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Abstract. In this article, the D-dimensional Klein-Gordon equation within
the framework of Greene-Aldrich approximations scheme for Hua potential is
solved for s-wave and arbitrary angular momenta. The energy eigenvalues and
corresponding wave functions are obtained in an exact analytical manner via the
Nikiforov-Uvarov (N-U) method. Further, it is shown that in the non-relativistic
limit, the energy eigenvalues reduces to that of Schrödinger equation for the
potential. Our results are in excellent agreement with other related works.
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1 Introduction

The solutions of the relativistic and non-relativistic quantum mechanical wave
equations with various physical potentials play an important role to dictate
quantum-mechanical phenomena and related dynamics of a quantum system.
The eigenvalues and their corresponding wave functions give significant infor-
mation in describing various quantum systems [1–3]. The problem of finding
analytical solutions of D-dimensional Klein-Gordon equation for a number of
special potentials has been a line of great interest in recent years [4–11].

It is important to create a model which contain potential concepts i.e. to de-
scribe the behaviour and interaction between atoms and particles. Potentials
play important role to describe the interaction between nuclei, nuclear particle
and the structures of the diatomic molecules. Various potentials are used to ana-
lyze the nature of vibration of Quantum System such as pseudo-harmonic [12],
modified Eckart plus Hylleraas [13], morse type [14], Wood-Saxon [15], Rosen-
Morse [16], harmonic oscillator [17] specially on lower dimensions. The solu-
tions are also crucial in quantum soluble systems. Methods involve in literature
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are Nikiforov-Uvarov method [18, 19], asymptotic iteration method [20], Point-
Cannonical transformation [21], Lie algebraic method [22], super symmetry ap-
proach [23], Laplace transform approach [24,25], factorization method [26] etc.

In this article, the approximate solutions of Klein-Gordon equation in D-
dimensions is obtained for Hua potential. The Hua potential [27], is an in-
termolecular potential and widely applied to molecular physics and quantum
chemistry. The expression of Hua potential is:

V (r) = V0

( 1− e−2αr

1− qe−2αr
)2
. (1)

Bearing in mind the deeper physical insight that analytical methodologies pro-
vide into the physics of problem, the most economic and powerful Nikiforov-
Uvarov (N-U) method is applied in my calculations on the D-dimensions.

To investigate the behaviour of Hua potential within the frame work of Klein-
Gordon equation I use Greene-Aldrich approximation [28] and applying some
simple constraints such that the equation can be solved by N-U method.

My work is organized as follows: To make it self-contained a brief review of N-
U method is given in Section 2. In Section 3, the D-dimensional Klein-Gordon
equation is presented considering the Hua potential as well as Greene-Aldrich
approximation. In Section 4, the energy eigenvalues and corresponding wave
functions are obtained for the D-dimensional Klein-Gordon equation by using
N-U method. The non-relativistic limit of the energy eigenvalues and corre-
sponding wave functions are obtained in Section 5. Section 6 contains the con-
cluding remark.

2 Nikiforov-Uvarov Method

The N-U method is based on solving a second order linear differential equation
by reducing it to a generalized hypergeometric type. In both relativistic and
non-relativistic quantum mechanics, the wave equation with a given potential
can be solved by this method by reducing the one dimensional K-G equation to
an equation of the form

Ψ′′(x) +
τ̃(x)

σ(x)
Ψ′(x) +

σ̃(x)

σ2(x)
Ψ(x) = 0 , (2)

where σ(x) and σ̃(x) are polynomials of degree atmost 2 and τ̃(x) is a polyno-
mial of degree atmost 1. In order to find a particular solution to Eq. (2), we set
the following wave function as a multiple of two independent parts

Ψ(x) = Φ(x)y(x) . (3)

Thus equation (2) reduces to a hyper-geometric type equation of the form

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0 ,
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where τ(x) = τ̃(x)+2π(x) satisfies the condition τ ′(x) < 0 and π(x) is defined
as

π(x) =
σ′(x)− τ̃(x)

2
±
√

(
σ′(x)− τ̃(x)

2
)2 − σ̃(x) +Kσ(x) , (4)

in whichK is a parameter. DeterminingK is the essential point in calculation of
π(x). Since π(x) has to be a polynomial of degree at most one, the expression
under the square root sign in Eq. (4) can be put into order to be the square of a
polynomial of first degree [18], which is possible only if its discriminant is zero.
So, we obtain K by setting the discriminant of the square root equal to zero.
Therefore, one gets a general quadratic equation for K. By using

λ = K + π′(x) = −nτ ′(x)− n(n− 1)

2
σ′′(x) , (5)

the values of K can used for the calculation of energy eigenvalues. Polynomial
solutions yn(x) are given by the Rodrigues relation

yn(x) =
Bn
ρ(x)

(
d

dx
)n[σn(x)ρ(x)] , (6)

in which Bn is a normalization constant and ρ(x) is the weight function satisfy-
ing

ρ(x) =
1

σ(x)
exp

∫
τ(x)

σ(x)
dx . (7)

On the other hand, the second part of the wave function φ(x) in relation (3) is
given by

φ(x) = exp

∫
π(x)

σ(x)
dx . (8)

3 The Klein-Gordon Equation in D-Dimensions

The time independent D-dimensional Klein-Gordon equation in the atomic units
~ = c = µ = 1, may be written as [29]

∇2
DΨ(r,ΩD) +

[(
E − V (r)

)2
−
(
M + S(r)

)2]
Ψ(r,ΩD) = 0 , (9)

where M denotes the particle mass, E is the energy, V (r) and S(r) are vector
and scalar potentials respectively. The D-dimensional Laplacian operator∇2

D is
given by [30]

∇2
D = r1−D

∂

∂r

(
rD−1

∂

∂r

)
+
L2
D(ΩD)

r2
, (10)
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where L2
D(ΩD) is the ground angular momentum [31]. In addition, we

know that L2
D(ΩD)/r2 is a generalization of the centrifugal barrier for the D-

dimensional space and involves angular coordinates ΩD and the eigenvalues
of L2

D(ΩD) [30]. L2
D(ΩD) is a partial differential operator on the unit space

SD−1 define analogously to a three-dimensional angular momentum [31] as

L2
D(ΩD) = −

D∑
i≥j

(L2
ij), where L2

ij = xi
∂

∂xj
− xj

∂

∂xi
for all Cartesian compo-

nent xi of the D-dimensional vector (x1, x2, . . . , xD).

To eliminate the first order derivative, the total wave function may be defined as

Ψ(r,ΩD) = r
(D+1)

2 Rnl(r)Ylm(ΩD) , (11)

where Ylm(ΩD) is the generalized spherical harmonic function. The eigen-
values equation for the generalized angular momentum operator is given by
LD2 Ylm(ΩD) = l(l + D − 2)Ylm(ΩD). With this, we can write the radial part
of the D-dimensional Klein-Gordon equation as follows:

d2Rnl(r)

dr2
+

[(
E2 −M2

)
− 2
(
MS(r) + EV (r)

)
+ V 2(r)− S2(r)− (2l +D − 3)(2l +D − 1)

4r2

]
Rnl(r) = 0 . (12)

Assuming V (r) = S(r), equation (12) becomes

d2Rnl(r)

dr2
+

[
(E2 −M2)− 2V (r)(M + E)

− (2l +D − 3)(2l +D − 1)

4r2

]
Rnl(r) = 0 . (13)

The solution for the above equation with l 6= 0 is mainly depending on replacing
the orbital centrifugal term of singularity with the help of a suitable approxima-
tion scheme. The approximation scheme used in this article to deal with the
centrifugal term is Greene-Aldrich approximation scheme given by:

1

r2
≈ 4α2e−2αr

(1− qe−2αr)2
. (14)

Inserting the potential function and the modified centrifugal term as given in
Eq (1) and Eq (14) respectively, Eq (13) reduces to
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d2Rnl(r)

dr2
+

[(
E2 −M2

)
− 2(M + E)V0

( 1− e−2αr

1− qe−2αr
)2

− (2l +D − 3)(2l +D − 1)α2e−2αr(
1− qe−2αr

)2
]
Rnl(r) = 0 . (15)

4 Solutions of the D-Dimensional Klein-Gordon Equation

In order to solve Eq (15) by the N-U method, we need to recast it into a solvable
form. To do so, I introduce a new variable s = e−2αr and Eq (15) takes the form

d2R(s)

ds2
+

(1− qs)
s(1− qs)

d

ds
− 1

s2(1− qs)2

[(
q2ε2 + β2

)
s2

− 2
(
qε2 + β2 − γ2

)
s+

(
ε2 + β2

)]
R(s) = 0 , (16)

where I have used the notations

ε2 =
E2 −M2

4α2
, β2 =

2(M + E)V0
4α2

, γ2 =
1

2
(2l +D − 1)(2l +D − 3) .

Comparing Eq (16) with Eq (2),

τ̃(s) = (1− qs), σ(s) = s(1− qs)
(17)

σ̃(s) = −[(q2ε2 + β2)s2 − 2(qε2 + β2 − γ2)s+ (ε2 + β2)] .

Substituting them into relation (4) leads to

π(s) = −qs
2
±
[
(q2ε2 + β2 +

q2

4
− qK)s2

− [2(qε2 + β2 − γ2)−K]s+ (ε2 + β2)
]1/2

. (18)

Further, the discriminant of the upper expression under the square root has to be
set equal to zero. So, one can easily obtain

4 = [2(qε2 + β2 − γ2)−K]2

− 4(ε2 + β2)(q2ε2 + β2 +
q2

4
− qK) = 0 . (19)

Solving Eq (19) for the constant K, the double roots are obtained as

K1,2 = 2(1− q)β2 − 2γ2 ± 2ab ,
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where a =
√
ε2 + β2 and b =

√
(1− q)2β2 + 2qγ +

q2

4
. Thus substituting

these values for each K into equation (18), one can easily obtains

π(s) = −qs
2
±

{
(b− qa)s− a; for K1 = 2(1− q)β2 − 2γ2 + 2ab

(b+ qa)s− a; for K2 = 2(1− q)β2 − 2γ2 − 2ab
(20)

By choosing an appropriate value for K in π(s) which satisfies the condition
τ ′(s) < 0, one gets π(s) = −(aq+ b+ q/2)s+a for K2 = 2(1− q)β2−2γ2−
2ab; giving the function

τ(s) = −2(aq + b+ q)s+ 1 + 2a . (21)

As per Eq (5), the constant λ is defined as

λ = 2(1− q)β2 − 2γ2 − 2ab− (
q

2
+ aq + b) . (22)

Also by Eq (5):

λn = −nτ ′(s)− n(n− 1)

2
σ′′(s) . (23)

Here,

τ ′(x) = −2(aq + b+ q) and σ′′(s) = −2q . (24)

Carrying out some simple algebraic calculation with the eq (22), eq (23) and
eq (24), we have

a =
1

2

[β2
( 1

q2
− 1
)
−
(
n+

1

2
+
b

q

)2
n+

1

2
+
b

q

]
. (25)

Substituting the values of a and b in Eq (25) and simplifying, we have

ε2n = −β2

+
1

4


β2
(

1
q2 − 1

)
−

(
n+ 1

2 +

√(
1
q − 1

)2
β2 + 2γ2

q + 1
4

)2

n+ 1
2 +

√(
1
q − 1

)2
β2 + 2γ2

q + 1
4


2

(26)

This constitutes the energy eigenvalue equation for Hua potential and the ap-
proximate energy eigenvalue (by putting the values of notationals ε, β, γ) is of
the form
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Enl ≈ V0 −
α2

M


MV0
4α2

(
1

q2
− 1

)
− χ2

χ


2

, (27)

where,

χ = n+
1

2
+

√
MV0
4α2

(1

q
− 1
)2

+
(2l +D − 1)(2l +D − 3)

q
+

1

4
.

From Eq (7) it can be shown that the weight function ρ(s) is ρ(s) = s2a(1−qs)2b
and by substituting ρ(s) into the Rodrigues relation (6), one gets

yn(s) =
Bn

s2a(1− qs)2b
(
d

ds
)n[sn(1− qs)ns2a(1− qs)2b]

=
Bn

s2a(1− qs)2b
P (2a,2b)
n (1− 2qs) , (28)

where P (2a,2b)
n (1 − 2qs) stands for Jacobi polynomial [32, 33] and Bn is the

normalizing constant. The other part of the wave function is simply found from
Eq (8) as

φ(s) = sa(1− qs)( 1
2+b) . (29)

Finally, the wave function is obtained as follows:

R(s) = Bns
a(1− qs)(b+ 1

2 )P (2a,2b)
n (1− 2qs) . (30)

5 Non-Relativistic Limit

It is well-known that the Schrodinger equation represents the non-relativistic
spinless particle while the Klein-Gordon equation represents particle with spin-
zero. This suggests that a relationship may exists between the solutions of these
two important equations. Actually, the non-relativistic limit may be derived from
the relativistic one when the energies of the potentials S(r) and V (r) are small
compared to the rest mass, the non-relativistic energies can be determined by
taking the non-relativistic limit values of the relativistic eigenenergies with the
transformation E + µc2 −→ 2µc2 and E − µc2 −→ E . With this, the
relativistic energy in Eq (26) reduces to

E = −2V0 −
α2

2µc2


µc2V0
α2

( 1

q2
− 1
)
− ζ2

ζ

 , (31)
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where

ζ = n+
1

2
+

√
µc2V0
α2

(1

q
− 1
)2

+
(2l +D − 1)(2l +D − 3)

q
+

1

4
.

And the corresponding wave function is obtained as follows:

R(s) = Bns
A(1− qs)(B+ 1

2 )P (2A,2B)
n (1− 2qs) , (32)

where

A =
1

α

√
(E +

V0
2

)µc2 and

B =
1

α

√
(1− q)2µc2V0 + α2q(2l +D − 1)(2l +D − 3) +

q2α2

4
.

6 Conclusions

In this article, the solutions of the D-dimensional Klein-Gordon equation with
equal scalar and vector potentials for the Hua potential using N-U method upon
application of Greene-Aldrich approximation to the centrifugal term. Relativis-
tic and non-relativistic energy eigenvalues are obtained and the corresponding
wave functions in terms of the Jacobi polynomials are presented.
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