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Abstract. Similarity measures for business process models have been
suggested for different purposes such as measuring compliance between
reference and actual models, searching for related models in a repository,
or locating services that adhere to a specification given by a process
model. The aim of our article is to provide a comprehensive survey on
techniques to define and calculate such similarity measures.

As the measures differ in many aspects, it is an interesting question
how different measures rank “similarity” within the same set of models.
We investigated, how different kinds of changes in a model influence
the values of different similarity measures that have been published in
academic literature.

Furthermore, we identified eight properties that a similarity measure
should have from a theoretical point of view and analysed how these
properties are fulfilled by the different measures. Our results show that
there are remarkable differences among existing measures.

We give some recommendations which type of measure is useful for which
kind of application.

1 Introduction

Business process models, or just process models (PMs), are nowadays a common
approach to analyse existing business processes and to create new processes in
a structured way. They are used for purposes like supporting communication
in organisations, documentation in projects, and training of employees [1]. This
wide area of application has led to the existence of a tremendous amount of PMs.
Large scale enterprises often own process repositories consisting of hundreds or
even thousands of models [2], usually developed by different persons. A variety
of techniques to manage these repositories are conceivable. They range from
intelligent process repositories [3] to similarity search over the models.

So far, several approaches that follow the latter idea have been proposed.
They aim to find PMs in a PM repository that are similar to a given query
model. For this purpose, there is a need of a similarity measure that quantifies
the similarity between models.

The goal of our article is to provide a comprehensive survey on techniques
to define and calculate similarity measures between PMs. Furthermore, we will



study the question how the different measures rank “similarity” within the same
set of PMs. In our study, we investigated, how different kinds of changes in a PM
influence the values of different similarity measures that have been published in
academic literature.

The general method for comparing two PMs consists of two steps: First,
activity nodes in one model that correspond to activity nodes in the other model
must be identified. In particular, if the models have been created in different
organisations or if they describe a business process on different levels of detail,
this can become a non-trivial task. This first step is, however, not in the focus of
our article. We assume that a mapping between corresponding activity nodes in
the process models to compare has been established, either by using one of the
existing algorithms or based on experts’ judgment. The interested reader can find
a discussion of different mapping techniques in [4-6]. More general techniques
that map model fragments instead of single nodes to each other are discussed
in [7]. Once a mapping between the activities has been established, measures of
similarity between the models can be computed in step two.

After explaining some basic concepts and symbols in Sect. 2, we will discuss
desirable properties that a similarity measure should have in Sect. 3. The meth-
ods used in our literature survey and the applications for similarity measures
that have been suggested in the literature are presented in Sect. 4. To facilitate
comparability of the analysed measures, we calculate similarity between an ex-
ample model and its variations which we present in Sect. 5. Following, in Sect. 6,
we discuss the measures we have found in the literature. For each measure, we
analyse which of the properties discussed in Sect. 3 are fulfilled, and we compute
the similarity between our example model and its variants. From the observa-
tions made for the different measures, we give some recommendations which kind
of measure is more or less useful for which purpose in Sect. 7. Finally, Sect. 8
concludes the paper.

2 Preliminaries

2.1 Business Process Models as Graphs

Throughout this article, let My be the model that should be compared with
a set of other models. We will refer to these models as M; (when discussing
the comparison of My with a single model) and Ma, ... (when discussing the
comparison of My with more than one model).

Each such model can be described as a directed graph (N, E) with the set
N of nodes and the set F of edges. A C N is the subset of nodes that have a
textual label assigned. Depending on the modelling language, this set can include
either activities (i.e. the tasks that have to be executed in a business process)
or activities and events. Without loss of generality, in this article we will refer
to the members of A as “activities” unless a separate discussion of events is
necessary. We will use the notation (N;, E;) (where ¢ = 0,1,...) for describing
a model M; as a graph. The set of activities of (N;, E;) is denoted by A;.



incorrect user authentication

Enter User Name
and Password

Start | Change
PMO Application Data

mg my m, m. m, ms m,

Enter \Web o . ol Change o
PM1 O—D it Login Data Logout

ny

Fig. 1. Two simple example models

Other than activity and event nodes, process models can also include con-
nectors (called “gateways” in the language BPMN) which are used to model
parallel executions or choices among paths.

Fig. 1 shows two example process models PM, (above) and PM;, mod-
elled in the Business Process Modeling Notation [8]. In this notation, start and
end events are depicted by circles, activities by rounded rectangles and “choice
nodes” (a gateway that allows to chose exactly one of the outgoing arcs for fur-
ther processing) by the symbol <. All those elements belong to the set of nodes
of a model.

The example model PMj of Fig.1 can be expressed as a graph as follows:

PMO = (NO,EO) = ({mOam17m2am3vm4;m5vm6}a

{(mo, m1), (m1,mya), (ma, m3), (ms, ma), (ma, ma), (M, ms), (ms, me) })

Furthermore, we define the set en of the preceding nodes for a node n € N as
on = {m € N such that (m,n) € E} and analogously the set ne of the suc-
ceeding nodes of a node n € N as
ne = {m € N such that (n,m) € E}.

2.2 Trace, Set of Traces

A process model (N, E) describes the temporal relations between possible ex-
ecutions of the activities A C N. For example, if A x A 3 (as,arr) € E, this
means that the execution of activity a; is followed by the execution of activity
arr. A trace (also called firing sequence in the domain of Petri nets) of (N, E)
is a finite or infinite sequence of activities from the set A, denoting the order in
which the execution of activities from A starts in an instance of the process. For
example, the trace (a1, as,a;) means that the process is instantiated by starting
activity a1. At a later point of time, ay starts, and even later the execution of aq
is started for a second time. The length of a trace ¢ is the number of its elements



(or 00) and will be denoted by len(o). We will use the symbol X (M) to denote
the set of all possible traces of a PM M.

In the upper example model PMj of Fig. 1, possible traces are:

(mg, m1, ma, ms, mg, ms, mg) as well as (mq, my, ma, M3, My, Ma, M3, My, M5, Mg)
(ms3 is repeated once), (mq, m1, ma, M3, My, Mo, M3, My, Ma, M3, My, M5, Mg) (M3
is repeated twice), etc. As the activity ms can be repeated arbitrary often,

X (PMy) is an infinite set. The set of traces of the lower model PM; of Fig. 1

contains exactly one trace, (ng,ni,ng, ng, ng, Ns).

Traces of process models can be represented as a string, i.e. a sequence of sym-
bols. Based on this representation, it is possible to calculate the longest common
subsequence. The longest common subsequence of two strings is a subsequence
of both strings that contains the maximum number of symbols (preserving the
symbol order). For example for the strings “123456” and “1x2y3z”, the longest
common subsequence is “123”. A more formal definition and algorithms for cal-
culating longest common subsequences can be found in [9].

We denote the length of the longest common subsequence of traces o7 and
o9 as len(les(o1,02)).

2.3 Mapping Function

In most approaches, the algorithm for calculating similarity measures starts with
establishing a mapping between the nodes in My and M;. Such a mapping
describes which activity in M; “corresponds” to an activity in My. Formally, a
mapping is described by a partial function that assigns nodes of My = (Ny, Ep)
to the “corresponding” nodes of M; = (Ni, Fp). Throughout this article, we
will denote this mapping function with map : Ny — N;. In many approaches,
only the activities are mapped. In these cases, we have a mapping function
map : Ag — A;. While some approaches require map to be injective, others do
not.

For the models shown in Fig. 1, a reasonably defined mapping function
map : PMy — PM; could be: map(mg) = ng, map(my) = nq1, map(ms) = na,
map(ms) = ng, map(mg) = ns. In this case, map is neither total nor injective.

map is either defined by human judgment or automatically by making use
of a function corr : Ng x N7 — [0,1] that quantifies the correspondence (or
similarity) between single nodes. The basic idea is to define map such that the
values of corr(n, map(n)) are close to 1 for many nodes n.

We regard two models My and M; as equivalent to each other (symbol:
My = M), iff map is a graph isomorphism of My and M, i.e. map is bijective
and (n,m) € Ey < (map(n), map(m)) € E;.

2.4 Distance and Similarity Measures, Further Symbols
Let M be the set of process models. A distance measure dist is a function

dist : M x M — Rt U {0}.
A similarity measure is a function sim : M x M — [0, 1]. The formula
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1+ dist(z,y) (1)

can be used for transforming a distance measure into a similarity measure or
vice versa.

In Sect. 6, we will discuss several alternatives to define the functions map,
corr, dist and sim, i.e. in each subsection those functions will be defined differ-
ently.

Throughout this article, the symbol #K will be used to denote the number
of elements of a set K.

sim(z,y) =

3 Desirable Properties of Distance and Similarity
Measures

Santini and Jain [10] point out that a number of dissimilarity measures proposed
in the literature assume that those measures are distance measures in a metric
space. (M, dist), the set of all process models M with a distance measure dist,
becomes a metric space, if the following properties hold:

Property 1 dist(My, M)
Property 2 dist(My, M)
Property 3 dist(My, M)
Property 4 dist(My, M)

0 VMy, M; € M (non-negativity)

dist(My, My) VMg, M; € M (symmetry)

0 My= M,

dist(Mo, My) + dist(My, Ms) (triangle inequality)

v

<

For measuring the “dissimilarity” distance between PMs, it is reasonable
to require Property 1 and Property 2. Property 3 that says that the distance
between two models is 0 only if the models are identical is too strict for certain
application areas. The same set of traces X'(M) (i.e. the same set of possible
executions of activities of a model M) can be modelled in different ways. For
example, the model shown in Fig. 3(a) (see Sect. 5) has the same set of traces as
the model shown in Fig. 3(b). A distance measure that calculates the distance
between both models as 0 would correctly describe the fact that both models
show exactly the same business process. A more relaxed requirement is that
dist(My, My) is 0, iff both models have the same set of traces.

For our purposes, the set of traces X(My) and ¥'(M;) are considered as
being the same (symbol: X'(My) = X(M7)) if (s1,s9,...) € X(My) implies that
(map(s1), map(s2),...) € X (My) and vice versa, (t1,ta,...) € X(M;p) implies
that there is a (s1, s2,...) € X (M) such that map(s;) = t; Vi.

With this interpretation of equality between sets of traces, Property 3 can
be substituted by the less strict requirement:

Property 3a:
dist(My, My) = 0 & X (My) = X(My).

Property 4, the triangle inequality, is not essential for measuring the dissim-
ilarity (distance) between PMs (or for (dis)similarity measures in general, see
[11]). Therefore, we will not examine the suggested measures with respect to



this property. It is a useful property anyway, because a distance measure that
fulfills all four properties given above allows to organise a PM repository using
data structures in which the search for similar models is very fast [12].

From an information-theoretic discussion of the concept of similarity (see
[11,13]), one more requirement for a similarity measure can be derived: Such
a measure should take into consideration both the commonality between two
models and their differences (Property 5). For example, we would not get
a good similarity measure by just counting the number of activities that are
shared among two models without relating this number to the overall number
of activities in the models: If two models with 20 nodes have 15 node names in
common, it would be reasonable to say that they are more similar to each other
than two models with 200 nodes from which 15 node names can be found in
both models.

As mentioned before, the definition of the function map : Ag — A; is outside
the main focus of this article. We just assume that such a mapping has been
established. The approaches that calculate map automatically start with a func-
tion corr : Ag x Ay — [0, 1] which quantifies the similarity between activities. It
would be a desirable property of a similarity measure sim : M x M — [0, 1] if
the information gained from the similarity measure corr : Ag x A; — [0, 1] be-
tween activities would be considered in the calculation of the similarity measure
sim between the models as a whole (Property 6). This is illustrated in Fig. 2,
showing three sequential models My, M; and M, with four activities and the
mappings between them (as dotted arrows). Assume that

1 = corr(“confirm draft“, “confirm draft*)

> corr(“confirm draft“, “dismiss draft*)
and that

1 > corr(“sign draft contract®, “sign contract*)

= corr(“sign draft contract“, “archive draft contract*)

(which could be the result of corr defined as a simple word-by-word comparison).
In such a case, it would be desirable that the result that the activities in My
are more similar to the activities in My than those in M; would not “get lost”
when the similarity measure sim is calculated, i.e. we would prefer to have
sim (Mo, My) < sim(My, M) instead of sim (Mo, My) = sim(My, Ma).

Furthermore, it is reasonable to require that a distance or similarity measure
can be applied for comparing arbitrary PMs without imposing additional syntax
restrictions (such as that the model must not contain loops) (Property 7). And
last but not least, there is another requirement that is related to the computa-
tional complexity of the calculation of dist or sim. In simple terms, it should
be possible to calculate the values of distance / similarity measures efficiently
(Property 8). Approaches that require the calculation of the whole set of traces
of a PM often would not fulfill this requirement.

Tab. 1 gives a short overview of the properties defined in this section.
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Table 1. Summary of the Properties for Distance Measures defined in Sect.3

1

Distance measure is non-negative

Distance measure is symmetric

Distance measure is 0 only if the models are the same (up to mapping by
map)

Distance measure is 0 only if the models have the same set of traces (up to
mapping by map)

Distance measure fulfills the triangle inequality

Distance measure considers both commonalities as differences

Distance measure takes similarity measure between activities into account

Distance measure is defined for arbitrary process models

O D) O =~

Distance measure can be computed efficiently

4 Literature Research

4.1 Methods of the Literature Research

The findings we present in this article are based on an extensive literature review
conducted between March 2010 and May 2011. According to the taxonomy given

in [14], our review can be classified as follows:

Scope: state-of-the-art presentation concerning approaches to calculate PM

similarity
Focus: comprehend research methods and technologies
Goal: summarise findings

Organisation: conceptual using the different types of similarity measures

established in Sect. 6.1 to 6.5




— Perspective: neutral

— Audience: specialised scholars can identify similarities and differences be-
tween existing approaches to calculate PM similarity

— Coverage:

The central starting points for our survey were the digital libraries of ACM,
IEEE, Springer, and Elsevier (SciVerse ScienceDirect). We have searched for
approaches to calculate similarity between process models using the search terms
“process model” and “similarity”. Based on titles and abstracts and, if necessary,
by reviewing the full paper, we identified 25 academic works published between
2004 and 2011 as relevant for our survey. This way, we received all papers but
[12] which was only available at the authors’ personal website.

4.2 Application Spectrum for Similarity Measures

Calculating similarity between PMs is a task performed in a wide range of appli-
cations concerning business process management. In the literature we have sur-
veyed, several applications for similarity measures have been suggested. They can
be grouped into nine categories: “simplify changes”, “merge processes”, “facili-
tate reuse”, “manage PM repositories”, “automate process execution”, “assure
compliance with normative models”, and “discover services”. It should be noted
that these activities are not independent from each other. For example, simplify-
ing changes is closely connected to managing process variants. In the following,
each of these groups is presented in more detail, while Tab. 2 shows a summary
of the application areas suggested by the various authors for their measures.
Tab. 2 can serve as a first guide for studying the different measures which will
be introduced in detail in Sect. 6.

Table 2. Analysed works and their application area

Measure|/A |B |C |[D |[E |F |G Measure|/A |[B |C D |[E |F |G

6.2.1a X X X
6.1.1 X [X |x

6.2.1b X
6.1.11 X X |X

6.2.11 X
6.1.I11 X

6.2.111 X
6.1.IV  |x

6.2.IV | x X
6.1.Va X
61Vh Ix 6.2.V X

6.2.VI |x |x X
Measure|/A |[B |C |D |E |F |G
6.3.1a X

Measure|A |[B |C |D |[E [F |G
6.3.1Ib X

6.4.1 X
6.3.11 X

6.4.11 X X
6.3.111 X 6T T
6.3.1V X X |x

6.3.V X




A: Simplify changes in process variants Organisations can react on chang-
ing customer requirements by adapting existing processes. In doing so, various
related models are established that are all more or less similar to each other. To
simplify management and facilitate reuse of these process variants, it is necessary
to establish a measure that captures their similarity. Therefore, it is possible to
react on new user requirements by searching for process variants that satisfied
similar requirements in the past.

B: Merge processes Merging PMs is a common activity executed in the case
of company mergers and in collaborations beyond company borders. When busi-
ness units of different organisations are consolidated, it can be assumed that
process overlaps exist. For example, [15] reported of an organisation having sev-
eral subsidiaries where every subsidiary managed its own ERP system resulting
in more than 200,000 PMs. During integration it is necessary to integrate these
systems and to identify process overlaps.

C: Facilitate reuse A cross-sectional goal that can be achieved by targeting
various other application areas for similarity calculations is to facilitate reuse
of PMs. Similar to reusing components in software engineering (see e.g. [16] for
code reuse), reusing PMs promises to reduce time and costs. Therefore, it is
necessary to find existing PMs and reuse them in the right context.

D: Manage PM repositories Due to the vast amount of existing PMs, or-
ganisations usually store these models in process repositories. These repositories
provide various functions, such as adding and removing models, annotating mod-
els and searching for models [3]. Before new models can be added to a repository,
it is useful to check whether similar or even identical models are already stored
in the repository. Furthermore, repositories are useless without efficient querying
(provided by similarity searches) and browsing facilities.

E: Automate Process Execution Automation is usually concerned in SOA
applications. During execution, services may be called depending on user require-
ments established at runtime. Furthermore, existing services may fail, e.g. due
to a computer failure. In this case, it may be necessary to find similar services
that are able to provide the same or similar functionality.

F: Assure Compliance with normative models Reference models are a
common approach to improve the process of developing new PMs [17]. Based
on a given reference process, application specific processes can be established.
Reference models often contain necessary legal requirements for specific domains.
Therefore, it is often necessary to measure the compliance degree between a given
reference models and its application specific implementation.



G: Discover Services Closely connected to the goal of automation is service
discovery. In SOA applications, one common task is to search for services satis-
fying specific user requirements. If this task can be automated it is possible to
call services dynamically and to make reuse of existing services possible.

5 Model Changes

The approach followed in our survey is as follows: Starting from a moderately
sized model V; (shown in Fig. 3(a)), we apply different change operations as
described in [18-20], resulting in seven variants of the original PM. We selected
the model variants such that the control-flow related change operations from
[18—20] are represented. For the various similarity measures discussed in this
survey, we compute the similarity between the original model V4 (Fig. 3(a)) and
each of its variants V7,..., V7. If the original authors of a measure described it
as a distance measure rather than a similarity measure, we use Equation 1 for
transforming the distance measure into a similarity measure.

onoonoon
4

(b) Vi: Model with same set of traces
as Vo

(d) Va: Model with additional activities

types

o [:}O
(e) Va: Model with modified control (f) Vs: Model with a modified control
flow arcs flow

(g) Vs: Model with a modified order of (h) Vz: Model with activity 5 moved in-
activities 5 and 6 side the second control block

Fig. 3. Initial model V and variants Vi ... V7

The model variants are shown in Fig. 3 as PMs in the Business Process
Modeling Notation [8]. The process V starts with executing activity 1. After
executing this activity, exactly one of the activities 2, 3 or 4 is performed (based



on certain decision that is not explicitly described in the model). Afterwards,
the activities 5 and 6 are executed one or more times, followed by exactly one
of the activities 7 or 8. Finally, the process instance terminates after executing
activity 9.

First, we modify the original model Vj of Fig. 3(a) by splitting the XOR
connectors into more than one connector (see Fig. 3(b)). Note that X'(V;) =
X(Vo). Next, we change the types of connectors: In model variant V5 (Fig. 3(c)),
all XOR connectors (<) have been replaced by inclusive OR connectors ().
This means that in the blocks with the three activities 2, 3 and 4 and the two
activities 7 and 8, one or more of the activities can be performed in parallel.

In variant V3 (Fig. 3(d)), four additional activities A, B, C and D have been
added to the original model.

Model variant Vj (Fig. 3(e)) has exactly the same nodes as Vj, but one arc
has been added while another one has been deleted. This means that in Vj, it is
possible to skip all activities but 1 and 9, and there is no loop allowing activities
5 and 6 to be executed more than once. Variant V5 (Fig. 3(f)) contains the same
activities as Vp, but no connectors at all. The order of the activities does not
correspond to the order in which the activities occur in traces of V. In model
variant Vg (Fig. 3(g)), the order of activities 5 and 6 has been changed. Finally,
in model variant V7, (Fig. 3(h)), activity 5 has been moved inside the second
conditional control block.

6 Measures

In this section we present the analysed approaches for calculating similarity
between PMs in detail. The approaches were identified based on the literature
survey illustrated in Sect. 4.

In Sect. 6.1 we analyse approaches based on correspondences between the
elements of a process model. Since process models can be represented as graphs
as shown in Sect. 2.1, it is a reasonable idea to study the applicability of graph
algorithms on similarity calculation. Approaches following this idea are presented
in Sect. 6.2. Similarity measures considering the dependencies between activities
in a PM, e.g. the order of their occurrence are shown in Sect. 6.3. Finally, we
present approaches that are based on the set of traces (see Sect. 2.2) in Sect. 6.4.

Every presentation is enriched by a table containing information about the
adherence to the properties in Sect. 3 and the absolute similarity values for the
similarity between model V) and the models V; ... V7 from Sect. 5. Furthermore,
we give a brief explanation of the parameters and (if necessary) adaptions used
in our calculation of the similarity values and discuss each measure.

To enhance the reproducibility of our findings we developed a publicly avail-
able! application. It is based on the well-known ProM framework for process
mining [21] and provides an extensible API. Currently, 15 of the presented mea-
sures are implemented, and we will add missing measures in the future. Using

! https://sourceforge.net/projects/prom-similarity /



this application, it is possible to analyse the impact of various parameters when
calculating similarity (e.g. size of models, amount of text in models). The source
code contains detailed comments on the parameters and strategies for those
measures whose original description allows some degree of freedom in the imple-
mentation.

6.1 Correspondence Between Nodes and Edges in the PM

I. Similarity Score Based on Common Activity Names Akkiraju and
Ivan [22] measure similarity of process models solely based on the number of
equally labelled activities, i.e. on the number of activities that occur in both
models. The so called semantic similarity score between model My with the
set of activities Ay and model M; with the set of activities A; is defined as
Sim(Mo, Ml) =2 #(AoNA1)

#Ao+##AL"
Any two of the example models V; (with the only exception V3) have a sim-
ilarity score of 2 - 9%29 = 1 irrespective of the calculation order.

Table 3. Adherence to properties and similarity values of [22]

Similarity Score Based on Common Activity Names [22]

Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6—yes|7T—yes|8—yes
Similarity between Vo and ...| Vo | Vi | Vo | V5 | Vi | V5 | Vs | V&
1.00 | 1.00 |1.00| 0.82 | 1.00 | 1.00 | 1.00 | 1.00

Calculation Settings and Results: Tab. 3 shows the results of the similarity cal-
culations between model Vy and models V; ... V7 according to [22] as well as the
adherence of this measure to the properties given in Sect. 3. The results were
obtained by using the labels of activities as activity names.

Discussion: While this similarity measure is very simple and fast to compute,
its major drawback is that changing the structure of processes (e.g. changing
the order of activities or inserting connectors) does not influence the similarity
measure in any way. Furthermore, its application is limited to a domain with
controlled vocabulary (as the authors of [22] state, too). The approach fails
both in multilingual and in inter-organisational environments due to different
vocabularies. In Sect 6.1.IT1 we discuss a similar approach avoids the restriction
of activity labels to a controlled vocabulary.

II. Label Matching Similarity Dijkman et al. study several similarity mea-
sures in [4]. The first and simplest one is called label matching similarity. It
builds on a function corr that calculates a label-based similarity score between
nodes in Ay and A;. The mapping function map : My — M is defined such that
> wea, corr(z,map(x)) takes its maximum value. Optionally, a threshold can be



used that disregards a similarity score if corr(z,y) is smaller than a given value.
This means that instead of corr, the function

, _ feorr(z,y) if corr(xz,y) > threshold, .
corr'(x,y) = { 0 otherwise is used.
2 > corr(z,map(x))
. T . . o _ xEAp
The label matching similarity is defined as sim(My, M;) = A, T A,

Table 4. Adherence to properties and similarity values of [4]

Label Matching Similarity [4]

Adherence to property ... 1-yes|2 - no|3 - no|3a - no|5—yes|6 - yes|7—yes|8—yes
Similarity between Vp and ...| Vo % Vo Vs Vi Vs Vs Vz
1.00 | 1.00 | 1.00 | 0.82 | 1.00 | 1.00 | 1.00 | 1.00

Calculation Settings and Results: To establish correspondences between nodes,
we use the Levenshtein string edit distance [23] as function corr. Furthermore,
to match two activities, we use a threshold of 0.5. Since we only have single-
letter words in our example models the resulting similarities between individual
activities is either 0 or 1. The resulting similarity values are shown in Tab. 4.

Discussion: As can be seen from Tab. 4, the similarity values for the approach
proposed by [4] match with the results established by [22] (Sect. 6.1.I) This
is due to the fact that the measure of [4] also does not take into account any
information about the order of nodes. For example, sim(V}, V5) would be 1 while
sim(Vp, V3) would be % < 1 only — a result that is counter-intuitive if we are
interested in the similarity of the modelled behaviour.

ITI. Syntactic, Linguistic and Structural Similarity of Activity Labels
Ehrig et al. [6] measure the similarity of PMs based on so-called semantic busi-
ness process models - predicate transition Petri nets transformed in an ontolog-
ical representation.

Let A = {a(l), ad, .. .aO#AO} and A; = {a%, as,... a%Al} be the sets of activ-
ities of the models. Ehrig et al. describe three measures for similarity between
the label of an activity ag € Ag and the label of an activity a; € A;.

First, the Levenshtein string edit distance [23] is used to calculate the syn-
tactic similarity. Second, linguistic similarity handles synonyms in element la-
bels using WordNet [24] and takes the meaning of the words in the label into
account. Finally, structural similarity compares the context (such as attribute
names and values or succeeding nodes) of single activities. The similarity mea-
sure corr(ag,ar) between activity ap € Ao and activity a; € A; is aggregated
by the weighted combination of the three similarity types.

The similarity of the models as a whole is calculated as



#Ao
1
im (Mo, My) = —— 0 41 5
sim(Mo, M) #A();jzg}%}%lcorr(az,aj) (2)

Table 5. Adherence to properties and similarity values of [6]

Syntactic, Linguistic and Structural Similarity of Activity Labels [6]

Adherence to property ... 1-yes|2 - no|3 - no|3a - no|5—yes|6—yes|7—yes|8 - yes
Similarity between Vp and ...| Vo 1%l Vs V3 Vi Vs Vs V7
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Calculation Settings and Results: Tab. 5 contains the similarity values for our
variants. We defined map such that activities having the same label are mapped
to each other. Since the activity labels of the variants shown in Fig. 3 are single-
letter words, there is (with the exception of variant V3) always a pair of activities
with a syntactic similarity of 1. This results in the fact that linguistic and struc-
tural similarity is not taken into account. By using a non-injective mapping,
sim(Vp, V3) would be higher because we could establish a mapping map such
that map(1) = (1, A), map(5) = (B, 5), map(6) = (6,C), and map(9) = (D, 9).

Discussion: The approach of Ehrig et al. focuses to a great extent on the simi-
larity of activity labels. Structural similarity is only taken into account if labels
are not equal or if they are not synonyms of each other. Resulting from this,
PMs with the same activity names will always have similarity 1 independently
from any structural changes.

Following equation 2, the approach of Ehrig et al. maps the activities of Ag
to activities of A; and ignores activities in A; that are not contained in Ag. This
results in a similarity of 1 when comparing Vi with V5 (activities A, B, C, and
D are ignored). On the other hand, sim(V3,V}) is not 1 but 9/13 because nine
activities are matched with a similarity of 1 and the additional four activities are
not matched and have a similarity of 0 (assuming a one-to-one-mapping). This
means that Property 2 is violated — the measure is not symmetric. We believe the
value of [6] lies more in a discussion of concepts to define the mapping function
map between activities than in the definition of similarity measures between
PMs as a whole.

IV. Feature-Based Similarity Estimation Yan et al. [25] address the prob-
lem of searching a collection of PMs for models that are similar to a query model.
They point out that it is inefficient to compare each model in the collection with
the query model. As a solution, Yan et al. suggest to build computational effi-
cient indices for quickly finding models that have many features in common with
the query model. In this procedure, features are defined as activity labels as well
as the position that a node has within the structure of the PM graph.



First, the Levenshtein string edit distance [23] is used for computing the
similarity of activity labels. Second, the role of the nodes is taken into account
which is defined for each node as shown in Tab. 6. For a node z, roles(z) is the
set of all roles for z. It is possible that a node can have more roles at once, for
example being a split as well as a join.

Table 6. Roles for Activity Nodes in a PM

Role|incoming edges|outgoing edges

start 0

stop 0
regular 1 1

split >2

join >2

For two PM My = (No, Eg) and My = (N1, Ey), structural similarity corrst,
between two nodes n € Ny, m € Ny is calculated as follows:

if N(] = {TL} A\ N1 = {m}
1-— % if start € roles(n) N roles(m)A
if stop ¢ roles(n) Nroles(m),
corrsy(n,m) = 1— % if stop € roles(n) N roles(m)A
if start ¢ roles(n) Nroles(m),
1 — [gne—dmel | #en—#em|_ therwise.

T 2(#net#me)  2(#HentH#em)

The similarity of nodes (both similarity of activity labels as structural sim-
ilarity as defined by the above formula) is used for establishing the mapping
function map that assigns nodes from Nj to “similar” nodes in Ny. A mapping
between n € Ny and m € Nj is established if and only if the values for label sim-
ilarity and structural similarity between n and m are greater than some cutoff
value.

Yu et al. derive the similarity measure sim for PMs from this function map
by relating the number of nodes with a match to the overall number of nodes in
the models to compare.

Table 7. Adherence to properties and similarity values of [25]

Feature-Based Similarity Estimation [25]

Adherence to property ... 1-yes|2 - yes|3 - no|3a - no|b—yes|6 - yes|T—yes|8—yes
Similarity between Vp and ...| V %1 Va Vs Va Vs Ve \%
1.00| 1.00 | 1.00 | 0.82 |1.00 | 1.00 | 1.00 | 1.00




Calculation Settings and Results: Tab. 7 shows the results of the similarity cal-
culations between model V and the variants V; ... V7. As proposed by [25], we
use different threshold values to match individual nodes with each other. Two
nodes are matched, if their labels are similar to a high degree (a threshold of
0.8) or if their roles are similar and their labels are similar to a medium degree
(thresholds of 1.0 for role similarity and 0.2 for label similarity). In their work,
Yan et al. identify so-called discriminative roles. A role is discriminative, if the
number of nodes having this role is small enough compared to the overall number
of nodes in a process model collection. However, we do not take discriminative
power into account, since we only have a small number of process variants.

Discussion: As the routing effects of connectors (XOR, AND, OR) in a model
are ignored, the same problems as discussed in Sect. 6.1.I and 6.1.II can be
observed. However, the aim of Yan et al. is not to find “similar” models (with
the meaning of “similar behaviour”), but rather “related” models. Given the
fact that they present a fast implementation of their algorithm, the benefit of
the approach is that it can be used as a first step to filter potentially relevant
models from a large model collection. In a second step, it is possible to calculate
similarity measures only for those models from the collection that have not been
disregarded as irrelevant.

V. Percentage of Common Nodes and Edges in the Graph Similar to the
label matching similarity measures discussed in the previous subsections, Minor
et al. [26] suggest a measure that relates the number of nodes and edges that
can be found in both My = (Ny, Eg) and M; = (N, E1) to the overall number
of nodes and edges in both models. As the purpose of the work by Minor et al.
is to compare models that are adapted versions of a “template” model, it can
be assumed that two nodes can be regarded as identical if and only if they have
exactly the same label. This means that the Function map is simply the identity.

For a strictly sequential PM (i.e. one which has only activities, but no split
or join nodes), the similarity measure is defined as:

(No \ N1) +# (N1 \ No) + # (Eo \ E1) + # (E1 \ Eo)

sim(z,y) =1— #
’ #No + #N1 + #Eo + #E

3)

For the general case of a PM with split and join nodes, three methods for
transforming the PM in another graph (called approximation graph) are sug-
gested in [26]. Method 1 simply ignores the splits and joins. Method 2 adds the
types of splits and joins that can be found along a path from one activity to
another as attributes to the arcs between activities. Method 3 uses exactly one
“artificial” node per type of split- or join node, regardless of the number of oc-
currences of this kind of split- or join node in the PM. Fig. 4 illustrates the three
methods of transforming a PM into its approximation graph for our example
model Vj. After transforming the original PM, Equation 3 is used for comparing
the approximation graphs.



Method 3

xorsplit { xorjoin —»@

Fig. 4. Three methods to transform model My from Fig. 3(a) into its approximation
graph

A similar approach is presented by Huang et al. in [27]. First, the function
corr is calculated; Huang et al. do not suggest any specific corr-measure. Let

Ag = {a(l’,ag, : ..a?‘#AO} and A; = {a%,a%, . .a%&Al} be the sets of activities of
the models to compare and Ey = {e?,eg, : ..e%ﬁEo} and F; = {e},e%, : ..e;ﬁEl}

the sets of its edges.
The overall similarity between the activity sets Ay and A; is then defined as:

%2 0 .1 4 0o .1
T )T g g el
#Ao0 + # A

Second, the PMs to compare are transformed into a weighted graph repre-
sentation similar to method 2 illustrated in Fig. 4. However, instead of labeling
edges with the respective connector type, weights are assigned to edges. Outgo-
ing edges resulting from XOR-splits are assigned with the weight of ﬁ This
weight is added to edges until the next XOR-join. The transformation of V{, from
Fig. 3(a) into a weighted graph is shown in Fig. 5.

The similarity of two edges ey = (ay,br) and e;; = (asr,brr) is based on the
similarity of the linked activities and defined as:

, corr(ar,br) 4 corr(arr, b
simeq((arr,brr), (arr,brr)) = (ar, br) 5 (i, brr) (5)




Fig. 5. Weighted graph representation of V4 in 3(a)

The similarity of all edges (using w? and w]l as the weights of the edges
e € By and e]l € Ey) is defined as:

Lo 0. 1. o 0 .1 L 1,0 o 1.0

> max (w; - wj - simea(es, e5)) + > max (w; - w3 - simea(e;, €3?))

i=1 e¢;€E1 i=1 €j€Eo (6)
#FEo + #FE;

The overall similarity between two process models is defined as a weighted
sum of the similarity between activities as defined by formula 4 and the similarity
between edges as defined by formula 6.

Table 8. Adherence to properties and similarity values of [26]

Similarity Based on Common Nodes and Edges [26]

(using approximation method 1)

Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6-yes|7T—yes|8—yes
Similarity between Vp and ...| Vo Vi|Ve| Vs Va Vs Ve V2
1.00 | 1.00 | 1.00| 0.40 | 0.95 | 0.58 | 0.76 | 0.79

Table 9. Adherence to properties and similarity values of [27]

Similarity Score Based on Common Nodes and Weighted Edges [27]
Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6—yes|7-yes|8—yes
Similarity between Vp and ...| Vo i Vo Vs Vi Vs Vs \%%
0.60 | 0.60 [0.63| 0.48 | 0.58 | 0.63 | 0.59 | 0.56

Calculation Settings and Results: Tab. 8 shows the results of the similarity cal-
culations between models Vj and V; ... V7 when using method 1 for transforming
a PM into a graph. Thus, we do not take types of connectors into account and fo-
cus solely on equivalence of activities and edges between these activities. Taking
the type of connectors into account would result in a lower values for sim(Vy, V1)
and sim(Vy, Va). The value sim(Vp, V3) would be higher, since connectors would
be included in the calculation.



In the approach of Huang et al., some difficulties occur. While they specify
weights for XOR and AND connectors, OR connectors are not taken into ac-
count. Therefore, we have used an approach similar to 6.3.1 and weight edges
resulting from OR connectors with %

Discussion: An obvious shortcoming of the approach by Minor et al. using ap-
proximation method 1 is that any information about the control flow routing
constructs in the model is lost in the transformation: A parallel execution of two
activities will be covered in the same way as an exclusive choice among those
activities. Methods 2 and 3 have another severe problem: They unite for example
all XOR-joins that can be found in a model in the same edge label (method 2)
or in the same node (method 3). For example, the model variant V; (Fig. 3(e))
will be transformed into the same approximation graph as the model V; (Fig.
3(b)). Consequently, the similarity between both models will be 1 despite of the
fact that both models show clearly different behaviours.

As can be seen in the Tab. 9 the similarity values following the approach
presented in [27] are very close to each other. This is due to the fact, that
the approach allows an n:m mapping of edges based on the simple comparison
of their connected nodes. However, the decisive disadvantage of the approach
from [27] is that it does not calculate a similarity of 1 for equivalent models.
This drawback results from the multiplication of weights (which is 1 only for
sequential activities). Accordingly, this approach ranks model V5 as very similar,
since all the weights in this model are 1.

6.2 Edit Distance Between Graphs

I. Graph Edit Distance Similarity Dijkman et al. [4, 28] try to capture struc-
tural similarity as follows: As described in Sect. 6.1.I1, they derive a mapping
function map from a function corr that measures the similarities between nodes
in Ag and nodes in A;. The nodes in ag € Ay for which map(a) is not defined
and the nodes a; € A; for which there is no ag € Ap such that map(ag) = a1
are regarded as “inserted or deleted nodes” (because they appear in one model
and not in the other one). Similarly, an edge (z,y) € Ep is called “inserted or
deleted edge” if either map(x) or map(y) is undefined or (map(x), map(y)) ¢ E;.
Inserted or deleted edges in F are defined analogously. With sn being the set
of inserted or deleted nodes and se being the set of inserted or deleted edges,
Dijkman et al. define a graph edit distance as:

diSt(M()? Ml) = #sn + #86 +2 Zaer,map(a) is defined COTT(G‘7 ma‘p(a‘))

By dividing the terms in the above sum by the total numbers of nodes, arcs
and nodes that are not inserted or deleted nodes resp., three quotients can be
derived. A similarity measure called graph edit distance similarity is calculated
as the weighted average of these three quotients.

The idea of a graph-edit distance is also used for comparing processes by
Grigori et al. [29]. They use a distance measure for searching a service reposi-
tory for services that match a given query. The basic ideas for the measure are
the same as described above; but two remarkable differences should be noted:



First, Grigori et al. do not relate the number of change operations to the graph
size and thus violate Property 5. And second, the approach supports a non-
injective mapping function map which is helpful when models on different levels
of abstraction have to be compared.

Table 10. Adherence to properties and similarity values of [4]

Graph Edit Distance [4]

Adherence to property ... 1-yes|2 - yes|3 - yes|3a - no|5—yes|6—yes|7—yes|8—yes
Similarity between Vp and ...| Vo % Vs Vs Vi Vs Ve Va
1.00| 1.00 | 1.00 | 0.63 | 0.97|0.73 | 0.86 | 0.88

Table 11. Adherence to properties and similarity values of [29]

Graph Edit Distance [29]

Adherence to property ... 1-yes|2 - yes|3 - yes|3a - no|5—no|6—no|7—yes|8—yes
Similarity between Vp and ...| V 1%l Vs Vs Va | V5 | Vs V7
1.00 | 0.05 | 0.04 | 0.20 |0.33]0.03|0.33 | 0.17

Calculation Settings and Results: For the similarity calculation according to [4]
we used the approach presented in [28]. In doing so, process models are trans-
formed to graph models where connectors are removed and ignored. If connectors
are taken into account, sim(Vp, Vi) and sim(Vp, Va) will be lower (Dijkman et
al. state it even may be “too low”). Similarity between individual nodes (the
function corr) is defined by the Levenshtein string edit distance. As proposed
in [4], it is possible to assign individual weights to the summands resulting in
different significance for substituted nodes, added and deleted nodes, and added
and deleted edges. In our calculation we assign a weight of 1 to every component
of the calculation resulting in the following equation:

#sn

+ #se + Q'Eag;,o(1—COTT(a,map(a)))
sim(Mo, My) = 1 — ZAot#A  #Bot#E

#Ao+# A1 —Fsn (7)

3

In Tab. 11, the similarity values for the approach presented in [29] are shown.
To calculate similarity, we make use of the following edit operations, where the
last two edit operations result from the possibility to establish non-injective
mappings:

— substitute the label of a node

substitute the label of an edge

— delete a node, connect preceding with succeeding nodes of the deleted node
delete an edge



— insert an edge
— split a node into two nodes
— combine two nodes into a single one

Discussion: Tab.10 shows the similarity values established by the calculation
given above and the adherence to the properties given in Sect. 3. Since we
transform PMs into their graph representation using method 1 from Fig. 4,
sim(Vp, V1) = 1 and sim(Vp, V1) = 1, too.

Since the approach of Grigori et al. considers connectors and their types,
the values for sim(Vp, V1) and sim(Vy, V2) are rather low in comparison to the
other similarity values. Due to the possibility to split a node into two nodes,
sim(Vp, V3) is high because we only have to split node 1 into nodes < 1, 4 >,
node 5 into nodes < B,5 >, node 6 into nodes < 6,C' >, and node 9 into nodes
< D,9>.

II. Combining Activity Matching and a Graph Edit Distance La Rosa
et al. [30] discuss the question of comparing process models stemming from
different organisations. Their aim is to create an integrated model in situations
like company mergers or restructurings. The approach has three steps: In step 1,
a mapping between the activities in My and M is established, i.e. the mapping
function map is defined for activity nodes based on a function corr that uses
string-similarity measures. In step 2, a mapping between split and join nodes
is found. For this purpose, a measure called context similarity is calculated. A
join (or split) node ng in My is regarded as similar to a join/split node n; in
M;, if the the mappings (via function map) of functions directly preceding and
succeeding ng coincide with the functions directly preceding and succeeding n.
Finally, in step 3, a measure based on a graph-edit distance between My and M;
is calculated.

Table 12. Adherence to properties and similarity values of [30]

Label Similarity and Graph Edit Distance [30]

Adherence to property ... 1-yes|2 - yes|3 - no|3a - no|5—yes|6—yes|7T—yes|8—yes
Similarity between Vp and ...| Vo %1 Vs Vs Vi | Vs | V6 | Vi
1.00| 0.81 | 1.00 | 0.83 |0.96 |0.62|0.92 | 0.94

Calculation Settings and Results: To calculate similarity between PMs accord-
ing to [30], we use a one-to-one-mapping between the sets of nodes (including
activities and connectors). However, the type of a connector is not taken into
account. The only restriction is that split nodes must not be mapped to join
nodes. To calculate similarity we weight every possible edit operation (substi-
tute nodes, add and remove nodes and edges) with an equal weight of 1. The
formula to calculate similarity is similar to the one proposed by Dijkman et al.



(see equation 7 in Sect. 6.2.). However, we do not only iterate over activities A;
and As but over all nodes N; and N> in the PMs.

Discussion: The main difference to the approach of Dijkman et al. is that the ap-
proach of La Rosa et al. does not transform PMs into their graph representation.
Though connectors remain, the type of connectors is not taken into account. For
this reason, we have sim(Vy, Vo) = 1, but sim(Vp, V1) < 1, i.e. Property 3a does
not hold as can be seen in Tab. 12.

Even if the algorithm is organised in three steps, the information about the
matching score between corresponding activities which is calculated in step 1
is not “lost” in later steps; the results from step 1 are included into the final
measure. This means that the measure fulfills Property 6.

III. Combining String Edit Distance and Graph Edit Distance Another
approach that combines the graph-edit distance and the Levenshtein string edit
distance [23] for calculating the function corr has been published by Kunze and
Weske [12]. In short, the graph-edit distance is the least costly sequence of steps
to insert or remove a node or to replace a node in n € My by its counterpart
map(n) € M;. The cost of inserting or removing a node or edge is 1, while the
cost for replacing activity n by activity map(n) is defined as the Levenshtein
string edit distance between n and map(n).

Table 13. Adherence to properties and similarity values of [12]

Combining String Edit Distance and Graph Edit Distance [12]

Adherence to property ... 1-yes|2 - yes|3 - yes|3a - no|5—no|6-yes|7-yes|8—yes
Similarity between Vp and ...| Vo i Vs V3 Vi | Vs Ve V7
1.00 | 0.05 | 0.03 | 0.06 |0.33|0.03|0.14 | 0.20

Calculation Settings and Results: To calculate similarity between PMs we trans-
formed the distance measure of [12] into a similarity measure using Equation 1.
Kunze and Weske show the application of their measure on Petri Nets. For our
application on generic PMs we distinguish between different connector types.
Therefore, for transforming Vj into V7, we have to add four new connectors and
the respective edges and to transform Vj into Vi, we have to remove the XOR
connectors and insert OR connectors. The resulting similarity values are shown
in Tab. 13.

Discussion: Kunze and Weske show that their distance measure fulfills Proper-
ties 1-4, i.e. it is a metric. This allows storing a set of models in a repository
organised as a metric tree. For searching a model that is similar to a given
query model, it is not necessary to compare the query model with each model
from the repository. The main benefit from the paper by Kunze and Weske is



their description of the indexing approach based on metric trees which leads
to a remarkable improvement of the search for similar models within a model
repository.

IV. Graph-Edit Distance by High-Level Change Operations Li et al.
[31] present an approach to calculate similarity between process models based
on so-called high level change operations. They identify different types of high
level change operations such as inserting an activity between existing activities,
deleting an activity from the model, moving an activity from its original po-
sition to another one, and replacing an activity. A high-level change operation
encapsulates a number of primitive graph-based operations (deleting an edge,
inserting a node, etc.). The authors state that by constructing a PM using high
level change operations only, it can be guaranteed that the PM is sound. Un-
fortunately, the paper [31] does not explicitly specify which high-level change
operations are supported by the approach.

A distance measure dist(My, M;) is defined in [31] as the minimal number of
high-level change operations that is necessary to transform model My = (Np, Ep)
into model M; = (Ny, Eq). A corresponding similarity measure is introduced as

; . dist(Mg, M)
sim(Mo, M1) =1 — #No+#Nro#(Ji'oﬂN1)'

Table 14. Adherence to properties and similarity values of [31]

Graph-Edit Distance by High-Level Change Operations [31]

Adherence to property ... 1-yes|2-yes|3-no|3a—yes|5—yes|6-no|7 - n/a|8yes
Similarity between Vp and ...| Vj % Vo V3 Vi Vs Vs Va
1.00 | 1.00 [ 0.79| 0.79 | 0.87 |0.33| 0.93 | 0.93

Calculation Settings and Results: For our calculations, we referred to the set
of high-level change operations described in [19]. Tab. 14 shows the similarity
between Vy and the other PMs as well as the adherence of the measure proposed
by Li et al. to the properties given in Sect. 3. We identified the necessary amount
of change operations by hand. For example, to transform V{ into V5 we have to
change the types of the four connectors from XOR, to OR. Since we also take start
and stop events into account, sim(Vp, V2) =1 — m. The other similarity
values are calculated analogously.

Discussion: The similarity measure based on high-level change operations has
been developed in the context of the process-aware information system ADEPT
[32]. This framework allows to construct sound PMs by starting from an empty
model and repeatedly applying high-level change operations. In this context, the
question about the difference between model variants V and V; is not relevant,
because the construction algorithm would ensure that only one of the models
would occur in practice. A remarkable property of this measure is that when



calculating sim(Vp, Vs) and sim(Vo, V7), we have to regard only one high-level
change operation. This is different from other similarity measures based on graph
edit distances that we have discussed so far.

V. Tree Edit Distance Between PMs Represented as Trees In [33], Bae
et al. transform a PM into an ordered tree. A sequential PM (without any splits
and joins) would become a tree of depth one; all activities would be leafs that are
children of the root node. A split node in the PM would correspond to a node
in the tree which is parent of several subtrees which correspond to the outgoing
arcs of this split. After translating a PM into a tree this way, algorithms for
comparing trees [34] are used.

Table 15. Adherence to properties and similarity values of [33]

Tree Edit Distance Between PMs Represented as Trees [33]

Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6—no|7—yes|8—yes
Similarity between Vp and ...| V % Vs V3 Vi Vs Vs 1%
1.00 | 1.00 {1.00| 0.08 | 0.13 [0.06 | 0.14 | 0.11

Calculation Settings and Results: Since the original paper does not describe
whether Bae et al. distinguish between different connector types, we transform
our models Vjp, ..., V7 into their graph representation using method 1 from Fig. 4.
Therefore, information about connector types gets lost resulting in sim(Vp, V1) =
1 and sim(Vy, Vo) = 1, too as can be seen in Tab. 15. By taking connectors into
account, the similarity between Vj and Vi and Vs respectively would be slightly
lower.

Discussion: The approach described in [33] ignores loops in a PM which is a
severe limitation. We cannot agree to the statement made in [33] that “cycles are
not used in the distance measure because the cycle does not affect the structure
of a process”. Additional research would be necessary on extending tree-based
similarity measures to the more general case of expressing PMs with loops as
trees (preliminaries are discussed in [35, 36]).

VI. Edit Distance Between Reduced Models Facilitating queries on pro-
cess model repositories is in the focus of the approach of Lu and Sadiq in [37].
A query is represented as a partial process model having the desired process
structure, e.g. the order of activities. Given a query model My = (Ny, Ey) and a
process model M; = (Ny, E7) with the sets Ag C Ny and Ay C N; of activities,
the mapping map : Ag — A; is established by label equivalence. The approach
is limited by the assumption that Ay C A;.

Similar processes can be in either of two relations with each other. Mj is
equivalent to My when Ay = Ay and Ey = Ey. My is subsumed by My when



Ay € A; and the order of activities in My is preserved in M. If models are not
in any of those relations, they are not regarded as similar to each other.

To identify the relations it is attempted to transform M; into the query
graph My using graph reduction rules. The reduction rules can be found in
[38]. Simply stated, the reduction first removes activities from M; that are not
contained in the query graph M,. After these activities are removed, edges that
are not required for statements about the order of activities are removed, too.

Eventually, M; will be transformed into a reduced model M7 = (N7¢?, E7ed).

R, . . _ #E7nE
A similarity metric is defined as sim(My, M) = g
1

Table 16. Adherence to properties and similarity values of [37]

Edit Distance Between Reduced Models [37]

Adherence to property ... 1-yes|2—no|3—no|3a—no|5-yes|6-—no|7-yes|8—yes
Similarity between Vp and ...| VW, i | Vs Vs Vi Vs Vs \%4
1.00 {1.00|1.00| 1.00 | 1.00 {0.00| 0.82 | 0.82

Calculation Settings and Results: To calculate similarity between PMs accord-
ing to the approach presented by Lu and Sadiq, we make use of the algorithm
SELECTIVE_REDUCE presented in [38]. This algorithm only distinguishes be-
tween split and join connectors regardless of the specific connector types (e.g.
AND or XOR).

Discussion: The approach of Lu and Sadiq focuses solely on structural similarity
between process models based on the order of activities. As can be seen in
Tab. 16, we have sim(Vp, V1) = 1 and sim(Vp, Vo) = 1. This is consistent with the
algorithm, since it does not distinguish between connector types and unnecessary
connectors that do not change the possible order of activities are removed during
transformation.

Tab. 16 also shows that models V3 and V4 get a similarity score of 1 when
compared to model Vj. This is straightforward, since these variants do not change
the order of activities. This behaviour is motivated by the goal of the measure
as it is applied during search in process repositories. However, a drawback that
cannot be ignored is that the measure of Lu and Sadiq does not take the similarity
of activities into account and only counts the amount of common edges.

6.3 Causal Dependencies Between Activities

I. Dependency Graph Comparison Bae et al. [39,40] build a so-called “de-
pendency graph” for a PM. The activities of the PM become the nodes in the
dependency graph. In the dependency graph, there is an arc between two ac-
tivities if one activity directly depends on data that have to be produced by
another activity, i.e. if one activity is the direct predecessor of another one. For



the dependency graph, it does not make a difference which type of connector
(AND, XOR, inclusive OR) is located between activities. As an example, the
dependency graph of Vg (which coincides with the dependency graphs of V7 and
V4) is shown as the topmost graph in Fig. 4 on page 17.

The measure that has been suggested in [39,40] for comparing two depen-
dency graphs (N9, E%) and (N}, EL) is defined as #(E% \ EL) U (EL \ EY),
i.e. the number of arcs that exist in one dependency graph, but not in the other
one. This way, the (similarity-related) distance between the graphs is measured.

The fact that there is no possibility to deal with the semantic meaning of
the different types of connectors clearly limits the applicability of this approach.
Another shortcoming is illustrated by model variant V3 (Fig. 3(d)): By adding
the activities A, B, C and D into model V,, we destroyed the majority of “direct
precedence” relations. Therefore, the dependency graphs of Vj and V3 have only
one edge (5,6) in common, and the distance measure is equal to the number of all
but one edges in both dependency graphs (i.e. 114+15=26). On the other hand,
the distance measure between V; and V; (whose dependency graphs have two
common edges) is 10+6=16 only, which does not meet the intuitive expectation.

In [41], Jung et al. improve the approach with the aim to avoid the shortcom-
ings mentioned above. At first, they calculate the execution probability of each
activity. If there is no additional information (for example from process logs),
the probability of an activity that follows an XOR-split with n outgoing arcs is
assumed to be 1, and the probability of an activity that follows an OR-split is
assumed to be 5 regardless of the number of outgoing arcs (which, of course, is
disputable). The examples in [41] show only the calculation of execution prob-
abilities for very simple PMs with a nesting level of at most one and without
loops. The general case is not described in [41], although a generalization does
not seem to be trivial. For comparing two PMs with the activity sets Ay and
Ay, two vectors are calculated for each model: The activity vector includes the
execution probabilities of each activity in Ag U A7. If a model does not include
one of these activities, its execution probability is set to 0. The transition vector
contains a value for each pair of activities from (Ao U A1) x (Ag U A4;). With-
out loss of generality, we assume that we want to calculate the activity vector
for model My which has the activity set Ag. The value of the transition vector
component that corresponds to the pair of activities (ar,ars) is 0 unless activity
ay precedes activity ay; in some trace of My. Otherwise it is the product of the
execution probabilities of a; and ay; and the reciprocal of their distance (i.e.
the least number of arcs between a; and ayy in the graph Mj). For example, the
activity a,, vector of PM Mj in Fig. 3(a) is as follows:

1
ay=(1=12=33=24=25=16=17T=78=79=1)

W —
N
N

And respectively, the distance vector dj, and transition vector ¢} for activity
1 from My:

dy, =(2=1,3=1,4=1,5=2,6=3,7=4,8=4,9=5)



th :(2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1)
vo 3 3 3’ 2’ 3 8’ 8’ 5
A similarity measure is defined as the cosine of the angle between the activity
vector of My and the activity vector of M7, and a second similarity measure as

the cosine of the angle between both transition vectors.

Table 17. Adherence to properties and similarity values of [39,40]

Dependency Graph Comparison [39, 40]

Adherence to property ... 1-yes|2—-yes|3—no|3a—no|5-yes|6-—no|7-yes|8—yes
Similarity between Vo and ...| Vo | Vi | Vo | V3 Va | Vs | V6 | V&
1.00 | 1.00 |1.00| 0.04 | 0.33 |0.06| 0.09 | 0.10

Table 18. Adherence to properties and similarity values of [41]

Dependency Graph Comparison [41]

Adherence to property ... 1-yes|2-yes|3-—no|3a—no|5-yes|6—no|7-yes|8-yes
Similarity between Vp and ...| Vj 1% Vs V3 Vi Vs Vs 1%
1.00 | 1.00 {0.99] 0.56 | 0.85 | 0.6 | 0.97 | 0.82

Calculation Settings and Results: The results of the similarity calculations and
the adherence to the properties given in Sect. 3 for the approach presented in
[39] is shown in Tab. 17. As stated in the description of the measure, dependency
graphs do not distinguish between different connector types. Thus, to calculate
similarity, we transform a given PM into its graph representation using approx-
imation method 1 from Fig. 4.

To automatically establish the execution probabilities of activities for the
approach of Jung et al., we use the so-called branch-water algorithm presented
in [42]. As described above, activities following an OR-split are assigned with a
probability of %, activities following an AND-split with a probability of 1, and
activities following an XOR-split with a probability of % where n is the amount
of outgoing arcs. Since Jung et al. do not describe how cycles should be handled,
we remove these cycles from our PMs (as this is a necessary requirement for
the branch-water algorithm). On the assumption that processes do not run into
deadlocks, cycles have no influence on the execution probabilities of individual
activities. These preparations result in the similarity values shown in Tab. 18.

Discussion: Since the approach of Bae et al. in [39] does not distinguish between
connectors, we have sim(Vp, V1) = 1 and sim(Vp, V2) = 1. Furthermore, when
an additional activity is introduced into an existing sequence A - B — C' — D,
a modified model with a sequence A -+ B — C — X — D is regarded as more



similar to the original model than a modified model with a sequence A — B —
X—-C—D.

Besides challenges in handling cycles, the measure of Jung et al. has addi-
tional undesirable properties: Changing an XOR-split with two outgoing arcs
into an OR-split does not change the activity and transition vector (though
[41] mitigates this effect in presence of execution logs). Furthermore, the con-
sideration of execution probabilities weights a change of an activity within an
AND-control block as “more important” than a change of an activity within an
XOR-control block.

II. TAR-Similarity In [15], Zha et al. discuss a naive similarity measure based
on the set of traces X(Mp) and X'(M;).This measure, which they call reference
similarity, is defined as sim(My, M;) = % Zha et al. name two
severe problems of this measure: First, it is not defined for models with loops,
because their sets of traces become infinite. And second, it is too rigid as for
example the sets of traces of the models shown in Fig. 6 do not share any common

trace, i.e. their similarity would be 0.
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Fig. 6. The sets of traces of those models are disjoint.

For these reasons, Zha et al. suggest another measure called TAR-similarity.
It is based on the transition adjacency relation (TAR). This relation TAR is
defined such that a pair (A, Arr) of two activities belongs to TAR if and only if
the model has a trace of the form (..., A7, Ayy,...), i.e. activity Ay is directly
followed by activity A;;. Let TARy be the TAR-relation for model My and
TAR; be the TAR-relation for M;. The TAR similarity between My and M,
is defined as sim(My, M1) = % (by using this simple notation, we
assume that map is the identity). Because the number of activities in My and
My is finite, TARy and T'AR; are finite as well, and the measure is defined for
all models My and M. In [15], it was shown that the distance measure that is
derived from the TAR similarity by Equation 1 is a distance function in a metric
space.

Calculation Settings and Results: Tab. 19 shows the resulting similarity values
for the approach presented in [15]. To establish TAR sets of PMs having only
XOR connectors, it is sufficient to transform these PMs into their graph repre-
sentation and to use edges between activities. However, if a model contains AND



Table 19. Adherence to properties and similarity values of [15]

Reference Similarity [15]
Adherence to property ... 1-yes|2—yes|3—no|3a—yes|5—yes|6—no|7—yes|8—no
Similarity between Vjp and ...| Vo % Vs V3 Vo | V5 | Vs | V7

not defined (V, has a loop!)

TAR-Similarity [15]
Adherence to property ... 1-yes|2—yes|3—no| 3a—no |5—yes|6—no|7T—yes|8—no
Similarity between Vp and ...| V 1% 1% V3 Va Vs Vs Ve

1.00 | 1.00 |0.60| 0.04 | 0.85 [0.11| 0.41 |0.47

or OR connectors as well, it is necessary to calculate the whole set of possible
traces and to extract the TAR sets from these traces.

Discussion: The TAR similarity can be seen as an improvement of the measure
proposed by Bae et al. [39,40] (see Sect. 6.3.1), because it distinguishes between
different types of splits and joins. However, just as the measure by Bae et al. it
has a handicap that can be illustrated by a comparison of the models V{, V3 and
Vs: The TAR-sets of V and V3 have only the element (5,6) in common, while the
TAR-sets of V and V5 have two elements in common ((6,5) and (1,4)). So we have
sim(Vy, Vs) > sim(Vy, Vs), which would not be the expected result. The reason
for such results lies in the fact that the TAR relation contains only information
about direct precedence. It should be appealing to include information about the
transitive closure of TAR into the calculation of similarity measures. Instead of
analysing information such as “activity A; can be followed directly by activity
Ar;”, we would also take into account information such as: “After executing
activity Ay, it will be possible to execute A;; later”. Approaches which use this
kind of information are discussed in the following subsections.

ITI. Causal Behavioural Profiles Weidlich et al. [43,44] capture the be-
haviour of a PM by examining dependencies between the execution of an activity
Ay and the execution of activity A;r. Such dependencies are expressed by means
of four relations:

— Aj and Ajy are in strict order relation, if and only if it is possible that A; is
executed before Ay is executed, but it is not possible that A;; is executed
before A; is executed (i.e., there is a trace (... A;...Arr...) but no trace
<A[[A[>

— A and Aj; are in exclusiveness relation, if and only if it is not possible that
both Ay and Aj; are executed in the same process instance.

— A; and Aj; are in observation concurrency relation (alternatively called
“interleaving order relation” in [43]), if and only if it is possible that Aj is
executed before Aj; is executed, and it is also possible that A;; is executed
before A is executed.

— A; and Aj; are in co-occurrence relation, if and only if in every process
instance for which A; is executed, A;; has to be executed as well.



The set of these four relations is called causal behavioural profile.

For comparing the behaviour modelled by a PM Mj and the behaviour mod-
elled by another PM M, at first a mapping between “corresponding” activities
in My and activities in M is established. This mapping is expressed by means
of a correspondence relation ~. Other than the function map discussed in Sect.
2.3, the correspondence relation ~ has to be neither injective nor functional, i.e.
one node in My can correspond to multiple nodes in M; and vice versa.

Weidlich et al. define a similarity metric (called degree of consistency in [43,
44]) between My and M; based on the following idea: For each pair of activities
in one model for which there are “corresponding” activities in the other model
(according to ~), it is checked whether these pairs share the same relations
as defined above (strict order, exclusiveness, observation concurrency and co-
occurrence).

Formally, let Ag C Ny and A; C N; be the sets of activities in My and M,
resp. Then A7 is defined as {a € Ay : 3b € A; such that a ~ b}, and Ay is
defined as {b € A; : Ja € Ay such that a ~ b}. Note that because 1:n mappings
are allowed, #A{ is not necessarily equal to #A7". Furthermore, the set of
consistent pairs Cy C Ay x Aj is defined as all those pairs (zo,yo) € Ay X Ay
for which for all pairs (z1,y1) € Ay x AY with g ~ z7 and yo ~ y1, xo and
Yo are in the same relations (strict order, exclusiveness, observation concurrency
and co-occurrence) as their counterparts 1 and y;. C; € A} x A7 is defined
analogously.

Using this formalisation, a similarity measure (called consistency metric) can

be expressed as sim(My, M) = AT xﬁ%izafxfl?)'

Table 20. Adherence to properties and similarity values of [43]

Causal Behavioural Profiles [43]

Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6—no|7—no|8—yes
Similarity between Vo and ...| V) Vi Vo V3 Va Vs 1% Ve
1.00 | 1.00 {0.93] 0.63 | 0.93 |0.22|0.98| 0.89

Calculation Settings and Results: Tab. 20 shows the similarity values for the
approach of Weidlich et al. with taking strict order relations, exclusiveness rela-
tions, co-occurrence relations, and interleaving order relations into account. In
[44], an efficient algorithm for calculating a process models causal behavioural
profile is given. The approach works for sound free-choice Petri nets, i.e. it cannot
be used for comparing unsound business process models or models containing
OR-splits. Therefore, we had to establish the causal behavioural profile for model
variant V5 manually according to the description above. No further adaptions
were necessary to calculate the similarity values.

Discussion: As shown in [43], the consistency metric can be used for searching
pairs of models that can be integrated together into one larger model in order



to reduce redundancy in a large model collection. Another important use case
(discussed in [43]) is consistency checking between a PM used as a specification
and a workflow model used as an implementation. Often, the granularity of the
specification differs from the granularity of the implementation. Therefore, for
this use case it is a reasonable approach to regard only those activities that have
a counterpart in the other model. The others (that do not appear in the pairs
of the ~ relation) do not contribute to the calculation of the consistency metric.
For this reason, the consistency metric between the models in Fig. 7 would be
the same for each pair of models (assuming that a ~ b if and only if @ and b
have the same label). For other purposes than comparing a specification and an
implementation, this could be an undesirable property of this measure.

Note that from the fact two models My and M; have the same causal be-
havioural profile, it does not follow that X(My) = (M), as can be seen from
the example in Fig. 7.

O~ HF~0

Fig. 7. Two models with different sets of traces which have the same causal behavioural
profile

IV. Causal Footprints Dijkman et al. [4] propose to use causal footprints for
capturing the precedence relations between activities in a PM. A causal footprint
of a PM with the set of activities A is a pair (L, Li,). The first member of this
tuple, Ljp € (p(A) x A) is called the set of look-back links. A pair (S, a) belongs
to Ly, if and only if each occurrence of activity a in a trace of the PM must
be preceded by the occurrence of an activity that is contained in the set S. For
example, for model V; in Fig. 3(a), we find:
— ({1},6) € Ly (every occurrence of 6 must be preceded by the occurrence of
1)7
— ({2,3,4},6) € Ly, (every occurrence of 6 must be preceded by the occurrence
of one activity from the set {2, 3,4}

According to the definition of L, we also find that
— ({1,9},6) € Ly (every occurrence of 6 must be preceded by the occurrence
of one activity from the set {1,9}; the presence of “9” is in fact irrelevant,
but allowed according to the definition).

Analogously, the set L, of look-ahead links is defined such that (Ax p(A4)) 2
(a,S) € Ly, if and only if each occurrence of activity a in a trace of the PM
must be followed by an occurrence of an activity that is contained in the set S.

For measuring the similarity of two PMs, a similarity measure for their causal
footprints is calculated. For this purpose, the causal footprints are regarded as



documents in a document vector space [45], a concept that is widely used in the
field of information filtering and information retrieval. Causal footprints (the
“documents”) are represented as vectors of index terms. Let’s assume that we
have to calculate the similarity between the causal footprints of two models
My = (No, Eo) and My = (N, Eq) whose sets of look-ahead links be L%O and
L%Il and whose sets of look-back links be Ll]\gO and LlAg[l.

The set of index terms is defined as @ = NgUN; UL UL ULy U L™,
i.e. © contains all nodes as well as all look-ahead and look-back link of both M,
and Mj. Let A : @ — N be an indexing function that assigns a running number
to each index term.

The model M;(i € {0,1}) is represented as a vector g* = (gi,95,- .-, 9%e)-
In [46], its coordinates are defined as:

0 ift¢ NyULM UL

1 Zf te N;
sty if t€ Ly ULY

where len(t) is the number of set elements in the look-ahead or look-back link.
For example, len(({1},12)) = #{1} = 1 and len(({9,10,11},12)) = #{9,10,11} =
3. This way, a greater weight is given to the look-back link ({1},12), following
the rationale that links with fewer activities in the set are more informative and
therefore more important for the comparison.

Iaity =

The similarity of My and M is calculated as the cosine of the angle between
the corresponding vectors g° and g*:

S’im(Mo, Ml) = 100%511 .

It is easy to see that sim(My, M;) = 0 unless My and M; share some com-
mon nodes. This means that the above formulae do not explicitly refer to the
mapping function map; it is simply assumed that map is the identity. In [4], the
coordinates are calculated in a more sophisticated manner. It is assumed that for
generating a mapping function map, a similarity measure corr : Ng x Ny — [0, 1]
that compares nodes in M, with nodes in M; has been calculated in a prelimi-
nary step (cf. Sect. 6.1.1T). The values calculated by this similarity function are
preserved when the coordinates of the vectors are calculated. For the purpose of
comparing model M, with model M;, the model Mj is represented as a vector
g% = (91,99, -, g%e) With

corr(t,map(t)) if t € No and map(t) is defined

g?\(t) = 7002,(;’,3?1(“)) if L0 3t = (a, M) or Li® >t = (M,a)
0 otherwise

Table 21. Adherence to properties and similarity values of [4]

Causal Footprints [4]

Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6—no|7—yes|8—no
Similarity between Vo and ...| V) Vi Vo V3 Va Vs Ve 1%
1.00 | 1.00 |1.00| 0.45 | 0.80 |0.59| 0.97 | 0.84




Calculation Settings and Results: Using the reference implementation of Causal
Footprints provided as a plug-in to the ProM framework [21], we calculated the
similarity values shown in Tab. 21.

Discussion: The advantage of the latter approach is that information about
the similarity of nodes (in particular label similarity) that is included in the
measure corr will be preserved in the similarity measure sim that compares
the models. This way, for the models shown in Fig. 2, the desirable relation
s(My, Ma) > s(My, M;) can be achieved (if the function corr that compares the
activity labels is good enough), i.e. Property 6 holds.

We see the most remarkable disadvantage of the causal footprints in the form
described in [46,4] in the fact that L;, and L;, contain a very large number of
“useless” elements. For example, for model V4 in Fig. 3(a), the look-back links
({1},6) and ({2, 3,4},6) contain substantial information about the relationship
between activity 6 and other activities. However, L;, contains additional pairs
such as no less than 29 —1 pairs ({1}US, 6) for each subset S of the set of nodes N.
Constructing the vectors in such a high dimension can become computationally
inefficient. A straightforward improvement of the approach would be to consider
only look-back/look-ahead links for which no “smaller” look-back/look-ahead
link exists. This means that for look-back links, it should be required that (.5, a) €
Ly, implies that there is no S” C S with (S5,a) € L. An analogous requirement
should be set for L,.

Another, less severe, disadvantage lies in the fact that in the published algo-
rithm for calculating causal footprints OR-connectors are dealt with in the same
way as XOR-connectors. Hence, the change between model variants V and V5
will remain undetected; sim(Vp,Va) is 1. A possible solution of this problem
would be to consider other types of look-ahead/look-back links such as L], as
the set of all pairs (a,S) such that every execution of activity a can be followed
by a state where all activities in .S are running in parallel.

V. String Edit Distance of Sets of Traces In [47] Wombacher and Rozie
compare several approaches to calculate the similarity of process models based
on a comparison of their sets of traces. First, they analyse the Levenshtein string
edit distance [23] between traces. However, a set of traces of process models with
loops is infinite. Thus, this simple idea is not applicable.

To handle infinite traces as well, [47] presents a second approach based on
n-grams. These n-grams are defined as sub-traces of length n.

For example, possible traces from process variant V; are (1,2,3,4,5,6,7,8,9)
and (1,2,3,4,5,6,5,6,5,6,5,6,7,8,9). In a trace of Vj, activities 5 and 6 can be
repeated arbitrarily often. A bigram representation of the traces combines tuples
of pairs and is {x1,12,23,34, 56,65,67,78,89,9%} where % symbolises the start
and end of a trace respectively. From the example, we can see that even infinite
traces introduced by cycles can be represented using a finite set of n-grams [48].

Analogously to the simple approach, the distance between processes is calcu-
lated using the string edit distance. But instead of analysing specific traces only
their n-gram-representation is taken into account.



Table 22. Adherence to properties and similarity values of [47]

Sets of Traces as n-grams [47]

Adherence to property ... 1-yes|2—no|3—no|3a—no|5—no|6-—no|7-yes|8—no
Similarity between Vo and ...| Vo | Vi | Ve Vs Va |l Vs | V6 | V7
1.00 |1.00{0.06 | 0.05 {0.33{0.06| 0.17 | 0.14

Calculation Settings and Results: Wombacher and Rozie do not give any in-
formation on how to calculate the edit distance. Therefore, we calculate the
minimum possible edit distances between two bigram representations. Since we
only have one-letter activities, the edit distance between bigrams (a;,b;) and
(ag,bs) is either 0 (map(a1) = az and map(b1) = b)), 1 (map(a1) = az xor
map(by) = by), or 2 (neither a; nor b; are mapped to ag or bs).

Discussion: Using a bigram representation of process models is similar to the
TAR-approach (see Sect. 6.3.1T). As stated there, it takes only information about
direct precedence of activities into account. Therefore, the similarity values for
(Vo, Vo) and (Vp, V3) are very low in comparison with the other values shown in
Tab. 22.

6.4 Approaches Based on the Sets of Traces

I. Longest Common Subsequence of Traces To calculate compliance and
maturity of an actual process model to a reference model, Gerke et al. [49]
compare the sets of traces of both models. In this context, compliance is the
extent to which a process model adheres to ordering rules of activities (e.g.
activity A must always be executed before activity B). Maturity measures to
what extent the process model recalls activities of the reference model. In order
to avoid problems with infinite traces and infinite sets of traces, it is assumed that
the possible executions are restricted by the constraint that there is a maximum
number of possible repetitions of each loop in a model.

Gerke et al. use a non-injective mapping function map : Ny — N;. By allow-
ing to map more than one element of Ny to the same element of Ny, granularity
differences between two models can be handled. Gerke et al. define the compli-
ance degree cdirqce and the maturity degree mdi,qce of two traces oy and oy
based on the length of their longest common subsequence (see Sect. 2.2) as:

len(les(og, 01))

#01

len(les(og, 01))

#00

The overall compliance and maturity degree between two models My and M,
are calculated by summing up the maximum compliance and maturity degree of

Cdtrace (01 5 00) =
(8)

mdtrace (Ul 5 UO) =



traces.

max (cdiraee(01, 0
oleE(Ml)"OeE(MO)( trace(01,00))

cd(My, My) =
#2(M) (9)
Hgi()]f/[ )(Cdtrace (0—17 UO))
o og1€
md(My, My) = 0€X(Mo) 71 1

#(Mo)

Table 23. Adherence to properties and similarity values of [49]

Longest Common Subsequence of Traces [49] (with number of loop cycles=1)
Adherence to property ... 1-yes|2-yes|3-no|3a—no|5-yes|6-—no|7-yes|8—no
Similarity between Vp and ...| Vo 1% Vs V3 Vi Vs Vs %

1.00 | 1.00 | 0.86| 0.79 | 1.00 |0.43| 0.93 [ 0.90

Calculation Settings and Results: In our example calculations, we use the arith-
metic mean between compliance degree cd(M;, M) and maturity degree md(M, My)
as similarity measure. Additionally, we restricted the amount of iterations to 1.
Taking more iterations into account would result in slightly higher similarity
values between Vj and the other models with iterations (V;, Va, Va, Vg, and V7).
Accordingly, similarity values between Vj and Vy and Vi would be slightly lower.
The results of our calculations can be seen in Tab. 23.

Discussion: By allowing non-injective map functions, the approach would lead to
a similarity measure sim for which for our example model variants sim(Vp, V3) =
1 would hold if map is constructed accordingly (we could map 1 to (1, A4), 5 to
(B,5), 6 to (6,C), and 9 to (D,9)). [49] describes only the case that one activity
in a reference model M, corresponds to more than one activity in M;. The more
general case that n activities in My correspond to m activities in M; is not
discussed, i.e. sim(V3, V) would not be defined. It is, however, not difficult to
generalise the approach in order to deal with such cases as well.

Above, we have described only a “general” similarity measure that compares
two models as a whole. The approach described in [49] supports two more aspects
that are important for judging about the compliance of a model with a given
reference model: First, it allows that only a subset of the reference model is
taken into consideration for the comparison. And second, it is possible to select
subsets of activities in the reference model for which the order between them
is regarded as unimportant for the comparison. Both aspects are useful for the
purpose of measuring the compliance of a PM with a given reference model
(which is the aim of Gerke et al. in [49]), although it should be noted that
disregarding the order between some activities has a great negative influence on
the computational complexity.



In order to compare two models My and My, both sets of traces X(Mp) and
X(My) have to be calculated, and each o9 € X (Mp) has to be compared with
each o1 € X' (My). For models with large sets of traces, this would not be feasible,
i.e. we have to observe a violation of Property 8.

II. Similarity Based on Principal Transition Sequences In order to deal
with the problems of infinite traces and infinite sets of traces, Wang et al. [50]
limit the (sub)traces to consider in a comparison between PMs as follows: A
trace that does not contain any activity more than once is considered as a
whole. A trace o that contains an activity x more than once has the form
0 = (Oprefiz, T, Orepeatables Ts - - - ), Where Oprefiz and Opepeatable are sub-traces
of 0. In such a case, the sub-traces oprcfiz and orepeatabic are used for the com-
parison instead of the complete trace o. In [50] it has been shown that for each
PM the number of (sub)traces derived in this way is finite.

The similarity between two (sub)traces oy and oy is defined based on the
longest common subsequence as

SiMirace (01, 071) = maie(;léic(i(;')’l;fii)n)) . Based on this formula, the similarity
between two PMs My and M; with the sets of (sub)traces Ty and T; selected
according to the above description is defined as

> max $iMirace(0,07) + > max simyprgee(o’, o)
o€TH © eTy o' €Ty oeTy

sim(My, M) = i

(10)

Table 24. Adherence to properties and similarity values of [50]

Similarity Based on Principal Transition Sequences [50]

Adherence to property ... 1-yes|2—-yes|3-no|3a—no|5—yes|6—no|7-yes|8no
Similarity between Vo and ...| V) Vi Vo V3 Va Vs Vs Vz
1.00 | 1.00 |0.83| 0.61 | 0.84 |0.20| 0.85 | 0.83

Calculation Settings and Results: The values for the similarity between V[, and
the rest of our example variants according to [50] is shown in Tab. 24.

Discussion: The approach from Wang et al. allows to calculate a similarity
measure based on sets of traces even between PMs with an infinite sets of traces.
However, the generation of the sub-traces to compare still requires a symbolic
exploration of the sets of traces, i.e. Property 8 is not fulfilled.

III. Similarity of process models based on observed behaviour De
Medeiros et al. [51] present a method to calculate the similarity of PMs that
is based on comparing traces obtained from actual process executions or by



simulation. They point out that comparing the sets of traces directly leads to
problems when a set of traces becomes infinite and that such a comparison would
not take into account the real world application of processes in practice where
certain traces occur more frequently than others. It could be added that dealing
with the whole sets of traces could become computationally inefficient if the sets
of traces are very large.

De Medeiros et al. define a log L as a set of traces of a PM together with
their occurrence frequency L(o). The frequency of a trace is used to put more
importance to those traces that were observed more frequently.

A partial trace p(o,k) of a trace o represents the first k activities in this
trace. The set of enabled activities of a model My (denoted as e(My, p(o, k)))
contains all activities that can be executed after the execution of a partial trace
p(o, k), i.e. an activity = belongs to e(My, p(o, k)) if and only if there is a trace
that has the form (p(o, k), z,...)

De Medeiros et al. define two similarity measures: The precision measure
shows the extent to which dependencies between activities in the second model
can be found in the first model as well. To simplify calculation we first define
the precision factor p for two models My and M; based on a trace o.

#Ho—1

p(Mo, My,0) = 3 #(e(My, p(o,i)) Ne(M;,p(o,i)))
=0

#G(Mlvp(ga 'L))

(11)

Using this factor it is now possible to define the similarity measure “precision”
between the models My and M; as

ZUEL L#(LZ-) : p(MO7M170)

#L

A second measure, the recall, shows the extent to which dependencies between
activities of the first model can be found in the second model as well. It is defined
in the same way as the precision measure except the recall factor is divided by
the number of enabled activities in model M| instead of the number of enabled
activities in M;.

Simprecision(Mli) = (12)

Table 25. Adherence to properties and similarity values of [51]

Similarity Based on Traces [51] (taking X'(My) as log)

Adherence to property ... 1-yes|2—yes|3—no|3a—no|5—yes|6—no|7—yes|8—yes
Similarity between Vp and ...| V 1% Vs Vs Vi Vs Vs 1%
1.00 | 1.00 |0.90| 0.33 | 0.83 |0.22] 0.72 | 0.65

Calculation Settings and Results: We calculate the similarity of two process
models as the arithmetic mean between recall and precision. Since logs were not



available in our study, we use the original process models without executing the
iteration. For model V we have a set L of six logs:

L = {125679, 125689, 135679, 135689, 145679, 145689}

This leads to the similarity values shown in Tab. 25. If we would have exe-
cuted the iteration once or more than once this would have resulted in slightly
lower similarity values between models Vy and V; and V5 and in slightly higher
similarity values for the other models.

Discussion: The approach of de Medeiros et al. uses logs of executed PMs as
input. Therefore, it is only applicable if information about process execution
exists. If no logs are available, it would be possible to compute logs by randomly
simulating the executions of a PM. Furthermore, the authors themselves state
that the approach is limited to comparing two models with respect to a given
log. For example, if subparts of a model are never executed, they are not in the
log and therefore, differences in these subparts can not be identified. For this
reason, the authors emphasise that the logs must reflect typical behaviours of
the models.

6.5 Similarity of Structural Complexity Metrics

In this subsection, we shortly mention another approach for defining similarity
between PMs that will not be discussed in detail, because it follows a different
understanding of the concept of similarity.

Melcher and Seese [52] aim to find structurally similar PMs within model
collections by comparing the values of several complexity metrics for the PMs.
The models are clustered such that PMs with similar metrics values can be
identified. While this could be useful for gaining insights into the distribution of
metric values, it is not possible to draw conclusions about behavioural similarity
or relatedness among PMs. For this reason, the approach will not be discussed
here further.

7 Discussion

Tab. 26 shows the similarity values we have computed between our example
model Vj and its variants V; ... V7. For measures that can be parametrised by
attaching different weights to factors, we used the most reasonable and sim-
ple parameters (e.g. for a measure which is a weighted sum of three num-
bers, every summand has a weight of %) Some results do not comply with the
intuitive understanding of “PM similarity”, for example some measures have
sim(Vp, Va) < sim(Vp, Vs).

Tab. 27 allows a more visual comparison between the similarity measures.
For each measure, the darkness of a cell represents the order of similarity that
the similarity measure computes between Vj and the model variant. We observe



Table 26. Similarity Measures for our Example Models

Similarity between Vj and ...

Vi[Va[Va[Val V5] Ve | VR
Measures based on the correspondence of nodes and edges
(not taking into account the control flow)
Percentage of Common Activity Names [22] 1.00|1.00{0.82{1.00{1.00|1.00|1.00
Label Matching Similarity [4] 1.00{1.00{0.82|1.00/1.00{1.00|1.00
Similarity of Activity Labels [6] 1.00{1.00{1.00|1.00{1.00{1.00|1.00
Feature-Based Activity Similarity [25] 1.00|1.00{0.82{1.00{1.00|1.00|1.00
Percentage of Common Nodes and Edges [26] 1.00{1.00{0.40|0.95(0.58|0.76|0.79
Node- and Link-Based Similarity [27] 0.60{0.63(0.48|0.58|0.63|0.59|0.56
Measures based on graph edit distances
Graph Edit Distance [4] 1.00|1.00{0.63]0.97|0.73/0.86|0.88
Graph Edit Distance [29] 0.05|0.04(0.20/0.33|0.03|0.33]0.17
Label Similarity and Graph Edit Distance [30] 0.81]1.00(0.83|0.96|0.62]0.92/0.94
Label Similarity and Graph Edit Distance [12] 0.05(0.03{0.06|0.33|0.03{0.14|0.20
Number of High-Level Change Operations [31] 1.00/0.79{0.79]0.87|0.33/0.93|0.93
Comparing PMs Represented as Trees [33] 1.00/1.00{0.07|0.13|0.06/0.14|0.14
Edit Distance Between Reduced Models [33] 1.00{1.00{1.00|1.00/0.00{0.82|0.82
Measures that analyse causal dependencies between activities
Comparing Dependency Graphs [39, 40] 1.00/1.00{0.04]0.33]0.06{0.09{0.10
Comparing Dependency Graphs [41] 1.00/0.99(0.56|0.85|0.60/0.97|0.82
Reference Similarity [15] not defined (Vp has a loop!)
TAR-Relationship [15] 1.00{0.60{0.04|0.85(0.11{0.41|0.47
Causal Behavioural Profiles [43] 1.00/0.93(0.63|0.93|0.22|0.98|0.89
Causal Footprints [4] 1.00{1.00|0.45|0.80{0.59(0.97|0.84
Sets of Traces as n-grams [47] 1.00/0.06{0.05|0.33(0.06/0.17|0.14
Measures that compare sets of traces or logs
Longest Common Subsequence of Traces [49] 1.00/0.86{0.79(1.00(0.43/0.93|0.90
Similarity Based on Principal Transition Sequences [50]|1.00/0.83/0.61]0.84|0.20|0.85/0.83
Similarity Based on Traces [51] 1.00/0.90{0.33|0.83|0.22|0.72|0.65

that some measures based on graph-distance do not agree with the majority of
measures about the value of sim(Vp, V7). Also, we can see that the measures
come to very different results about the similarity between V; and the models
V4, Vg and V7. A rather surprising observation is that there are measures that
regard V5 as more similar to V[ than at least one other model.

As stated in Sect. 4.2, similarity measures for PMs have been proposed for
a number of purposes. Our observations give some first insights which measures
are more useful than others for a given purpose:

The measures discussed in Sect. 6.1 which do not take into account the
routing constructs in a PM are useful for finding related models from a repository
(and less useful for purposes that make reference to the model behaviour). An
interesting use case for such rather simple measures has been suggested in [25]:
A search for related models can be used as a first step of a search in a large
repository. It helps to filter out unrelated models such that the more precise




Table 27. sim(Vp, V;) is Represented by the Darkness of the Table Cells

Similarity between Vy and ...
[Vi | Va| V5| Va| V5| Vs | V2

Measures based on the correspondence of nodes and edges
(not taking into account the control flow)
Percentage of Common Activity Names [22]
Label Matching Similarity [4]
Similarity of Activity Labels [6]
Feature-Based Activity Similarity [25]
Percentage of Common Nodes and Edges [26]
Node- and Link-Based Similarity [27]
Measures based on graph edit distances
Graph Edit Distance [4]
Graph Edit Distance [29]
Label Similarity and Graph Edit Distance [30]
Label Similarity and Graph Edit Distance [12]
Number of High-Level Change Operations [31]
Comparing PMs Represented as Trees [33]
Edit Distance Between Reduced Models [33]
Measures that analyse causal dependencies between activities
Comparing Dependency Graphs [39, 40]
Comparing Dependency Graphs [41]
TAR-Relationship [15]
Causal Behavioural Profiles [43]
Causal Footprints [4]
Sets of Traces as n-grams [47]
Measures that compare sets of traces or logs
Longest Common Subsequence of Traces [49]
Similarity Based on Principal Transition Sequences [50]
Similarity Based on Traces [51]

(but also slower) algorithms can be applied to a small subset of the original
search space.

Another similarity measure not taking into account the routing constructs is
the measure suggested by Bae et al. [39]. The approach is based on a “dependency
graph” that documents the precedence and causality relations between activities.
Such an approach is suitable for modeling languages such as IDEF0 [53] which
show this kind of relations but less useful for languages such as BPMN that put
focus on advanced control flow constructs as well.

When models are compared with the aim of discovering services or measur-
ing conformance, approaches that consider the actual behaviour of a process
execution have to be used. Preference should be given to the methods described
in Sect. 6.3 that exploit relationships between activities instead of requiring a
calculation of the whole sets of traces as some approaches discussed in Sect. 6.4
do. The reason is that calculating the whole set of traces of a model can demand
large memory and processing resources. It has to be noted that the approach



based on causal footprints (Sect. 6.3.IV) in its current form is computationally
inefficient as well and cannot be recommended to be used in the context of large
PM repositories. Though we use the reference implementation of the causal foot-
prints, it takes about 5 seconds to compute similarity between the eight process
variants using our ProM plugin. All other measures calculate these similarity
values in less than 1 second.

Processing speed can be less important if only two models have to be com-
pared, for example to measure conformance. In such cases, using approaches that
require to calculate the sets of traces can be an option.

Some applications require to compare PMs that have been designed on dif-
ferent levels of granularity. For example, this can be the case if the conformance
between a PM serving as a specification and the actual implementation in a
workflow system have to be compared. In such cases, it is recommended to use
a measure that finds a similarity even between such models. In particular, the
approaches of Lu and Sadiq [38] (see Sect. 6.2.VI), Weidlich et al. [43] (see Sect.
6.3.I1I), Gerke et al. [49] (see Sect. 6.4.I) and Grigori et al. [29] (see Sect. 6.2.1)
support such use cases.

Although not extensively discussed in our article, it should be noted that
the quality of the mapping between the nodes (the function map) has a signifi-
cant contribution to the quality of a similarity measure. In particular, regarding
nodes as corresponding to each other only if they have exactly the same label
is reasonable only in a few special application areas such as comparing models
that have been derived from the same template.

8 Conclusion

The aim of this survey was to discuss the different concepts for defining similarity
measures for PMs.

We elaborated a number of desirable properties for PM similarity measures
and analysed 23 similarity measures that have been described in the literature
with respect to those properties. Also, we computed the similarity between exam-
ple models using the different similarity measures. The results show that hardly
a measure fulfills all desirable properties. Furthermore, it can be seen that dif-
ferent similarity measures rank the similarity between PMs very differently. We
conclude that there is not a single “perfect” similarity measure. Instead, we gave
some recommendations for the selection of an appropriate similarity measure for
different use cases.

We are not aware of any other work that aims to give a comprehensive
overview about existing PM similarity measures. We hope that our article is
a contribution that helps to improve similarity measures and to promote their
practical application.
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