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ABSTRACT. In this study, we report on the spatial and temporal distribution of seasonal snow depth
derived from passive microwave satellite remote-sensing data (e.g. SMMR from 1978 to 1987 and SMM/I
from 1987 to 2006) in China. We first modified the Chang algorithm and then validated it using
meteorological observation data, considering the influences from vegetation, wet snow, precipitation,
cold desert and frozen ground. Furthermore, the modified algorithm is dynamically adjusted based on
the seasonal variation of grain size and snow density. Snow-depth distribution is indirectly validated by
MODIS snow-cover products by comparing the snow-extent area from this work. The final snow-depth
datasets from 1978 to 2006 show that the interannual snow-depth variation is very significant. The
spatial and temporal distribution of snow depth is illustrated and discussed, including the steady snow-
cover regions in China and snow-mass trend in these regions. Though the areal extent of seasonal snow
cover in the Northern Hemisphere indicates a weak decrease over a long period, there is no clear trend
in change of snow-cover area extent in China. However, snow mass over the Qinghai–Tibetan Plateau
and northwestern China has increased, while it has weakly decreased in northeastern China. Overall,
snow depth in China during the past three decades shows significant interannual variation, with a weak
increasing trend.

INTRODUCTION

Snow plays an important role in the climatic system due to
its high surface albedo and heat-insulation effect which
influences energy exchange between land surface and
atmosphere. It also influences hydrological processes
through snow water storage and release. In the past three
decades, passive microwave remote-sensing data (e.g.
scanning multichannel microwave radiometer (SMMR) and
Special Sensor Microwave/Imager (SSM/I)) have shown the
capability to obtain large-scale and long-term snow-depth
datasets (Armstrong and Brodzik, 2002). The deeper the
snowpacks, the more snow crystals are available to scatter
microwave energy away from the sensor. Hence, microwave
brightness temperatures are generally lower for deep
snowpacks and higher for shallow snowpacks (Chang and
others, 1987). Based on this fact, both snow-depth and snow
water equivalent retrieval algorithms were developed using
a brightness-temperature difference of 18–37GHz (spectral
gradient; e.g. Chang and others, 1987). Using the Chang
algorithm in the global scale, it was shown that a single
algorithm cannot describe all the different kinds of snow
conditions (Foster and others, 1997). Regional algorithms to
retrieve snow depth have been developed in the past decade
for North American and Eurasian snowpacks (Foster and
others, 1997; Tait, 1998; Kelly and others, 2003).

The global snow-depth retrieval algorithms overestimate
snow depth in China according to the records of meteoro-
logical station observations (Chang and others, 1992). Snow
depth retrieved from passive microwave remote-sensing data
can be influenced by the condition of snowpacks, such as
snow crystal (England, 1975; Chang and others, 1976; Foster
and others, 1997), snow density (Wiesmann and Mätzler,

1999; Foster and others, 2005) and vegetation (Foster and
others, 1997); Tait (1998) reported the different algorithms
for different snow features. It is therefore necessary to de-
velop an algorithm favorable to snow-depth study in China.

It is reported that snow grain size and density determine
the coefficient of spectral gradient for snow-depth retrieval.
For example, using the Chang algorithm with a grain size of
0.3mm, the coefficient is 1.59, and with a grain size of
0.40mm, the coefficient is 0.78 (Foster and others, 1997).
Josberger and Mognard (2002) reported that while the
snowpack was constant, the spectral gradient continued to
increase with time due to snow metamorphism. Larger snow
grains cause increased microwave scattering, with the result
that an algorithm based on a fixed value for grain size will
tend to overestimate snow depth (Armstrong and others,
1993). Thus, the spectral gradient will increase with the time
lapses due to the grouping snow grain size and snow density.

Liquid-water content in the snow layer (Ulaby and others,
1986; Mätzler, 1994) and large water bodies (Dong and
others, 2005) can also cause large errors in retrieving snow
water equivalent. These two factors should be considered
before the linear regression for the coefficient modification
as in the Chang algorithm. Microwave radiation will not
determine snow depth accurately when snow is wet (Mätz-
ler, 1994). The dry-snow and wet-snow criteria were used to
discriminate the wet-snow brightness-temperature data,
while lake and land–sea boundaries were collected in order
to remove meteorological stations near large water bodies.
Since the work of Neale and others (1990), the US National
Oceanic and Atmospheric Administration (NOAA)-NASA
SSM/I Pathfinder (NNSP) program has also used SSM/I data
to derive land surface classifications and to establish dry-
snow and wet-snow criteria (Singh and Gan, 2000).
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Grody (1991) reported that it was necessary to remove the
rain signal to identify snow cover. When it is raining, snow
parameters may not be retrieved. To obtain the long-time-
series dataset of snow depth, Grody’s decision-tree method
based on the passive microwave remote-sensing data can be
adopted so that the snow-depth retrieval algorithm is
focused on the snow pixels.

In this study, we modify the Chang snow algorithm to
make it suitable for snow-depth retrieval in China using
SMMR and SSM/I remote-sensing data and snow-depth data
recorded at the China national meteorological stations. We
further analyze the accuracy and uncertainty of the new
snow product produced from the modified Chang algorithm.
The daily snow-depth datasets in China from 1978/79 to
2005/06 are produced, and their spatial and temporal
characteristics are analyzed.

DATA
Passive microwave remote-sensing data
The SMMR is an imaging five-frequency radiometer (6, 10,
18, 21 and 37GHz) flown on the Nimbus-7 Earth satellites
launched in 1978. The SSM/I sensors on the US Defense
Meteorological Satellite Program (DMSP) satellite collect
data for four frequencies: 19, 22, 37 and 85GHz. Both
vertical and horizontal polarizations are measured for all
except 22GHz, for which only the vertical polarization is
measured. At the US National Snow and Ice Data Center

(NSIDC), the SMMR and SSM/I brightness temperatures are
gridded to the NSIDC Equal-Area Scalable Earth Grids
(EASE-Grids). Because China is located in a mid-latitude
region, we used the brightness-temperature data with the
global cylindrical equal-area projection (Armstrong and
others, http://nsidc.org/data/nsidc-0032.html; K. Knowles
and others, http://nsidc.org/data/nsidc-0071.html).

Meteorological station snow-depth observations
Snow-depth observations at national meteorological stations
of the China Meteorological Administration were used to
modify and validate the coefficient of the Chang algorithm.
We used 178 stations within the main snow-cover regions in
China, covering northeastern China, northwestern China
and the Qinghai–Tibetan Plateau (QTP) (Fig. 1). To modify
the Chang algorithm, we collected snow-depth data from
the daily observations in 1980 and 1981 for SMMR, and in
2003 for SSM/I. Snow-depth data in 1983 and 1984 (for
SMMR) and 1993 (for SSM/I) were then used to validate the
modified algorithm.

MODIS snow-cover area products
Hall and others (2002) described the Moderate Resolution
Imaging Spectroradiometer (MODIS) snow-cover area algo-
rithm for the Earth Observing System (EOS) Terra satellite. At
present, MODIS snow products are created as a sequence of
products beginning with a swath (scene) and progressing,
through spatial and temporal transformations, to an 8day
global gridded product. In the NASA Goddard Space Flight
Center, the daily Climate Modeling Grid (CMG) snow
product gives a global view of snow cover at 0.058 reso-
lution. Snow-cover extent is expressed as a percentage of
snow observed in the raw MODIS cells at 500m when
mapped into a gridcell of the CMG at 0.058 resolution. These
MODIS snow-cover products can be downloaded from the
NASA EOS Data Gateway. In this study, we projected the
0.058 daily CMG product to register with the EASE-Grids
projection for the accuracy assessment of snow area extent
derived from passive microwave satellite data.

Vegetation distribution map in China
Snow-depth retrieval from passive microwave remote-
sensing data will be influenced by vegetation, in particular
the dense forest. Hou (2001) published the vegetation atlas
of China (1 : 1 000 000), which is the most detailed and
accurate vegetation map of the whole country up to now. It
was based on the result of nationwide vegetation surveys and

Fig. 1. Position of meteorological stations within main snow-cover
regions in China (NWC: northwestern China; QTP: Qinghai–
Tibetan Plateau; NEC: northeastern China; and other region).

Fig. 2. Snow depth estimated from passive microwave brightness-temperature data and observed in meteorological stations: (a) SMMR in
1980 and 1981; and (b) SSM/I in 2003.
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their associated researches in 50 years since 1949 and the
relevant data from the aerial remote-sensing and satellite
images, as well as geology, pedology and climatology. In this
study, we digitized and vectorized the vegetation atlas of
China, and projected it into cylindrical equal-area projection
to register the EASE-Grid data. The forest area fraction will be
used to reduce the forest influence for snow-depth retrieval
from passive microwave brightness-temperature data.

Lake distribution map/land–sea boundary
Based on the results of Dong and others (2005), large water
bodies will seriously influence the brightness temperature.
Before modification of the snow-depth retrieval algorithm,
those brightness-temperature data and meteorological sta-
tion data near the lakes or ocean were removed to eliminate
the mixed pixel effect. We used the 1 : 1 000000 lake
distribution maps from the Lake Database in China, which
was produced by the Nanjing Institute of Geography and
Limnology, Chinese Academy of Sciences (CAS), and was
shared with the scientific and educational group at the
Data-Sharing Network of Earth System Science, CAS (http://
www.geodata.cn). The Data-Sharing Network also archived
the 1 : 4 000000 coastline maps. These spatial data were
also projected to register the EASE-Grid data.

SNOW-DEPTH RETRIEVAL METHODS
The coefficient of spectral gradient algorithm
Based on theoretical calculations and empirical studies,
Chang and others (1987) developed an algorithm for passive

remote sensing of snow depth over relatively uniform
snowfields utilizing the difference between the passive
microwave brightness temperature of 18 and 37GHz in
horizontal polarization:

SD ¼ 1:5 TBð18HÞ � TBð37HÞ½ �: ð1Þ
SD is snow depth in cm, and TB(18H) and TB(37H) are
brightness temperature at 18 and 37GHz in horizontal
polarization, respectively. Here, brightness temperature at
37GHz is sensitive to snow volume scattering, while that at
18GHz includes the information from the ground under the
snow. Therefore, the basic theory of the spectral gradient
algorithm is the snow volume scattering, which can be used
to estimate the snow depth after the coefficient (slope) was
modified by the snow-depth observations in the field.

Based on Foster and others’ (1997) results of forest
influence, the forest area fraction was considered here:

SD ¼ a TBð18HÞ � TBð37HÞ½ �
1� f

, ð2Þ

where a is the coefficient, while f is the forest area fraction.
In this study, snow-depth observations at the meteoro-

logical stations in 1980 and 1981 were regressed with the
spectral gradient of SMMR at 18 and 37GHz in horizontal
polarization. Before regression, the adverse factors, such as
liquid-water content within the snowpack, should be taken
into account. These lead to a large uncertainty due to the
big difference between dry-snow and water dielectric
characteristics. The brightness-temperature data influenced
by liquid-water content were eliminated based on the

Fig. 3. Percentage of error frequency distribution of snow depth estimated from passive microwave brightness-temperature data and
observed in meteorological stations. (a) SMMR in 1980 and 1981; and (b) SSM/I in 2003.

Fig. 4. Error increases from snow-density and grain-size variations within the snow season from October to April based on the estimations of
SMMR (a) and SSM/I (b) data and observations in meteorological stations.
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following dry-snow criteria:

TBð22VÞ � TBð19VÞ � 4;

TBð19VÞ � TBð19HÞ þ TBð37VÞ � TBð37HÞ > 8;

225 < TBð37VÞ < 257;

and

TBð19VÞ � 266

(Neale and others 1990). Mixed pixels with large water
bodies were removed according to the Chinese lake
distribution map and the Chinese coastline maps.

According to the regression between the spectral gradient
of TB(18H) and TB(37H) and the snow depth measured at the
meteorological stations, the coefficient (slope) is 0.78 and
the standard deviation from the regression line is 6.22 cm for
SMMR data. For the SSM/I brightness-temperature data, the
19GHz channel replaced the SMMR 18GHz channel.
Results show that the coefficient is 0.66 and the standard
deviation from the regression line is 5.99 cm. Thus, the
modified algorithm is:

SD ¼ 0:78 TBð18HÞ � TBð37HÞ½ �
1� f

ðfor SMMR data from 1978 to 1987Þ

SD ¼ 0:66 TBð19HÞ � TBð37HÞ½ �
1� f

ðfor SSM=I data from 1987 to 2006Þ:

ð3Þ

There are 2217 snow-depth observations available in 1980
and 1981, compared to 6799 observations in 2003 because
the SSM/I has a greater swath width and longer acquisition
period than the SMMR (see Figs 2 and 3).

A simple dynamically adjusted algorithm
Snow density and grain size are two sensitive factors affecting
microwave emission from snowpacks (Foster and others,
1997, 2005), because they can partly affect the volume-
scattering coefficient of snow. Although Josberger and Mog-
nard (2002) developed a dynamic snow-depth algorithm, it is
difficult to use it to map snow-depth estimation in China
because of the lack of reliable ground- and air-temperature

data for each passive microwave remote-sensing pixel. In this
study, we adopt a statistical regression method to adjust the
coefficient dynamically based on the error-increasing ratio
within the snow season October–April. The original Chang
algorithm underestimated the snow depth at the beginning of
the snow season and overestimated it at the end (Fig. 4). As
statistical results, the average offsets can be obtained in every
month for SMMR and SSM/I, respectively (Table 1).

Snow-depth retrieval
The spectral gradient algorithm for snow-depth retrieval is
based on the volume scattering of snowpacks, which means
other scattering surfaces can also influence the results.
However, it will overestimate the snow-cover area if the
spectral gradient algorithm is directly used to retrieve snow
depth (Grody and Basist, 1996). This is because the snow
cover produces a positive difference between low- and high-
frequency channels, but the precipitation, cold desert and
frozen ground show a similar scattering signature. Grody
and Basist (1996) developed a decision-tree method for
identifying snow. The classification method can distinguish
snow from other scattering signatures (precipitation, cold
desert, frozen ground).

Within the decision-tree flow chart, there are four criteria
related to the 85GHz channel. To be able to use SMMR
brightness-temperature data which do not have the 85GHz
channel, we adopted other relationships, such as TB(19V) –
TB(37V) as the scattering signature, instead of TB(22V) –
TB(85V). For the SMMR measures, the simplified decision
tree can be described by the following relationships:

1. TB(19V) – TB(37V) > 0, for scattering signature;

2. TB(22V) > 258 or 258 � TB(22V) � 254 and TB(19V) –
TB(37V) � 2, for precipitation;

3. TB(19V) – TB(19H) � 18 and TB(19V) – TB(37V) � 10, for
cold desert;

4. TB(19V) – TB(19H) � 8K and TB(19V) – TB(37V) � 2 K
and TB(37V) – TB(85V) � 6K, for frozen ground.

For a more detailed description of the decision-tree method,
see Grody and Basist (1996).

Fig. 5. Flow chart of snow-depth data in China derived from passive microwave brightness-temperature data.
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In this study, we adopt Grody’s decision-tree method to
obtain snow cover from SMMR (1978–87) and SSM/I (1987–
2004). The snow-depth data were calculated only on those
pixels by the snow-depth retrieval algorithm. The return
periods of SMMR and SSM/I measurements are about every
3–5 days depending on latitude. To obtain the daily snow-
depth dataset, the intervals between swaths were filled up by
the most recent data available. The flow chart to obtain the
snow-depth data in China is described by Figure 5.

ACCURACY AND UNCERTAINTY
Accuracy assessment (snow depth)
To assess the accuracy of snow depth retrieved from the
modified algorithm, we used measured snow-depth data at
the meteorological stations in 1983 and 1984 to compare
with the SMMR results, and those in 1993 for the SSM/I
results. The two absolute errors less than 5 cm hold about
65% of all the data (Fig. 6). The standard deviations are
6.03 cm and 5.61 cm for SMMR and SSM/I, respectively.

Accuracy assessment (snow cover)
We collectedMODIS snow-cover products from 3December
2000 to 28 February 2001 to compare with the results of this
study. Though MODIS snow-cover products cannot provide
snow-depth information, we can compare the agreement or
disagreement of MODIS and SSM/I snow extent in each of the
SSM/I pixels by resampling the MODIS snow-cover products
into the EASE-Grid projection. For a SSM/I pixel, when the
snow depth is larger than 2 cm, we consider the pixel to be
snow-covered. For the resampled MODIS pixel, the snow-

cover area is a fraction of snow-covered, and when the snow-
cover area is larger than 50% we consider it as a snow-cover
pixel. Congalton (1991) described several methods for
assessing the accuracy of remotely sensed data. First of all,
we considered MODIS snow-cover products as the truth
because optical remote sensing has higher spatial resolution
and a better comprehensive algorithm than passive micro-
wave remote sensing. We then established the error matrices
of the SSM/I results for each day according to MODIS snow-
cover products. Finally, two methods (overall accuracy and
kappa analysis) were used to assess the accuracy.

The two datasets show good agreement in the overall
accuracy analysis. The overall accuracy is about 0.8–0.9
with Grody’s decision-tree method (Grody and Basist, 1996),
and 0.7–0.8 otherwise (Fig. 7a). The results show that
Grody’s decision-tree method can improve the overall
accuracy by 10%.

The kappa analysis is a stricter method to assess the
coincidence in two datasets. The Khat statistic was defined as
(Congalton, 1991):

khat ¼ N
Pr

i¼1 xii �
Pr

i¼1 xiþxþið Þ
N2 �Pr

i¼1 xiþxþið Þ , ð4Þ

Fig. 6. Percentage error-frequency distribution of validation by the snow-depth observations in meteorological stations and the spectral
gradient of SMMR in 1983 and 1984 (number of data = 2070) (a) and SSM/I in 1993 (number of data = 6862) (b).

Fig. 7. Accuracy assessment of overall accuracy (a) and kappa
analysis (b) methods based on the MODIS daily snow-cover area
products from 1 December 2000 to 28 February 2001. Solid line
shows the results using Grody’s decision-tree method to identify the
snow cover, and dashed line shows the results without the decision-
tree method.

Table 1. Average offsets to remove the influence of snow-density
and grain-size variations for each month within the snow season
based on the linear regression method

Month Average offset

SMMR SSM/I

cm cm

Oct –3.64 –4.18
Nov –3.08 –3.58
Dec –1.91 –1.93
Jan –0.19 0.29
Feb 1.51 2.15
Mar 2.65 3.31
Apr 3.32 3.80
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where r is the number of rows in the error matrix, xii is the
number of MODIS observations in row i and column i, xi+
and x+i are the marginal totals of row i and column i,
respectively, and N is the total number of data. The results of
Khat statistics show that Grody’s decision-tree method can
improve the accuracy by 20% (Fig. 7b).

Uncertainty

Effect of vegetation
Vegetation cover has a significant influence on snow-depth
estimation from remote-sensing data (Foster and others,
1997, 2005). In this study, we used the forest-cover par-
ameter to try to remove this influence (Foster and others,
1997). In fact, this method cannot completely remove the
influence in dense forest regions. We overlap the stable
snow-cover map with the Chinese vegetation map and find
dense forests with a large forest-cover fraction (>0.5) mainly
distributed in the Xing’aling regions (Heilongjiang Province
and eastern Inner Mongolia) with about 160 EASE-Grid

pixels (100 000 km2). Although snow depth derived from the
modified algorithm may be questionable, the total area of
the dense forest regions is very limited.

Effect of snow crystal
The snow grain size can influence the algorithm coefficient
of snow-depth retrieval (e.g. Equations (1) and (2)). With a
snow grain size of 0.3mm the coefficient is 1.59, but with a
snow grain size of 0.4mm it is 0.78 (Foster and others, 1997).
Snow crystal size can depend on the snowfall condition,
such as the wind and temperature. It also varies with snow
metamorphism once the snow is on the ground. In this study,
we characterize this influence using a statistical regression
method and adjust the seasonal offsets. These offsets cannot
interpret the regional differences of snow conditions.

Effect of liquid-water content
The snow depth cannot be retrieved when snow is wet
because the liquid water within the snow layer will remove

Fig. 8. Annual average snow-depth distributions in China from 1978 to 2006 based on the SMMR and SSM/I data.

Fig. 9. Average snow-depth distributions in China from 1978 to 2006 during winter (December–February) based on the SMMR and SSM/I data.
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the volume scatter of microwave signals. Therefore, only
morning brightness-temperature data were used to minimize
the errors associated with melting snow in the afternoon.

ANALYSIS OF SPATIAL AND TEMPORAL
VARIATIONS OF SNOW DEPTH IN CHINA

Spatial and temporal characters of snow depth
Based on the daily snow-depth data from 1978 to 2006, snow
cover in China is mainly located in three regions, the QTP,
northwestern China and northeastern China, while other
regions only hold a small amount of snow mass (Fig. 8). The

annual average snow depth from 1978 to 2006 is less than
12 cm, while the average snow depth in winter (December–
February) is about twice its annual average value (Figs 8
and 9).

Figure 10 demonstrates monthly maximum snow depth
from 1978 through 2006 over China. Snow-cover duration is
longest on the QTP because of its high elevation. Snow mass
on the QTP reaches a maximum in December–February.
Snow mass in northwest China reaches a maximum in Feb-
ruary and March. Some permanent snow cover can be found
in the Tien Shan and western Kunlun mountains as shown in
July and August (Fig. 10). In northeast China, seasonal snow
cover reaches a maximum in January–March. In the rest of

Fig. 10. Monthly maximum snow-depth distributions from 1978 to 2006 in China based on the SMMR and SSM/I data.

Fig. 11. Annual average distributions of snow-cover period in China from 1978 to 2006 based on the SMMR and SSM/I data.
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China, the main snow type is temporary snow cover which
only survives for a matter of days and only occurs in winter.

Using the snow-depth time-series data, we analyzed the
annual average duration of snow cover, which can be used
to identify the stable snow-cover regions (Fig. 11). Generally,
the steady snow cover is defined as snow cover that
continuously survives more than 60 days (Li and Mi,
1983). The average areal extent of steady snow cover from
1978 to 2006 is about 3.0� 106 km2 (Fig. 11). Comparison
of Figures 8 and 11 shows that stable snow-cover regions
agree well with main snow-cover regions.

Though the interannual variation of the areal extent of
seasonal snow cover in the Northern Hemisphere has shown
a weak decreasing trend (Armstrong and Brodzik, 2002), the
snow mass in China from 1978 to 2006 does not show a
clear trend (Fig. 12). The interannual fluctuations are very
visible. According to the snow-mass statistics, the minimum
(shallow-snow year) is about 292 km3 in 1984, while the
maximum (deep-snow year) is about 528 km3 in 2000
(Fig. 12). These year-to-year variations may result from both
snowfall and snow-season temperature patterns. Qin and
others (2006) analyzed the western China snow cover with
respect to climate factors and found a positive snow-cover
trend in western China.

Regional characteristics of snow depth

Snow depth of the QTP
The QTP snow cover has the longest duration due to high
elevation, although the main snow season is from October to
April (Fig. 13). The main snow mass within the southeast
regions of the Plateau dominates the total amount of snow
mass on the QTP. There exists some permanent snow cover
over the Himalaya and the Plateau margin.

There were significant interannual variations of snowmass
over the Plateau. The largest snow mass reaches 234 km3 in

deep-snow years, but only about 60 km3 in shallow-snow
years. The trend of changes in snow mass is not clear. If a
simple linear regression model is used, a positive trend can
be obtained. However, the significance level is very low
because the noise of the interannual fluctuation in changes of
snow mass is very large. Qin and others (2006) reported that
the long-term variability of the western China snow-cover
area extent was characterized by a large interannual vari-
ation, with a small increasing trend, according to the
observations from SMMR and meteorological stations from
1951 to 1997. Rikiishi and Nakasato (2006) reported a
reduction in seasonal snow-cover area in this region using
data from the Northern Hemisphere EASE-GridWeekly Snow
Cover and Sea Ice Extent for the period 1966 to July 2001.
The disagreement between these studies may be due to the
use of different time periods and different snow parameters
(snow mass as discussed in this study and snow-cover extent
in other studies).

Snow depth of northwestern China (NWC)
The interannual variation of snow depth in NWC is not as
large as over the QTP, and a positive trend is found from
1978 to 2006. The annual maximum varies from 90 km3 in
1978 to 148 km3 in 2006 (Fig. 14).

Snow depth of northeastern China (NEC)
In NEC, snow depth has a large seasonal and interannual
fluctuation, with no clear change trend. The linear trend
analysis shows a decrease, but the significance level is very
low because of the large interannual fluctuation. The annual
maximum varies from 115 km3 in 1978 to 236 km3 in 2006
(Fig. 15). Figures 10 and 15 both show that snow cover
disappears in summer, so that snow in NEC is completely
dominated by seasonal snow cover.

Snow depth of other regions
Snow depth in other regions shows a positive trend, with a
large interannual variation from 1978 to 2006 (Fig. 16). This
may be the result of climate change in these regions.

CONCLUSION AND PROSPECT
In this paper, we reported a method for retrieving snow
depth in China from SMMR (1978–1987) and SSM/I (1987–
2006), and analyzed spatial and temporal variations of snow
depth over China. First, we modified and extended the
retrieval algorithm of snow depth by Chang and others
(1987) using ground-based observations. The snow-depth
retrieval flow chart for the modified algorithm presented

Fig. 12. Seasonal and interannual variations of snow mass in China
from 1978 to 2006 based on the SMMR and SSM/I data.

Fig. 13. Seasonal and interannual variations of snow mass on the
QTP from 1978 to 2006 based on the SMMR and SSM/I data.

Fig. 14. Seasonal and interannual variations of snow mass over
northwestern China from 1978 to 2006 based on the SMMR and
SSM/I data.
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here considers factors that influence snow-depth retrieval
accuracy, such as precipitation, cold deserts, frozen ground,
large water bodies (lakes, rivers, and oceans), vegetation and
dense forests, liquid-water content of snowpacks, and sea-
sonal variation of snow density and snow grain size. By
analyzing accuracy and uncertainty, we provide the error
estimation of the snow-depth data.

Analysis of snow-depth characteristics at temporal and
spatial scales shows that the main characteristic of snow in
China in the past three decades is visible interannual snow-
depth variations, with a weak increasing trend. The annual
average snow depth from 1978 to 2006 is less than 12 cm,
while the average snow depth in winter (December–
February) is about twice the annual average value. The
average areal extent of steady snow cover is about 3.0�
106 km2. The minimum snow mass (shallow-snow year) is
about 292 km3 in 1984, while the maximum (deep-snow
year) is about 528 km3 in 2000. The largest values in the
main snow regions are 234 km3 in 1998 over the QTP,
148 km3 in 2006 in NWC, and 236 km3 in 2000 in NEC.

The resolution of passive microwave brightness-tempera-
ture data is very low (about 25�25 km), making it easy to
obtain large-scale and long-term time-series data. The
disadvantage, however, is that the low resolution can make
validation difficult because observations at some sites
cannot represent the regional information within a single
large (625 km2) pixel. Therefore, it will be useful to fuse
other remote-sensing data with a resolution such as MODIS
and active microwave remote-sensing data, in order to study
regional-scale characteristics of seasonal snow cover.

Only long-term snow-depth data are analyzed in this
study. Further work should be carried out to analyze snow
variation at a finer spatio-temporal scale and the relationship
between snow depth and climate/hydrological factors. In
particular, snow cover in the QTP can significantly influence
the thermal interaction in the troposphere due to high
elevation. The relationships between snow and other climate
factors have been discussed in China (e.g. H.F. Blanford’s
hypothesis (Qin and others, 2006); snow cover and floods in
the Yangtze River; the snow cover and summer monsoon of
East Asia). However, these discussions are not common
knowledge because snow data are lacking. The results of this
work can be used to support these climate analyses.
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