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The biology of bacterial cells is, in general, based on the infor-
mation encoded on circular chromosomes. Regulation of chro-
mosome replication is an essential process which mostly takes
place at the origin of replication (oriC). Identification of high
numbers of oriC is a prerequisite to enable systematic stud-
ies that could lead to insights of oriC functioning as well as
novel drug targets for antibiotic development. Current meth-
ods for identyfing oriC sequences rely on chromosome-wide nu-
cleotide disparities and are therefore limited to fully sequenced
genomes, leaving a superabundance of genomic fragments un-
studied. Here, we present γBOriS (Gammaproteobacterial
oriC Searcher), which accurately identifies oriC sequences on
gammaproteobacterial chromosomal fragments by employing
motif-based DNA classification. Using γBOriS, we created
BOriS DB, which currently contains 25,827 oriC sequences from
1,217 species, thus making it the largest available database for
oriC sequences to date.
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Introduction
Before every cell division, bacteria need to duplicate their ge-
netic material in order to ensure that no information is lost.
This essential process, called DNA replication, initiates in a
highly regulated manner at specific chromosomal sites called
oriC and is coordinated with many other cellular mechanisms
(1, 2). Usually, bacteria contain (multiple compies of) a sin-
gle chromosome and this chromosome contains a single oriC
sequence, although there are exceptions as, e.g., Vibrionales
contain two chromosomes (3, 4).
As many different proteins need to bind to and act upon oriC
in order for initiation to occur, oriC contains many different
protein binding sites and DNA motifs (5, 6). While there
is a high level of variation between oriC sequences of dif-
ferent organisms, there are also some nearly universal fea-
tures of oriC sequences (7–9). Among these are 9 bp short
DNA motifs called DnaA boxes, which act as binding site
for the initator protein DnaA, and AT-rich regions, where the
DNA double helix unwinds before the replication machinery
is loaded onto the DNA (10, 11). Furthermore, oriC contains
binding sites for proteins that relay information on the status
of the cell. Therefore, oriC sequences can be considered as
biological information compiler and processors (12).

All currently available computational methods for the iden-
tification of oriC sequences in bacterial chromosomes rely
on nucleotide disparities on the leading and lagging strand
of the DNA double helix (13–17). As replication usually ex-
tends from oriC bidirectionally, it is one of two chromoso-
mal sites where the leading and lagging strand switch places.
The most frequently used disparity, the GC skew, usually as-
sumes a V- or inverted V-shape with its minimum indicating
the presence of the origin of replication (18, 19). However,
due to natural variation, the shape of the skew can only re-
liably be asserted when analysing whole chromosomal se-
quences. Combining the GC skew with the location of DnaA
boxes, Ori-Finder (20), was used to create the current state-
of-the-art oriC database DoriC (21, 22).
While existing methods for the annotation of oriC sequences
are mainly based on statistical approaches, motif-based ap-
proaches for DNA sequence classification by machine learn-
ing might be a promising alternative. Machine learning meth-
ods, in particular deep neural networks (CNNs) have been
widely used already for similar tasks (23–29). However,
these methods are notorious for needing big amounts of data
and computing power. Support vector machines (SVMs) that
perform classification on the basis of k-mer (i.e., n-gram)
counts represent a less data-intensive alternative, and have
even been shown to outperform CNNs when training data
is small in number (30, 31). Some k-mer-SVMs even allow
mismatches or gaps in these k-mers, leading to more realistic
models of DNA motifs, which are subject to natural variation
(32–34).
In the current study, we present γBOriS (Gammaproteo-
bacterial oriC Searcher), a tool that is able to identify oriC
sequences for Gammaproteobacteria. This class of organisms
contains many model organisms (e.g., Escherichia coli, Vib-
rio cholerae and Pseudomonas putida), and causative agents
for serious illnesses such as such as cholera, plague and en-
teritis, which makes it a highly relevant study object. Making
use of recent developments in the fields of DNA sequence
classification and machine learning, γBOriS enables oriC
identification on both full chromosomes as well as chromo-
somal fragments, which drastically increases the number of
sequences that can be searched for oriC sequences. Finally,
using publicly available Gammaproteobacterial chromoso-
mal fragments as input for γBOriS, we gathered the largest
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dataset of bacterial oriC sequences available to date, BOriS
DB.

Materials and Methods

A. Data curation and creation. A ground truth oriC
dataset was compiled using a semi-automated method de-
scribed in (9, 35, 36). A given chromosome is first split it into
2.5 kb fragments that are centered around intergenic regions
and then, for those fragments close to the minimum of the
chromosome’s cumulative GC-skew, their respective proba-
bility of unwinding is calculated using WebSIDD (37). De-
fault values (37 °C, 0.1 M salt, circular DNA, copolymeric)
were chosen for the predictions, and negative superhelicity
values were tested in the range of σ.
A dataset of seed sequences was created by extracting the
central 9 bp from oriC sequences in the ground truth dataset.
Negative sequences for the initial classification training were
collected by picking, for each chromosome present in the
positive dataset, another sequence of the same size with the
same seed sequence from the respective chromosome. In or-
der to be able to identify the optimal fragment length for clas-
sification, the length of both the positive as well as the nega-
tive sequence were varied from 150 to 1500 bp in steps of 50
bp
For cutoff selection, a highly imbalanced dataset was created
by extracting all fragments of a given length around each of
the seed sequences from each of the chromosomes in the pos-
itive dataset.
Both the balanced as well as the imbalanced datasets were
split into training and testing datasets using a 70%-30% split,
leading to 318 chromosomes in the former and 141 chromo-
somes in the latter.
Chromosomes were downloaded from the NCBI refseq ftp
server. For BOriS DB, a list of Refseq organisms was taken
from ftp://ftp.ncbi.nlm.nih.gov/genomes/
refseq/bacteria/assembly_summary.txt, a list
of chromosomes for the UBA genomes was taken from
Supplementary 2 of (38).

B. Sequence classification using LS-GKM models.
The support vector machines used as classifiers in this study
derive distance matrices from a set of input sequences by
counting substrings and comparing their numbers in se-
quence pairs directly, making these approaches faster and less
memory intensive. The Spectrum Kernel is based on simple
k-mer composition differences (30). However, LS-GKM and
gkm-SVM models calculate differences between k-mers by
allowing for mismatches and small differences between the
k-mers (33, 39).

C. oriC database comparisons. Comparisons were per-
formed between BOriS DB v1 and DoriC v6.5, which were
the latest accessible versions of the databases at the time of
writing.
Pairs of sequences from different datasets were compared by
calculating the length of the longest common substring and

Fig. 1. The structure of γBOriS. Both the usage (top-down) as well as, schemati-
cally, the training process of the three modules and the training results as measured
on a test dataset (left-to-right) is shown.

dividing it by the length of the shorter sequence. Two se-
quences were considered to be identical if the relative se-
quence identity was above a cutoff of 0.7. This cutoff was
chosen in order to include overlapping sequences.
The internal consistency of the sequence datasets was evalu-
ated by calculating all-vs-all sequence similarities from pair-
wise sequence alignments after making the sequences in the
datasets of same length. Using multidimensional scaling and
hierarchical clustering (as implemented in the Python pack-
ages scikit-learn and scipy, respectively (40, 41)), these dis-
tance matrices were visualized. A database was deemed more
consistent if the degree of clustering is higher or if oriC se-
quences from closely related organisms are close on the tree.

Results
Implementation of γBOriS. The stand-alone version of
γBOriS is implemented in R and requires a Linux operating
system, whereas the frontend of the webserver is written in
jQuery and can be used without any software requirements.
As input file, γBOriS takes a fasta-formatted file containing
one or more DNA sequences of any length and returns two
fasta-formatted text files: One contains fragments γBOriS
identified as oriC and the other contains DNA fragments for
which the classifier abstained from a decision (see Methods).
γBOriS is composed of three modules that were adjusted for
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C oriC database comparisons

Fig. 2. Taxonomic distribution of organisms, number of sequences and γBOriS prediction results for the initial dataset. Outer ring: dark blue signifies chromosomes
that contain two, light blue those that contain a single oriC sequences in the initial dataset. Middle Ring: Light red signifies chromosomes for which BOriS doesn’t recognize
one of the oriC sequences, dark red signifies those for which two oriC sequences aren’t identified. Inner ring: Green represents chromosomes for which BOriS predicts
falsely positive oriC sequences.

and trained on Gammaproteobacterial oriC sequences (fig.
1). The core module consists of a motif-based sequence
SVM, whose parameters were chosen in order to maximize
the AUC on discrimination of oriC from non-oriC sequences
in a balanced dataset (see Methods, fig. 2). To this end,
we trained a total of 12,877 LS-GKM and Spectrum Ker-
nel SVMs (30, 32, 33) with varying parameters and sequence
fragment sizes. The highest AUC of 0.977 on the test dataset,
was achieved with a LS-GKM model trained with 1250 bp
fragments, a word length of 10 bp with 6 informative columns
and at most 4 mismatches (see supplementary information).

To turn this sequence classifier into a sequence identifier, the
first module of γBOriS splits the input sequence into a man-
ageable number of candidate fragments by picking only frag-
ments centered around an occurence of a so-called seed se-
quence. This list of seed sequences was created based on the
initial oriC dataset by extracting the central 9bp sequences
from the oriC sequences used for training of the classifier.
This choice of seed sequences was validated by showing that

all oriC sequences in the test dataset are centered around one
of the seeds defined this way from sequences in the training
dataset.

Finally, the third module of γBOriS assigns a class label to
every fragment based on the classification value obtained for
this sequence in the second module. As, for one input se-
quence, the number of candidate sequences is expected to
be much higher than the number of correct oriC sequences,
this is a highly imbalanced problem. To mitigate high num-
bers of false positive classifications, we make use of the con-
cept of classification with abstaining (42). To this end, two
cutoffs are employed; below the lower cutoff, fragments are
labeled "negative", above the upper cutoff, fragments are la-
beled "positive" and between the cutoffs, the classifier ab-
staines from labeling the fragments. In the choice of cutoffs,
we aim to both maximize the value of F1 and minimize the
number of correct oriC sequences for which this module ab-
stained from classification, leading to a Pareto-optimal state.
For the sequences used to train γBOriS, we found that nor-
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malizing the classification values of the fragments extracted
from one sequence to a range between [0, 1] and employ-
ing cutoffs of 0.99 and 0.41 lead to the best result on the
test dataset (F1 of 0.943 with 0.7% of correct oriCs in the
abstained space). γBOriS as a web tool as well as a stand-
alone software and its source code are freely available at
BOriS.heiderlab.de.

Construction of BOriS DB. In order to create a large
dataset for gammaproteobacterial oriC sequences, we ap-
plied γBOriS to all chromosomes and chromosomal frag-
ments present in the Refseq database (restricted to sequences
with the release type ”Major”) as well as the genomes in the
Uncultivated Bacteria and Archaea (UBA) dataset (38). Both
datasets contain a high number of incompletely sequenced
chromosomes and chromosomal fragments. After discard-
ing sequences present in both databases, we retained 25,827
oriC sequences from 1,217 different gammaproteobacterial
species, most of which were not identified yet. These se-
quences constitute the first version of BOriS DB and are
available for download at boris.heiderlab.de.

Comparison to DoriC. Due to the fact that only very
few oriC sequences are experimentally confirmed for
Gammaproteobacteria, and there is no established oriC
benchmark dataset, a direct comparison of oriC identifica-
tion tools is infeasible. Therefore we compared sequences
collected using γBOriS to the current state-of-the-art oriC
database, DoriC (21, 22). To this end, we created an oriC
dataset by using the 462 chromosomes present in DoriC as
input for γBOriS.

For 330 of the chromosomes listed in DoriC we find the same
oriC sequence, however, for 156 there is disagreement. To
evaluate which of the datasets is more consistent, we calcu-
lated pairwise similarity matrices for all sequences in DoriC
and the results from γBOriS, respectively. The underlying
assumption behind this method is that the oriC sequences of
different organisms are related evolutionarily and therefore
show a high amount of similarity; mis-identified sequences
will be more different to the other sequences in the dataset.

Visualization using multidimensional scaling shows that the
sequences identified using γBOriS, generally form tighter
clusters than the sequences stored in DoriC (fig. 3), which
indicates more consistency. This result is also supported by
phylogenetic trees derived from the pairwise distance ma-
trices (see supplementary information). A closer inspection
of these results shows that while for most orders, γBOriS
is more consistent than DoriC (as, e.g., for Vibrionales and
Xanthomonadales), the contrary is true for chromosomes
from, e.g., Methylococcales and Thiotrichales. For many
Gammaproteobacterial endosymbionts, oriC sequences are
not well-identified neither in DoriC nor by γBOriS, which
is due to the fact that most of these genomes lack a dnaA
gene and rely on a different initiation method (43).

Discussion
Currently, one of the most promosing applications for ma-
chine learning methods in bioinformatics is the classifica-
tion and identification of DNA sequences (44, 45). While
machine learning methods have already been employed for
the identification of origins of replication in yeast (46), oriC
identification in bacterial chromosomes is still performed
based on chromosome-wide nucleotide disparities such as the
GC-skew. As these methods are limited to fully sequenced
chromosomes, no oriC sequences can be identified for a huge
number of only fragmentarily sequenced genomes. Further-
more, the methods developed for eukaryotic chromosomes
cannot easily applied to bacterial chromosomes as the com-
position of these sequences are radically different (47). In
contrast, γBOriS, which we introduce here and which makes
use of a motif-based machine learning method, is able to
identify oriC sequences on chromosomal fragments as well
as full chromosomes of Gammaproteobacteria.
Due to the fact that there is a high degree of variance in oriC
structure between taxonomic classes (7, 43), we limited the
scope of γBOriS to Gammaproteobacteria. Furthermore, as
most secondary chromosomes do not rely on the initiator pro-
tein DnaA for replication initiation (48, 49), and as they are
rather rare in bacterial cells (3), we also excluded these from
the scope of the tool and focused only on primary chromo-
somes.
Using different training datasets, the general approach of
γBOriS can easily be adapted for other groups of organisms.
Suitable datasets, however, are currently not easily available
in the necessary amount and quality (e.g., same-sized, cen-
tered, and co-oriented) because current oriC identification
methods do not provide the identified sequences in this man-
ner. The semi-automatic method used to create an initial oriC
dataset in this study assumes that (I) oriC is intergenic, (II)
close to the global GC skew minimum, and (III) defined by
the DUE, as well as (IV) the presence of DnaA boxes. The
fact that this method requires manual decision-making makes
it hard to automate it, but also ensures that the weight of the
assumptions can be balanced and adjusted for every single
case. Therefore, we consider this method highly accurate,
which is supported by the fact that oriC sequences identi-
fied have been confirmed experimentally (9, 35, 36). Being
solely trained on sequences gathered with the method used
in this paper, γBOriS can be used as an automatization and
extention of it.
By applying γBOriS on fragments deposited in public se-
quence databases, we created BOriS DB, the largest availabe
database of oriC sequences to date. BOriS DB currently con-
tains 25,827 sequences from 1,217 species, most of which
were not identified yet. The sequences in this database show
a high degree of consistency, which indicates a high degree
of accuracy in prediction (see fig. 3 and supplementary infor-
mation). A comparison of BOriS DB to DoriC suggests that
both databases are more reliable for some taxonomic groups
than for others, with γBOriS, in total, showing a better per-
formance.
γBOriS enables researchers to identify oriC sequences on
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C oriC database comparisons

Fig. 3. Consistency of the sequences present in oriC databases. Multidimensional scaling representation of the distance matrix calculated from all-vs-all pairwise
sequence alignments of sequences from oriC databases; (A) γBOriS (used on chromosomes that DoriC is created from) and (B) DoriC.

fragments of bacterial chromosomes making it possible to in-
tegrate it into next-generation sequencing pipelines. As can
be seen from the construction of BOriS DB, this leads to
a large amount of newly-identified oriC sequences, among
which are sequences from organisms that are notoriously
hard to sequence and impossible to culture. This enables
the use of data-intensive cutting-edge methods such as deep
learning (50) for the identification previously unknown initi-
ation factors, which might, due to their high degree of tax-
onomic specificity, be good candidates for targets of new
antibiotics (51). Furthermore, a deeper knowledge of the
components of of oriC will make it possible to de novo
design chromosomes with desired replication characteristics
and synthetic oriC sequences (52). γBOriS as a web tool as
well as a stand-alone software, its source code, and BOriS
DB are freely available at BOriS.heiderlab.de.
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