print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: electromagnetic wave

The energy of the quanta of electromagnetic radiation is subject to gravitational forces just like a mass of magnitude m = hν/c2. This is so because the relationship of energy E and mass m is E = mc2. As a consequence, light traveling toward Earth gains energy and its frequency is shifted toward the blue (shorter wavelengths), whereas light traveling “up” loses energy and its frequency is shifted toward the red (longer wavelengths). These shifts are very small but have been detected by the American physicists Robert V. Pound and Glen A. Rebka.

The effect of gravitation on light increases with the strength of the gravitational attraction. Thus, a light beam from a distant star does not travel along a straight line when passing a star like the Sun but is deflected toward it. This deflection can be strong around very heavy cosmic objects, which then distort the light path acting as a gravitational lens.

Under extreme conditions the gravitational force of a cosmic object can be so strong that no electromagnetic radiation can escape the gravitational pull. Such an object, called a black hole, is therefore not visible, and its presence can be detected only by its gravitational effect on other, visible objects in its vicinity. (For additional information, see astronomy.)

The greenhouse effect of the atmosphere

The temperature of the terrestrial surface environment is controlled not only by the Sun’s electromagnetic radiation but also in a sensitive way by Earth’s atmosphere. As noted earlier, each substance absorbs and emits electromagnetic radiation of some energies hν and does not do so in other ranges of energy. These regions of transparency and opaqueness are governed by the particular distribution of internal energies of the substance.

Earth’s atmosphere acts much like the glass panes of a greenhouse: it allows sunlight, particularly its visible range, to reach and warm Earth, but it largely inhibits the infrared radiation emitted by the heated terrestrial surface from escaping into space. Since the atmosphere becomes thinner and thinner with increasing altitude above Earth, there is less atmospheric absorption in the higher regions of the atmosphere. At an altitude of 100 km (62 miles), the fraction of atmosphere is one 10-millionth of that on the ground. Below 10 million hertz (107 Hz), the absorption is caused by the ionosphere, a layer in which atoms and molecules in the atmosphere are ionized by the Sun’s ultraviolet radiation. In the infrared region, the absorption is caused by molecular vibrations and rotations. In the ultraviolet and X-ray regions, the absorption is due to electronic excitations in atoms and molecules.

Without water vapour and carbon dioxide (CO2), which are, together with certain industrial pollutants, the main infrared-absorbing species in the atmosphere, Earth would experience the extreme temperature variations between night and day that occur on the Moon. Earth would then be a frozen planet, like Mars, with an average temperature of 200 K (−73 °C, or −100 °F), and not be able to support life. Scientists believe that Earth’s temperature and climate in general will be affected as the composition of the atmosphere is altered by an increased release and accumulation of carbon dioxide and other gaseous pollutants (for a detailed discussion, see climate; hydrosphere; and global warming).

Forms of electromagnetic radiation

Electromagnetic radiation appears in a wide variety of forms and manifestations. Yet, these diverse phenomena are understood to comprise a single aspect of nature, following simple physical principles. Common to all forms is the fact that electromagnetic radiation interacts with and is generated by electric charges. The apparent differences in the phenomena arise from the question in which environment and under what circumstances can charges respond on the time scale of the frequency ν of the radiation.

At smaller frequencies ν (smaller than 1012 hertz), electric charges typically are the freely moving electrons in the metal components of antennas or the free electrons and ions in space that give rise to phenomena related to radio waves, radar waves, and microwaves. At higher frequencies (1012 to 5 × 1014 hertz), in the infrared region of the spectrum, the moving charges are primarily associated with the rotations and vibrations of molecules and the motions of atoms bonded together in materials. Electromagnetic radiation in the visible range to X-rays have frequencies that correspond to charges within atoms, whereas gamma rays are associated with frequencies of charges within atomic nuclei. The characteristics of electromagnetic radiation occurring in the different regions of the spectrum are described in this section.

  翻译: