reanalysis
programmes, and also using the hybrid MLD data used in
Behrenfeld et al. (2005) and described athttp://www.science.
oregonstate.edu/ocean.productivity/mld.html. The sensitiv-
ity of the CbPM-derived PP to the MLD product used is de-
tailed in Milutinovic et al. (2009). Our analyses found that
each MLD product resulted in substantially different magni-
tude and spatial distribution of statistically significant trends.
Results from the CbPM algorithm were also substantially
different from the three other algorithms. The PP derived
from this algorithm was excluded from the subsequent anal-
yses.

2.2 Global physical-biogeochemical models

Three coupled physical-biogeochemical models are used to
estimate long-term trends in PP: GFDL-TOPAZ (Dunne et
al., 2005 and 2007), IPSL-PISCES (Aumont and Bopp,

2006) and NCAR-CCSM3 (Doney et al., 2006). For the
hindcast runs, ocean-only versions of the different models
are used. Air temperature and incoming fluxes of wind stress,
freshwater, shortwave and longwave radiation are prescribed
as boundary conditions from the CORE version 2 reanaly-
sis effort (for the GFDL and NCAR models), which covers
the period 1958–2006 (Large and Yeager, 2004 and 2009),
and from NCEP forcing for the IPSL model, from 1948–
2007 (Kalnay et al., 1996). The CORE forcing dataset is
based on the NCEP forcing, with additional satellite data
incorporated. The forcing datasets thus contain recent sig-
nals of climate change, e.g. rising air temperatures. Running
the models in hindcast mode means that the modelled inter-
annual and decadal variability is directly comparable to the
variability in the data, rather than just in a statistical sense (as
is the case for the global warming simulations in the coupled
models). For the future climate change runs, the full cou-
pled climate-biogeochemistry versions of the different mod-
els are used. These future climate change runs all use his-
torical forcing (greenhouse gases and aerosols emissions or
concentrations) from 1860–2000 and the IPCC A2 scenario
(Nakicenovic and Swart, 2000) from 2001–2100. The A2
scenario envisages continued population growth and an in-
creasing economic gap between the industrialised and devel-
oping nations, resulting in high cumulative carbon emissions.
Each model’s biogeochemistry is parameterised differently,
and so results from all three models are compared in order to
minimise potential errors and biases associated with any one
model.

2.2.1 GFDL model

A biogeochemical and ocean ecosystem model (TOPAZ),
developed at GFDL, has been integrated with the MOM-
4 ocean model (Griffies et al., 2004; Gnanadesikan et al.,
2006). MOM-4 has 50 vertical z-coordinates and spatial res-
olution is nominally 1◦ globally, with higher 1/3◦ resolution
near the equator. The TOPAZ biogeochemical model in-
cludes all major nutrient elements (N, P, Si and Fe), and both
labile and semi-labile dissolved organic pools, along with
parameterizations to represent the microbial loop. Growth
rates are modelled as a function of variable chl:C ratios and
are co-limited by nutrients and light. Photoacclimation is
based on the Geider et al. (1997) algorithm, extended to
account for co-limitation by multiple nutrients and includ-
ing a parameterisation for the role of iron in phytoplankton
physiology (following Sunda and Huntsman, 1997). Loss
terms include zooplankton grazing and ballast-driven parti-
cle export. Remineralisation of detritus and cycling of dis-
solved organic matter are also explicitly included (Dunne et
al., 2005). The model includes highly flexible phytoplank-
ton stoichiometry and variable chl:C ratios. Three classes of
phytoplankton form the base of the global ecosystem. Small
phytoplankton represent cyanobacteria and picoeukaryotes,
resisting sinking and tightly bound to the microbial loop.
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Large phytoplankton represent diatoms and other eukaryotic
phytoplankton, which sink more rapidly. Diazotrophs fix ni-
trogen directly rather than requiring dissolved forms of ni-
trogen. Wet and dry dust deposition fluxes are prescribed
from the monthly climatology of Ginoux et al. (2001) and
converted to soluble iron using a variable solubility param-
eterisation (Fan et al., 2006). TOPAZ includes a simplified
version of the oceanic iron cycle including biological uptake
and remineralisation, particle sinking and scavenging and ad-
sorption/desorption. Application of the TOPAZ model to de-
termining global particle export and phytoplankton bloom
timing have been detailed in Dunne et al. (2007) and Hen-
son et al. (2009), respectively. The hindcast simulations were
spun-up for 250 years using a repeat annual cycle of physical
forcing, prior to initiating the interannually varying forcing.

For the coupled runs, the GFDL Earth System Model
(ESM2.1) includes atmospheric (AM2.1) and terrestrial bio-
sphere (LM3) components (Anderson et al., 2004), in ad-
dition to the TOPAZ biogeochemistry model. The physical
variables in GFDL’s ESM2.1 were initialized from GFDL’s
CM2.1 (Delworth et al., 2006). The control run based on
1860 conditions was spun-up for 2000 years. Biogeochem-
ical parameters were initialized from observations from the
World Ocean Atlas 2001 (Conkright et al., 2002) and GLO-
DAP (Key et al., 2004). This model was spun up for an ad-
ditional 1000 years, with a fixed CO2 atmospheric boundary
condition of 286 ppm. For an additional 100 years, the at-
mospheric boundary condition was switched to a fully inter-
active atmospheric CO2 tracer. Simulations were then made
based on the IPCC AR4 protocols (A2 scenario).

2.2.2 IPSL model

The IPSL PISCES biogeochemical model (Aumont and
Bopp, 2006) is coupled to the NEMO-OPA ocean general
circulation model (Madec, 2008) in a configuration that here
has 30 vertical levels and a horizontal resolution of 2◦

×cos
(latitude) in the extratropics, with enhanced resolution of
0.5◦ at the equator. Phytoplankton growth in the PISCES
model can be limited by temperature, light and five differ-
ent nutrients (NO3, PO4, Si, Fe and NH4). Two phyto-
plankton and two zooplankton size classes are represented:
nanophytoplankton, diatoms, microzooplankton and meso-
zooplankton. The diatoms differ from the nanophytoplank-
ton by requiring silica for growth, by having higher require-
ments for iron (Sunda and Huntsman, 1995) and by higher
half-saturation constants. For all species, the C:N:P ratios
are assumed constant at the values proposed by Takahashi
et al. (1985), but the internal ratios of Fe:C, chl:C and Si:C
of phytoplankton are prognostically simulated. There are
three non-living components of organic carbon: semi-labile
DOC, and large and small detrital particles that differ by their
vertical sinking speeds. The microbial loop is also implic-
itly represented. Nutrients are supplied to the ocean from
three sources: atmospheric deposition, rivers and sedimen-

tary sources. Iron is supplied by aeolian dust deposition,
estimated from the monthly modelled results of Tegen and
Fung (1995). Iron is also supplied from sediments follow-
ing the method of Moore et al. (2004). Iron concentrations
at the surface are restored to a minimum of 0.01 nM. This
baseline concentration, which represents non-accounted for
sources of iron that could arise from processes not explicitly
taken into account in the model, has been shown to greatly
improve the representation of the chlorophyll tongue and
the iron-to-nitrate limitation transition zone in the Equato-
rial Pacific (Schneider et al. 2008). An improved version of
PISCES (Tagliabue et al., 2009), taking into account Fe spe-
ciation, is able to represent the zonal extent of Equatorial Pa-
cific chlorophyll without needing to include an unconstrained
Fe source, but is not used in this study. The PISCES model
has previously been used for a variety of studies concerned
with paleo, historical and future climate. A full description
and an extended evaluation against climatological datasets
can be found in Aumont and Bopp (2006).

For the hindcast simulations, the initial conditions for nu-
trients and inorganic carbon are prescribed from data-based
climatologies and the model is spun-up for 150 years us-
ing ERA-40 interannually varying forcing, prior to initiat-
ing the NCEP interannually varying forcing in 1948. For
the global warming simulations, we used an offline version
of the PISCES model that is forced with monthly outputs of
a coupled climate simulation carried out with the IPSL-CM4
model as described in Bopp et al. (2005). IPSL-CM4 consists
of an atmospheric model (LMDZ-4; Hourdin et al., 2006), a
terrestrial biosphere component (ORCHIDEE; Krinner et al.,
2005) and the OPA-8 ocean model and LIM sea ice model
(Madec et al., 1998).

2.2.3 NCAR model

The Community Climate System Model (CCSM-3) ocean
biogeochemistry model, consisting of an upper-ocean eco-
logical module (Moore et al., 2004) and a full-depth ocean
biogeochemistry module (Doney et al., 2006), is embedded
in a global physical ocean general circulation model (Collins
et al., 2006). The ecosystem module is based on the tradi-
tional NPZD (nutrients-phytoplankton-zooplankton-detritus)
type models, expanded to include multiple nutrients that can
limit phytoplankton growth (N, P, Si and Fe) and specific
phytoplankton types (Moore et al., 2004). Three phytoplank-
ton classes are represented: diatoms, diazotrophs and small
plankton (pico/nanoplankton). Diazotrophs fix their required
nitrogen from N2 gas; small plankton exhibit rapid and very
efficient nutrient recycling; and the diatom group represents
large, bloom-forming phytoplankton. Growth rates are deter-
mined by available light and nutrients and photoadaptation is
parameterised with variable chl:C ratios. The model has one
zooplankton class which grazes on phytoplankton and large
detritus. The biogeochemistry module includes full carbon-
ate system thermodynamics and air-sea CO2 and O2 fluxes
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(Doney et al., 2004 and 2006), nitrogen fixation and den-
itrification (Moore and Doney, 2007) and a dynamic iron
cycle with atmospheric dust deposition, scavenging and a
lithogenic source (Moore et al., 2006). For the hindcast sim-
ulations, the initial conditions for nutrients and inorganic car-
bon are prescribed from data-based climatologies (e.g. Key
et al., 2004). The biogeochemistry model is spun up for sev-
eral hundred years using a repeat annual cycle of physical
forcing, prior to initiating the interannually varying forcing.
Model ecosystem components converge within a few years
(Doney et al., 2009a and 2009b).

For the coupled runs, the NCAR model (CCSM3.1) in-
cludes, in addition to the ocean biogeochemistry and ecosys-
tem components, a prognostic carbon cycle and coupled ter-
restrial carbon and nitrogen cycles (Thornton et al., 2009)
embedded into a land biogeophysics model (Dickinson et
al., 2006). Details of the initialisation, spin-up and over-
all behaviour of this version of the model can be found in
Thornton et al. (2009). In brief, a sequential spin-up pro-
cedure was employed, similar to one previously described
by Doney et al. (2006), to reduce the magnitude of drifts
in the carbon pools when carbon and nitrogen are coupled
to the climate of the coupled model. The ocean component
was branched from the end of the ocean-only spin-up simu-
lation mentioned above and which was forced with an obser-
vationally based physical atmospheric climatology and fixed
atmospheric CO2 held at a preindustrial value. Several incre-
mental coupling steps are performed over several hundreds
of years of model simulation to bring the system gradually to
a stable initial condition in both surface temperature and at-
mospheric CO2. A 1000-year long preindustrial control sim-
ulation was then performed, and the historical and A2 simu-
lations were branched from the middle of the pre-industrial
control simulation.

2.3 Statistical analyses

The linear trend in monthly anomalies of SeaWiFS-derived
chl and PP was calculated using a simple model, which can
be formally stated as:

Yt = µ+ωXt +Nt (1)

whereYt is the data,µ is a constant term (the intercept),Xt

is the linear trend function (here time in months),ω is the
magnitude of the trend (the slope) andNt is the noise, or un-
explained portion of the data. The noise,Nt , is assumed to be
autoregressive of the order 1 (i.e. AR, Eq. 1), so that succes-
sive measurements are autocorrelated,φ =Corr (Nt , Nt−1).
Large values of autocorrelation, as often found in geophys-
ical variables, increase the length of trend-like segments in
the data, confounding the estimate of the real trend.

For the global warming simulations, we also tried fitting
an exponential curve to the PP time series, of the form:

Yt = αexp(ωXt ) (2)

whereµ =ln (α). The coefficient of determination and stan-
dard deviation of the residuals were compared for the linear
and exponential fits. In the vast majority of cases the two
fits had similar statistics, so in the interests of parsimony we
used the linear trend model.

The number of years required to detect a trend above natu-
ral variability is calculated by the method of Tiao et al. (1990)
and Weatherhead et al. (1998). More details of the origin of
this equation can be found in Appendix A. The number of
years,n∗, required to detect a trend with a probability of 90%
is:

n∗
=

[
3.3σN

|ω|

√
1+φ

1−φ

]2/3

(3)

whereσN is the standard deviation of the noise (i.e. the resid-
uals after the trend has been removed),ω is the estimated
trend andφ is the autocorrelation of the AR (Eq. 1) noise.
The number of years required to detect a trend when a data
gap is present,n∗∗, is:

n∗∗
= n∗

1

[1−3τ(1−τ)]1/3
(4)

whereτ = (T0 -1)/T andT is the total length of the time se-
ries andT0 is the time of the interruption. For an interruption
half-way through the data collection period,τ =0.5 andn∗∗

is a factor of 1.59 larger thann∗.

2.4 Biome definition

For ease of presentation, the calculated trends are aver-
aged within 14 biomes (marked in contours on Fig. 1).
The mid to high latitude biomes are defined as the re-
gions in which phytoplankton growth is seasonally light
limited (> 6 months/year when depth-averaged irradiance is
< 21 W m−2; Riley, 1957). The equatorial regions are those
in which annual mean net heat flux is< 30 W m−2 (ocean
gaining heat). The remaining areas are classed as olig-
otrophic. Mixed layer depth data used to define the biomes
came from the SODA programme; photosynthetically avail-
able radiation data came from the SeaWiFS project (http:
//oceancolor.gsfc.nasa.gov); and net heat flux data was cal-
culated using NCEP-NCAR Reanalysis Project fields (http:
//www.cdc.noaa.gov/data/gridded/). The biomes are further
divided by hemisphere and ocean basin, and finally the low
latitude Indian Ocean is separated into Arabian Sea and Bay
of Bengal biomes.

3 Results

3.1 Climate change or decadal variability?

As a measure of the change in ocean productivity in the last
10 years, the linear trend in monthly anomalies of SeaWiFS
chl and PP for the period September 1997–December 2007
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Fig. 1. Trend in monthly anomalies of SeaWiFS-derived chloro-
phyll concentration (top panel) and primary production (bottom
panel; mean of three algorithms) for the period September 1997–
December 2007. Only points where the trend is statistically signifi-
cant at the 95% level are plotted. Black contours and large numbers
denote the 14 biomes.

was calculated (Fig. 1). Only those regions where the
trend is statistically significant at the 95% level are plot-
ted. The strong El Nĩno event at the start of the Sea-
WiFS record in 1997/1998 is worth noting here, as lin-
ear trends in short data records can be sensitive to the val-
ues at the beginning and end of the time series. There
are several large, coherent patches of significant trend in
both chl and PP, particularly in the oligotrophic gyres of all
three ocean basins, whilst at high latitudes there are a few
smaller patches of significant trend. The typical magnitude
of trends in chl is∼ ± 0.002 mg m−3/year, with peak val-
ues of± 0.04 mg m−3/year. For PP, typical trend magnitudes
are of the order∼ ± 1 mg C m−2 day−1/year, with maxima
of ∼ ± 30–40 mg C m−2 day−1/year. The strongest negative
trend is in the northern North Atlantic, and strongest pos-
itive trend is south and east of Australia. The spatial dis-
tribution of statistically significant trends are similar to the
regions of large PP change between 1999 and 2004 shown
in Behrenfeld et al. (2006; their Fig. 3b). The trends in the
sub-tropics have been interpreted as reflecting the impact of
global warming on PP (Polovina et al., 2008; Gregg et al.,
2005; Kahru et al., 2008). However, to positively attribute

these trends to climate change it has to be demonstrated that
a 10-year record is able to capture a real trend, rather than
just natural interannual to decadal variability.

The SeaWiFS trends are compared to those estimated from
three different biogeochemical models run using reanalysis
forcing. The modelled chl and PP is split into overlapping
10-year sections (i.e. the trend for the period January 1958–
December 1967 is calculated, then the trend for the period
January 1959–December 1968, etc), in order to examine the
effect of using the relatively short time series of SeaWiFS
observations to define trends. The 10-year trends calculated
from the models are compared to the SeaWiFS chl trend in
Fig. 2 and SeaWiFS PP trend in Fig. 3. (Note that analy-
sis of different periods, e.g. September 1959 to December
1968, and so on, in the models, or January 1998 to Decem-
ber 2007 in the SeaWiFS data, did not significantly change
the results). For ease of presentation the trends are reported
as the average in each biome (biomes marked on Fig. 1).
The trends and variability are similar in all 3 models, par-
ticularly in low latitudes, despite each model having differ-
ently parameterised physics and biogeochemistry. The trends
in PP for each of the three different SeaWiFS algorithms
are plotted as red stars in Fig. 3, and are generally simi-
lar. The high latitude North Pacific has the largest differ-
ence between the three algorithms, with the Behrenfeld and
Falkowski (1997) algorithm showing a small positive trend
in PP and the Carr (2002) and Marra et al. (2003) algorithms
exhibiting a negative trend. In the other regions, the calcu-
lated trend is relatively insensitive to the algorithm used to
estimate SeaWiFS PP.

The final datapoints of the modelled results in Figs. 2 and
3 represent the 10-year model trend that overlaps with the
SeaWiFS record. In some biomes, e.g. the equatorial Pacific,
the modelled trends overlap with the trends in SeaWiFS-
derived chl and PP, but in other regions the modelled and
data trends diverge (e.g. the oligotrophic North Atlantic).
This may arise from the models’ lack of skill in reproduc-
ing the observed interannual variability. Of particular im-
portance is the models’ ability to reproduce the chl or PP
response to the 1997/1998 El Niño. Correlation coefficients
between time series of satellite-derived and modelled glob-
ally averaged chl and PP show a wide range of skill (For chl,
r = 0.32 (p < 0.05) for GFDL,r = 0.22 (p < 0.05) for IPSL
andr = 0.1 (n. s.) for NCAR. For PP,r = 0.23 (p < 0.05)
for GFDL, r = 0.62 (p < 0.05) for IPSL andr = 0.15 (n. s.)
for NCAR.) The models’ coarser resolution, as compared
to the data, errors in spatial positioning of circulation fea-
tures, e.g. upwelling regions, and variability in the trends
within each biome (Fig. 1), may result in mismatch between
modelled and data-derived trends, when averaged within the
biomes. We use the modelled trends here to place the SeaW-
iFS data in a longer-term context and provide an estimate of
variability in previous decades.
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Fig. 2. 10-year trend in SeaWiFS-derived chlorophyll concentration compared to 10-year trends in three global biogeochemical models. The
mean trend and 95% confidence interval in SeaWiFS-derived chl in each biome (see Fig. 1) and from 10-year long segments of output from
the GFDL, IPSL and NCAR models are plotted. Negative (positive) trends for a particular 10-year period represent declining (increasing)
chl values over that period. The first data point is the trend in modelled chl from January 1958–December 1967 and is plotted at 1958; the
second is the trend from January 1959–December 1968 and is plotted at 1959, etc.

If a climate change trend were dominating the chl or PP
signal, Figs. 2 and 3 would show consistently positive or
negative trends. Instead, the sign of the trend in the 10-year
long sections of modelled chl and PP switches between pos-
itive and negative on decadal timescales. The 10-year trend
in SeaWiFS chl and PP is of similar magnitude to trends of
previous decades, suggesting that the magnitude of decadal
variability in chl or PP is currently larger than, or similar
to, the response to global climate change. This influence of
decadal variability on determining the apparent trends in rel-
atively short time series is particularly evident in the low lat-
itude biomes. For example, in the oligotrophic North Pacific,
strong decadal variability is evident in the regular switching
between periods of positive and negative trends. Seen in this
longer-term context, it appears that the negative trend in the
oligotrophic gyres observed in the last 10 years of SeaW-

iFS data (Polovina et al., 2008; Gregg et al., 2005) is likely
reflecting decadal variability, rather than a global warming
response. For both chl and PP, the trends in the 10 years of
SeaWiFS data fall within the bounds of trends in previous
decades in most biomes in at least two of the models (i.e. the
95% confidence intervals overlap). The exceptions for chl are
the high latitude North Atlantic and the Arabian Sea (Fig. 2),
where the observed variability is greater than expected from
the model results. In all other biomes, the trends in the 10
years of SeaWiFS chl and PP are not unprecedented when
viewed in a longer-term context.

A climate change trend may be present in the data, in addi-
tion to the natural variability. However, within the relatively
short length of the satellite ocean colour time series, the
decadal variability is of a greater, or similar, magnitude than
the trend. Therefore, the linear trends in PP or chl estimated
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Fig. 3. 10-year trend in SeaWiFS-derived primary production (calculated using three different PP algorithms) compared to 10-year trends
in three global biogeochemical models. The mean trend and 95% confidence interval in SeaWiFS-derived PP in each biome (see Fig. 1)
and from 10-year long segments of output from the GFDL, IPSL and NCAR models are plotted. Negative (positive) trends for a particular
10-year period represent declining (increasing) primary production values over that period. The first data point is the trend in modelled
primary production from January 1958–December 1967 and is plotted at 1958; the second is the trend from January 1959–December 1968
and is plotted at 1959, etc.

from the SeaWiFS record cannot be separated from interan-
nual to decadal variability, and cannot be attributed unequiv-
ocally to the impact of global warming.

3.2 Expansion of the oligotrophic gyres

The negative trends in SeaWiFS chl in the oligotrophic gyres
(Fig. 1) have been attributed to global warming-related in-
creases in SST and stratification (Polovina et al., 2008). The
models again allow the recent observed trends in the areal ex-
tent of oligotrophic waters to be put into a longer-term con-
text. The size of the oligotrophic regions are estimated as the
area (km2) of the ocean where chl< 0.07 mg m−3, following
Polovina et al. (2008) and McClain et al. (2004). The time
series from 1958–2006 of oligotrophic gyre size, both glob-
ally and regionally, in each of the three models is plotted in

Fig. 4. In all three models, the global extent of oligotrophic
waters has distinct multi-decadal variability, with a period
of reduced size from 1958–1977, and increased area from
1977–1996. There is a local minimum in 1998, after which
the global oligotrophic area increases again.

Regionally, the North Pacific gyre size has pronounced
variability with a period of 4–6 years and reflects the El Niño-
Southern Oscillation (ENSO) cycle. During El Niño events
equatorial upwelling is curtailed, resulting in a temporary
expansion of the region of low productivity, and vice versa
during La Nĩna years. The size of the South Pacific gyre
has a distinct step change around 1977, coinciding with the
well-documented regime shift of the North Pacific ecosystem
(Francis et al., 1998; McGowan et al., 1998). Superimposed
on this increase of∼ ×8× 106 km2 is substantial interan-
nual variability. In the GFDL and NCAR models, the South
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Fig. 4. Annual mean size of the oligotrophic gyres, plotted as anomalies from the mean, estimated for the GFDL model (black lines), IPSL
model (green lines), NCAR model (blue lines) and SeaWiFS data (red lines). Correlation coefficients of global total satellite-derived and
modelled gyre size arer = 0.88 (p < 0.05) for GFDL,r = 0.62 (p < 0.05) for IPSL andr = 0.70 (p < 0.05) for NCAR.

Atlantic gyre has a more gradual decline in size with a tran-
sition around 1990 to an oligotrophic area∼ ×1×106 km2

smaller than in previous decades. The North Atlantic has
an increasing trend in oligotrophic area with large decadal
variability superimposed in the GFDL and NCAR models.
No trend in the North or South Atlantic gyre size is evident
in the IPSL model. This may be due to the implementation
of a minimum iron concentration in the IPSL model, which
has the effect of dampening the variability of iron and corre-
sponding variability in PP.

In most oligotrophic regions, and in the global total, a lo-
cal minimum occurs around 1998, after which the size of
the low chlorophyll area increases again. The minimum is
likely driven by the strong ENSO event which occurred in
1997/1998, and which happened to coincide with the start
of the SeaWiFS data record. This is the likely origin of
the increasing trend in gyre size observed in the SeaWiFS
data (Polovina et al., 2008; Irwin and Oliver, 2009). Ev-
idently, large decadal variability in the extent of the olig-
otrophic waters confounds attempts to extract trends from the
10-year satellite record. The models provide the needed con-
text and suggest that in some regions, and some models, the
size of the low chlorophyll area may have a long-term trend
(in some areas increasing and in others decreasing), in addi-
tion to decadal variability. More certain is that ENSO events,
regime shifts, and decadal variability have a pronounced in-
fluence on the size of the oligotrophic gyres.

3.3 Modelled trends in productivity in global warming
simulations

So far the analysis has used output from hindcast model sim-
ulations for the contemporary period. The results generally
indicate that any climate change trend in the 10 years of
satellite-derived chl or PP is not yet distinguishable from the
natural interannual to decadal variability. Clearly, 10 years
is not enough, but how many years of observations will we
need to detect a trend? To answer this question, we use out-
put from coupled ocean-atmosphere models run into the fu-
ture under global warming conditions.

For the rest of the analysis, we turn to simulations forced
with the IPCC global warming scenario, A2. The modelled
trends in chl and PP for the period 2001–2100 for all three
coupled models are plotted in Fig. 5. For detailed inter-
comparisons of modelled global warming response in chl
and PP see also Schneider et al. (2008) and Steinacher et
al. (2009). The models generally show a decreasing trend
in chl in the oligotrophic gyres and high latitudes, and in-
creasing trends in the Southern Ocean. Uniquely, the GFDL
model shows an increasing trend in chl in the high lati-
tude North Atlantic, Northeast Pacific and equatorial Pa-
cific. The global, multi-model mean trend in chlorophyll
is ∼ −2× 10−4 mg m−3/year, dominated by trends in the
IPSL model. Generally, the models show a decrease in
PP in the northern hemisphere and oligotrophic gyres of∼

1−2 mgC m−2 day−1/year, and an increase in the Southern
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Fig. 5. Linear trend in modelled chlorophyll concentration (left column) and primary production (right column) for the period 2001–2100
under the A2 global warming scenario, calculated for the GFDL, IPSL and NCAR models. Only points where the trend is statistically
significant at the 95% level are plotted.

Ocean of∼ 0.5−1 mgC m−2 day−1/year. The GFDL model,
and to a lesser extent the NCAR model, show increases
in the equatorial Pacific of∼ 1− 2 mgC m−2 day−1/year,
whereas the IPSL model shows a strong decrease. The
global, multi-model mean magnitude of the trend in PP is
−0.15 mgC m−2 day−1/year, dominated by the strong de-
creasing trend in the IPSL model. The expansion of the olig-
otrophic regions under global climate change conditions is
clear, particularly in the IPSL model and in the North Pacific
(all models).

3.4 How many years of data are needed to detect a trend
in ocean productivity?

The output from the global warming simulations can be used
to investigate the length of time series needed to detect a
trend above the natural variability. We employ a method that
calculates the signal-to-noise (i.e. trend-to-natural variabil-
ity) ratio of a time series and, accounting for auto-correlation,
estimates the number of data points necessary to detect a
real trend (Eq. 3); Weatherhead et al., 1998). The method
is applied to output from the three models run under the
IPCC A2 scenario. The number of years required to de-
tect a trend above the natural variability in chl and PP is
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Table 1. Length of time series in years needed to detect a global warming trend in chlorophyll concentration and primary production (bold)
above the natural variability, reported for each model as the average within the biomes (see Fig. 1 for biome locations). One standard
deviation of the spatial average is shown in brackets.

Biome GFDL IPSL NCAR Biome mean

1. High latitude North Pacific 41 (15)
40 (12)

41 (11)
43 (11)

41 (10)
41 (12)

41
41

2. Oligotrophic North Pacific 36 (10)
38 (11)

37 (11)
30 (13)

44 (12)
36 (11)

39
35

3. Equatorial Pacific 34 (8)
31 (10)

32 (11)
29 (8)

49 (8)
38 (12)

35
33

4. Oligotrophic South Pacific 41 (13)
43 (14)

36 (10)
35 (14)

48 (12)
50 (14)

42
43

5. Southern Ocean – Pacific 37 (13)
42 (15)

48 (17)
49 (18)

45 (12)
40 (13)

43
44

6. High latitude North Atlantic 40 (12)
41 (11)

31 (9)
33 (8)

37 (10)
43 (11)

36
39

7. Oligotrophic North Atlantic 42 (13)
44 (14)

34 (11)
31 (12)

35 (16)
38 (13)

37
38

8. Equatorial Atlantic 45 (9)
45 (10)

26 (7)
15 (2)

24 (8)
32 (6)

32
31

9. Oligotrophic South Atlantic 40 (12)
40 (13)

35 (12)
23 (13)

33 (13)
38 (14)

36
34

10. Southern Ocean – Atlantic 37 (11)
39 (18)

43 (10)
43 (13)

36 (11)
35 (12)

39
39

11. Arabian Sea 37 (6)
37 (7)

33 (6)
20 (5)

29 (8)
35 (9)

33
31

12. Bay of Bengal 40 (7)
41 (8)

31 (4)
21 (3)

41 (10)
49 (9)

37
37

13. Oligotrophic Indian 48 (11)
52 (14)

34 (10)
30 (11)

37 (13)
47 (13)

40
43

14. Southern Ocean - Indian 37 (11)
37 (12)

40 (12)
43 (14)

44 (10)
42 (10)

40
41

plotted in Fig. 6. The minimum length time series required
is at least 15 years, but in many regions a time series of 50–
60 years or more is needed (see Table 1 for biome mean val-
ues). (Note that the methodology used here does not specify
a start date for the period of observations. In Sect. 3.5 the
time period during which the climate change-driven signal
exceeds natural variability is estimated, specifically to ad-
dress whether a global warming signal might already be de-
tectable in the satellite ocean colour record.) All three mod-
els suggest relatively short detection times (∼ 20−30 years)
for chl in the equatorial regions. Longest detection times for
chl (∼ 50−60 years) occur in parts of the Southern Ocean.
The climate change trend in PP in the IPSL model is the
most rapidly detectable, with a mean of∼ 33 years. All three
models suggest shorter detection times (∼ 20−30 years) for
PP in equatorial regions (including the Arabian Sea) and the
South Atlantic. Longest detection times (∼ 50− 60 years)
for PP occur in parts of the Southern Ocean and in the Arctic
north of Iceland. Globally, the average length of a contin-
uous time series required to unequivocally detect a trend in

chl is 39 years or 41 years for PP. The satellite ocean colour
dataset is currently 30 years short of that target.

In order to extend the ocean productivity dataset, the
CZCS data (1978–1986) have been reprocessed to be consis-
tent with SeaWiFS, creating a quasi 31-year dataset. How-
ever, two different methodologies have been developed, each
of which gives different results. One method yields a 6% de-
crease in global chl between the 1980’s and the early part of
the SeaWiFS period (Gregg et al., 2003); the other method
indicates a 22% increase (Antoine et al., 2005). Although
a recent study (Martinez et al., 2009) employed EOF analy-
sis to demonstrate that variability in CZCS and SeaWiFS chl
responded in a similar fashion to sea surface temperature, di-
rectly comparing the two datasets remains challenging. The
obvious technical difficulties in producing a consistent time
series from two differently designed instruments that did not
overlap in time sounds a clear note of caution about potential
future gaps in the satellite ocean colour record.
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Fig. 6. Number of years required to detect a global warming trend in chlorophyll concentration (left column) and primary production (right
column) above the natural variability, calculated for the GFDL, IPSL and NCAR models (A2 scenario, 2001–2100). Only points where the
trend is statistically significant at the 95% level are plotted.

If there is a gap in the ocean colour time series, there are
not only cross-calibration issues to face; the number of years
required to detect a trend will also increase. If the data gap
occurs roughly halfway through data collection, the number
of years required would increase by∼ 50% (Eq. 4); Weather-
head et al., 1998). So in the case of ocean PP or chl, if a data
gap arises due to the failure of SeaWiFS and MODIS-Aqua,
the mean length of time needed to detect a global climate
change response would increase from∼ 40 to∼ 60 years.

3.5 When could the climate change signal exceed
natural variability in productivity?

Although we need many more years of data before a trend in
chl or PP can be unequivocally ascribed to global warming,
is it possible that climate change has already impacted pro-
ductivity within the satellite ocean colour era? The modelled
chl and PP provides an estimate of the year when the climate
change signal exceeds the natural variability of the system,
represented by the standard deviation of the models’ control
runs (i.e. no external CO2 forcing is applied). The year when
the climate change-driven signal exceeds the variability is de-
fined here as the year when the chl or PP in the warming
run exceeds the standard deviation of the control run for at
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Fig. 7. Examples of control and global warming simulations from the GFDL model for 2001–2100 of primary production at point locations
in the North Atlantic. Thick lines are the annual mean global warming primary production; thin solid lines are the control run primary
production; thin dashed lines are the mean± one standard deviation of the control run.

least a decade (each annual mean value within a decade must
meet this criterion). An example is shown in Fig. 7a, where
the warming signal exceeds the variability in PP during the
decade 2033–2043. By our criterion, the trend would not
be distinguishable from natural variability until 2043. (Note
that this analysis was performed on model output starting in
1860, but only 2001–2100 are plotted here.) The global maps
are presented in Fig. 8, where purple and dark blue regions
are areas in which the trend exceeded the natural variability
within the time period of satellite ocean colour observations
(1978–2009). For chl in the GFDL model, this occurs in the
Mediterranean Sea and patches of the Atlantic sector of the
Southern Ocean, which also appear in the IPSL model. The
IPSL model also has dark blue regions in parts of the Arc-
tic and mid-latitude North Atlantic, whilst the NCAR model
has patches in the Caribbean and equatorial Atlantic. For
PP, regions where the trend exceeded the natural variabil-
ity within the time period of satellite ocean colour observa-
tions are relatively few in the NCAR and GFDL models. In
the GFDL model, patches occur in the Atlantic sector of the
Southern Ocean and in the Indian Ocean between Madagas-
car and western Australia. The IPSL model suggests that
the climate change signal in PP may be detectable within the
satellite era in the equatorial Atlantic. Biome mean values
for all three models are shown in Table 2. In general, even
if the extended CZCS-SeaWiFS dataset were used, the ob-
served shifts in chl or PP are unlikely to exceed the natural
variability, and therefore cannot be unequivocally attributed

to global warming. Note also that there are extensive re-
gions where the changes in chl or PP remain smaller than the
natural variability throughout the time frame of this analysis
(which extends to 2100). An example from the oligotrophic
Pacific (Fig. 7b) demonstrates how a climate change signal
may be masked by vigorous interannual and decadal vari-
ability. As a global average, the climate change-driven trend
in chl does not exceed natural variability until∼ 2052 and
not until∼ 2057 for PP.

4 Discussion

The launch of the SeaWiFS ocean colour instrument in
September 1997 ushered in a new era of biological oceanog-
raphy. For the first time, daily high resolution images of sur-
face phytoplankton distributions became publicly available,
resulting in a substantial leap forward in our understanding
of ocean productivity patterns from the global scale to the
mesoscale and in temporal variability from days to years.
Ten-plus years of ocean colour data have provided unprece-
dented coverage of changes in ocean productivity – but are
the observed changes reflecting global climate change or nat-
ural variability?

Our analyses suggest that 10 years of ocean colour data
alone are not enough to unequivocally ascribe a trend in PP or
chl to global climate change. Decadal variabilty in chl and PP
is sufficiently large that it confounds attempts to determine
trends in the relatively short time series available. Indeed,
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Fig. 8. The year when the trend in chlorophyll concentration (left column) and primary production (right column) exceeds the natural
variability in the GFDL, IPSL and NCAR models, run with the IPCC A2 warming scenario from 1968–2100. White areas are where the
trend never exceeds the natural variability. Purple and dark blue areas are where the trend exceeded the natural variability within the time
period of contemporary satellite data.

decadal variability can appear to reverse a climate change
trend when 10-year datasets are examined. Consider the
time series of PP from a global warming simulation shown in
Fig. 7c. If a satellite with a 10-year life span were launched
in 2007, we might be tempted to assume that there was a
positive trend in PP. However, if a satellite were launched in-
stead in 2016, we would observe a decreasing trend in PP.
Ocean productivity has multiple time scales, responding as
it does to variability in physical forcing on seasonal, interan-
nual and decadal scales. In order to detect a long-term trend,
a dataset that is considerably longer than the time scale of
natural variability is necessary. In the case of ocean produc-
tivity, 10 years of data is insufficient.

The strong interannual and decadal variability in chl and
PP masks any climate change-driven trend that may be
present in the current satellite dataset. This effect has been
noted previously in studies that examined the satellite ocean
colour record for evidence of global warming (e.g. Martinez
et al., 2009) and in modelling studies that investigated the
timescales over which the climate change response exceeds
the natural variability. Boyd et al. (2008) concluded that
global warming induced changes in mixed layer depth in the
Southern Ocean could not be separated from the natural vari-
ability until ∼ 2040; and Bopp et al. (2001) found that 30 to
60 years of data are necessary to detect climate change sig-
nals in modelled export production. The time scales for trend
detection in chl and PP found in our analysis are consistent
with these studies.
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Table 2. The year when the global warming trend in modelled chlorophyll concentration and primary production (bold) exceeds the natural
variability, reported for each model as the average within the biomes (see Fig. 1 for biome locations).

Biome GFDL IPSL NCAR Biome mean

1. High latitude North Pacific 2072
2051

2054
2062

2075
2074

2067
2062

2. Oligotrophic North Pacific 2076
2070

2059
2043

2084
2080

2073
2064

3. Equatorial Pacific 2076
2063

2056
2052

2076
2079

2069
2065

4. Oligotrophic South Pacific 2051
2049

2049
2055

2079
2073

2060
2059

5. Southern Ocean – Pacific 2057
2051

2052
2053

2085
2068

2065
2057

6. High latitude North Atlantic 2048
2054

2033
2034

2072
2079

2053
2056

7. Oligotrophic North Atlantic 2060
2061

2049
2019

2053
2064

2054
2048

8. Equatorial Atlantic 2055
2060

2043
2007

2042
2062

2047
2043

9. Oligotrophic South Atlantic 2050
2051

2047
2043

2071
2072

2056
2055

10. Southern Ocean – Atlantic 2052
2032

2054
2048

2081
2076

2062
2052

11. Arabian Sea 2063
2060

2078
2043

2063
2059

2068
2054

12. Bay of Bengal 2087
2089

2074
2051

2078
2088

2080
2076

13. Oligotrophic Indian 2029
2031

2055
2043

2064
2066

2049
2047

14. Southern Ocean - Indian 2052
2054

2059
2062

2066
2074

2059
2063

Our analysis of future model simulations suggests that∼

40 years of data are needed to distinguish a climate change-
driven trend from natural variability. This conclusion de-
pends on the ability of the models to simulate both natu-
ral variability and the biological response to global warming
conditions. The models do well at simulating the contempo-
rary variability in chl, PP and oligotrophic gyre size (Figs. 2,
3 and 4). Confidence in the predictions of the response to
global warming is lower. Potentially, a model’s accuracy un-
der high CO2 conditions could be assessed by validating re-
sults against reconstructions of past marine biogeochemical
conditions from sedimentary records. For example, an earlier
version of the IPSL model was successfully evaluated against
glacial-interglacial changes using a global compilation of pa-
leoceanographic indicators from marine sediments (Bopp et
al., 2003). In addition to the problem of validating simu-
lations of future conditions, there are also some potentially
climate-sensitive biological processes that the models do not
represent, such as the complete spectrum of phytoplankton
species, zooplankton and higher trophic level dynamics, or
the evolution or acclimation of primary producers to chang-
ing conditions.

There are potentially large (and mostly unquantifiable) un-
certainties in the models’ predictions of future conditions.
Clearly, more data are needed to continue testing and validat-
ing biogeochemical models in order to improve confidence
in the predictions. It could be that a climate change-driven
trend in PP or chl will be detectable considerably sooner than
the models suggest, particularly as the global CO2 emissions
growth rate had exceeded the worst case scenario used in
the IPCC reports by 2007 (Raupach et al., 2007), although
CO2 emissions reduced slightly in 2009 due to the global
economic crisis (Le Qúeŕe et al., 2009). In addition, other
indicators of the biological response to climate change may
be more rapidly detectable than the change in PP or chl, such
as shifts in biome boundaries (e.g. Sarmiento et al., 2004)
or changes in phenology (Edwards and Richardson, 2004).
As demonstrated by our analysis and others (e.g. Chavez
et al., 2003; Behrenfeld et al., 2006; Henson and Thomas,
2007), the magnitude of interannual to decadal changes in
physical forcing can be large and result in substantial year-
to-year variability in productivity. On the other hand, the
models suggest that global climate change may result in more
gradual changes in conditions, potentially allowing time for
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phytoplankton populations to adapt or acclimate. If ecosys-
tems are very plastic, there may be only small changes in the
phytoplankton community due to the resident populations’
ability to adapt to changing conditions over many years or
decades (Boyd et al., 2008). Alternatively, a new ecosys-
tem structure may develop as conditions at a particular loca-
tion change (e.g. Boyd and Doney, 2002; Bopp et al., 2005).
However, rather than a gradual change, ocean ecosystems
may instead reach a “tipping point” and undergo rapid al-
terations, such as observed in regime shifts. For example,
the 1976/77 North Pacific shift saw basin-scale alteration of
the entire ecosystem, from phytoplankton to fish (e.g. Fran-
cis and Hare, 1994; deYoung et al., 2008; Alheit, 2009).
These regime shifts may pose difficulties for accurately es-
timating satellite PP derived from empirical algorithms, as
used here. In the tropical Pacific for example, Friedrichs et
al. (2009) demonstrated that satellite PP models successfully
reproduced in situ PP in the 1990s, but were much less suc-
cessful in the 1980s. This possibility points to the necessity
of understanding the mechanisms of present day variability
in ocean productivity – not only might it provide an indica-
tion of the ecosystem response to future changes, but it may
also aid in separating natural variability from the global cli-
mate change trend. For example, if one suspected that the
El Niño-Southern Oscillation was a dominant source of the
decadal variability evident in the SeaWiFS data (as shown in
e.g. Behrenfeld et al., 2006; Behrenfeld and Siegel, 2007),
one could add an El Niño index term to (Eq. 1), assuming
a linear response is appropriate. This could assist in sepa-
rating the decadal variability from the trend and permit even
a trend of small magnitude, relative to the variability, to be
examined. However, although progress has been made in un-
derstanding the relationships between contemporary natural
variability and ecosystems (e.g. Behrenfeld et al., 2006; Mar-
tinez et al., 2009), it is not yet clear whether these will hold
under global warming conditions. The currently observed
relationships may prove to be an analogue of the future re-
sponse to climate change; alternatively future changes in pro-
ductivity may not map onto contemporary modes of vari-
ability, and the system will undergo unpredictable changes
(Stone et al. (2001) provides a review of both arguments). Fi-
nally, the linear fit used here likely represents an upper limit
on the length of time series required to detect a trend. With
more sophisticated analyses, such as inclusion of spatial pat-
terns via EOF or optimal fingerprint analysis (e.g. Hassel-
mann, 1993), or Bayesian methods to detect changes in the
phase of the seasonal cycle (e.g. Dose and Manzel, 2004),
we may be able to more rapidly detect climate change-driven
trends in chl or PP.

All of these considerations point to the absolute neces-
sity of continued global monitoring of ocean productivity.
Climate change will almost certainly have a significant im-
pact on ocean ecosystems, but it will be difficult to distin-
guish natural variability from a global warming trend with-
out a substantially longer time series of data. The 10-plus

years of ocean colour data currently available are not suffi-
cient. Unfortunately, SeaWiFS and MODIS-Aqua, the two
US ocean colour satellites and primary sources of data for
the research community world-wide, are both well past their
operational lifetimes, and there could potentially be a long
wait before the next ocean colour instrument with similar ca-
pabilities is launched. Ocean colour missions are currently
underway or planned outside the US, particularly by India
and the European Space Agency (ESA). ESA launched the
MERIS ocean colour instrument in 2002 and has supported
a programme to merge MERIS, MODIS and SeaWiFS data
to construct a consistent ocean colour record (GlobColour;
www.globcolour.info). ESA also plans to launch an ocean
colour sensor on Sentinel-3 in 2013, and India has recently
launched OceanSat2 which has ocean colour capabilities.
However, restricted routine access to data and poorly char-
acterised imaging capabilities have limited the use of non-
US ocean colour data in the past. Any potential gap in the
time series of ocean colour data will severely compromise
our ability to detect and quantify ocean biology’s response to
global climate change.

The possibility of an imminent gap in ocean colour data
has led to the proposal of alternative monitoring strategies.
The use of “sentinel sites” – point locations where compre-
hensive, regular sampling is carried out and which are in-
tended to be representative of large ecological provinces –
has been suggested as a strategy for detecting the biologi-
cal response to climate change. The substantial spatial vari-
ability revealed by this analysis suggests however that time
series stations alone are unlikely to be an optimal strategy
and instead a global observing system is necessary to de-
tect the PP or chl response to global climate change. Cur-
rent ocean colour satellites are limited to measuring surface
properties, but changes will occur throughout the water col-
umn, altering plankton community composition and trophic
dynamics. Therefore, an integrated observing strategy con-
sisting of satellites, time series stations, gliders, floats and
moorings will be necessary to detect the full suite of biolog-
ical responses to global warming.

Appendix A

Trend detection

We provide an abbreviated derivation of (Eq. 3) here. The
interested reader is referred to Appendix 3 of Weatherhead
et al. (1998) for the full derivation. The unexplained portion
of the data after fitting a trend (Eq. 1),Nt , is assumed to
be autoregressive, so thatNt = Nt1 + εt , whereεt is white
noise (zero mean and varianceσ 2

ε ). The variance of the noise
Nt is related to the variance of the white noise process as
σ 2

N = σ 2
ε /(1−φ2).
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The estimate of the trend,ω in (Eq. 1), has a standard de-
viation associated with it,σω =

√
Var(ω). The exact form of

σω is given as Eq. A5 in Weatherhead et al. (1998). It sim-
plifies to:

Var(ω) ≈
σ 2

ε 123{
(1−φ)2T (T 2−1)

} (A1)

whereT = 12n denotes the number of months of data. There-
fore,

σω ≈
σε

(1−φ)

1

n3/2
=

σN

n3/2

√
1+φ

1−φ
(A2)

The commonly used rule is adopted, that a real trend is indi-
cated at the 95% confidence level if|ω/σω| > 2, i.e. the trend
is twice the standard deviation,z > 2−|ω/σω|. From stan-
dard normal tables,z = −1.3 for a probability of detection
of at least 90%, therefore|ω/σω| > 3.3 (Tiao et al., 1990).
The minimum number of years to detect a trend,n∗, is thus
(rearranging Eq. A2):

n∗
≈

[
3.3σε

|ω|(1−φ)

]2/3

=

[
3.3σN

|ω|

√
1+φ

1−φ

]2/3

(A3)

The derivation of the additional time needed to detect a trend
if an interruption is present,n∗∗ (Eq. 4), is outside the scope
of this paper, and so the interested reader is referred to Ap-
pendix 3, Eq. A4 in Weatherhead et al. (1998).
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