
Automatic Learning in Proof Planning
Mateja Jamnik1;2 and Manfred Kerber 2 and Martin Pollet 3;2

Abstract. In this paper we present a framework for automated
learning within mathematical reasoning systems. In particular, this
framework enables proof planning systems to automaticallylearn
new proof methods from well chosen examples of proofs which use a
similar reasoning pattern to prove related theorems. Our framework
consists of a representation formalism for methods and a machine
learning technique which can learn methods using this representation
formalism. We present the implementation of this frameworkwithin
the
MEGA proof planning system, and some experiments we ran on
this implementation to evaluate the validity of our approach.

1 Introduction

Proof planning [3] is an approach to theorem proving which uses
proof methods rather than low level logical inference rulesto find a
proof of a theorem at hand. A proof method specifies a general rea-
soning pattern that can be used in a proof, and typically represents a
number of individual inference rules. For example, mathematical in-
duction can be encoded as a proof method. Proof planners search for
a proof plan of a theorem which consists of applications of several
methods. An object level logical proof may be generated froma suc-
cessful proof plan. Proof planning is a powerful technique because it
often dramatically reduces the search space, since the search is done
on the level of abstract methods rather than on the level of several
inference rules that make up a method. Therefore, typically, there
are fewer methods than inference rules explored in the search space.
Proof planning also allows reuse of proof methods, and moreover
generates proofs where the reasoning strategies of proofs are trans-
parent, so they may have an intuitive appeal to a human mathemati-
cian. Indeed, the communication of proofs amongst mathematicians
can be viewed to be on the level of proof plans.

One of the ways to extend the power of a proof planning system
is to enlarge the set of available proof methods. This is particularly
beneficial when a class of theorems can be proved in a similar way,
hence a new proof method can encapsulate the general reasoning pat-
tern of a proof for such theorems. A proof method in proof planning
basically consists of a triple – preconditions, postconditions and a
tactic. A tactic is a program which given that the preconditions are
satisfied transforms an expression representing a subgoal in a way
that the postconditions are satisfied by the transformed subgoal. If
no method on an appropriate level is available in a given planning
state, then a number of lower level methods (with inference rules as
the lowest level methods) have to be applied in order to provea given
theorem. Alternatively, a new method can be added by the developer
of a system. However, this is a very knowledge intensive taskand1 University of Cambridge Computer Laboratory, J.J. ThomsonAvenue,

Cambridge, CB3 0FD, UK,http://www.cl.cam.ac.uk/˜mj2012 School of Computer Science, The University of Birmingham, Birmingham
B15 2TT, England, UK,http://www.cs.bham.ac.uk/˜mmk3 Fachbereich Informatik, Universität des Saarlandes, 66041 Saarbrücken,
Germany,http://www.ags.uni-sb.de/˜pollet

hence, presents a difficulty in applying a proof strategy to many do-
mains.

In this work, we show how a system can learn new methods auto-
matically given a typically small number of well chosen examples of
related proofs of theorems. This is a significant improvement, since
examples (e.g., in the form of classroom example proofs) exist typ-
ically in abundance, while the extraction of methods from these ex-
amples can be considered as a major bottleneck of the proof planning
methodology.

The idea is that the system starts with learning simple proofmeth-
ods. As the database of available proof methods grows, the sys-
tem can learn more complex proof methods. Inference rules can be
treated as methods by assigning to them pre- and postconditions.
Thus, from the learning perspective we can have a unified viewof
inference rules and methods as given sequences of primitives from
which the system is learning a pattern. We will refer to all the existing
methods available for the construction of proofs as primitive meth-
ods. As new methods are learnt from primitive methods, thesetoo
become primitive methods from which yet more new methods canbe
learnt. Clearly, there is a trade-off between the increasedsearch space
due to a larger number of methods, and increasingly better directed
search possibilities for subproofs covered by the learnt methods.
Namely, on the one hand, if there are more methods, then the search
space is potentially larger. On the other hand, the organisation of a
planning search space can be arranged so that the newly learnt, more
complex methods are searched for first. If a learnt method is found to
be applicable, then instead of a number of planning steps (that corre-
spond to the lower level methods encapsulated by the learnt method),
a proof planner needs to make one step only. Generally, proofplans
consisting of higher level methods will be shorter than their corre-
sponding plans that consist of lower level methods. Hence, the search
for a complete proof plan is shallower, but also bushier. In order to
measure this trade-off between the increased search space and better
directed search, an empirical study is carried out in the second part
of this paper.

Here, we present a hybrid proof planning system LEARN
MATIC ,
which uses the existing proof planner
MEGA [1], and combines it
with our own machine learning system. This enhances the
MEGA

system by providing it with the learnt methods that
MEGA can use
in proving new theorems.

Automatic learning by reasoning systems is a difficult and ambi-
tious problem. Our work demonstrates one way of starting to address
this problem, and by doing so, it presents several contributions to the
field. First, although machine learning techniques have been around
for a while, they have been relatively little used in reasoning systems.
Making a reasoning system learn proving strategies from examples,
much like children learn to solve problems from examples demon-
strated to them by the teacher, is hard. Our work makes an important
step in a specialised domain towards a proof planning systemthat
can reasonand learn.

Second, proof methods have complex structures, and are hence
very hard to learn by the existing machine learning techniques. We
approach this problem by abstracting as much information from the
proof method representation as needed, so that the machine learning
techniques can tackle it. Later, after the reasoning pattern is learnt,
the abstracted information is restored as much as possible.

Third, unlike in some of the existing related work [5, 14], weare
not aiming to improve ways of directing proof search within afixed
set of primitives. In theorem proving systems these primitives are
typically inference steps or tactics, and in proof planningsystems
these primitives are typically proof methods. Rather, we aim to learn
the primitives themselves, and hence improve the frameworkand
reduce the search within the proof planning environment. Namely,
instead of searching amongst numerous low level proof methods, a
proof planner can now search for a newly learnt proof method which
encapsulates several of these low level primitive methods.

Running Example We demonstrate our approach with running
examples. There is a large class of residue class theorems ingroup
theory that can be proved using the same pattern of reasoning. Their
use is well documented in [10]. Here are examples of three residue
class theorems (whereZZi is the residue class of integers moduloi,
and the lambda expression is the operation over this set):

1. closed-under(ZZ3; (�x�y x�+(x�+y)))
2. associative-under(ZZ3; (�x�y (x��y)))
3. commutative-under(ZZ2; (�x�y (x�+y)))
The pattern of reasoning to prove them is as follows. First,
the definitions are expanded (e.g.,closed-under, associative-under,
commutative-under). Then, all of the statements on residue classes
are rewritten into corresponding statements on integers bytransfer-
ring the residue class set into a set of corresponding integers. Then,
the proofs diverge: if the statements are universally quantified, then
an exhaustive case analysis over all elements of the set is carried out.
If the statements are existentially quantified, then all elements of the
set are examined until one is found for which the statements hold.

The aim of our work is to learn and generalise such patterns into
proof methods that can then be used for proofs of other related the-
orems. We now show how this learning is done automatically within
our framework.

2 Learning

The methods we aim to learn are complex and beyond the complex-
ity that can typically be tackled in the field of machine learning.
Thus, we first simplify the problem and aim to learn so-calledmethod
outlines. For this purpose we use a simple representation formalism
which abstracts away as much information as possible for thelearn-
ing process, which is described next. Second, we restore theneces-
sary information as much as possible so that the proof planner can
use the newly learnt method using the mechanism described inx3.4

Let us define the following languageL, whereP is a set of known
identifiers of primitive methods used in a method that is being learnt:� for anyp 2 P , let p 2 L,� for anyl1; l2 2 L, let [l1; l2℄ 2 L,� for anyl1; l2 2 L, let [l1jl2℄ 2 L,� for anyl 2 L, let l� 2 L,� for anyl 2 L andn 2 N, let ln 2 L,� for anylist such that allli 2 list are alsoli 2 L, letT (list) 2 L.4 Some information may be irrecoverably lost. In this case, some extra search

in the application of the newly learnt methods will typically be necessary.

“ [” and “℄” are auxiliary symbols used to separate subexpressions,
“,” denotes asequence, “j” denotes adisjunction, “�” denotes arep-
etition of a subexpression any number of times (including0), n a
fixed number of times, andT is a constructor for a branching point
(list is a list of branches), i.e., for proofs which are not sequences
but branch into a tree.5 We refer to expressions in languageL which
describe compound methods asmethod outlines.

Learning Technique Method outlines are abstract methods which
have a simple representation that is amenable to learning. The algo-
rithm that learns method outlines can find an adequate minimal and
least general generalisation within the given language restrictions. It
is based on the generalisation of the simultaneous compression of
well-chosen examples.

Our learning technique considers some typically small number of
positive examples which are represented in terms of sequences of
identifiers for primitive methods, and generalises them so that the
learnt pattern is in languageL. The pattern is ofsmallest sizewith
respect to a defined heuristic measure ofsize[6], which essentially
counts the number of primitives in an expression. The intuition for
it is that a good generalisation is one that reduces the sequences of
method identifiers to the smallest number of primitives (e.g., [a2℄ is
better than[a; a℄). The pattern is alsomost specific(or equivalently,
least general) with respect to the definition of specificityspec. spec
is measured in terms of the number of nestings for each part ofthe
generalisation [6]. Again, this is a heuristic measure. Theintuition
for this measure is that we give nested generalisations a priority since
they are more specific and hence less likely to over-generalise.

We take both, the size (first) and the specificity (second), inac-
count when selecting the appropriate generalisation. If the general-
isations considered have the same rating according to the two mea-
sures, then we return all of them. For example, consider two possi-
ble generalisations constructed by the learning algorithmdescribed
below: [[a2℄�℄ and [a�℄. According to size,size([[a2℄�℄) = 1 andsize([a�℄) = 1. However, according to specificity,spec([[a2℄�℄) = 2
andspec([a�℄) = 1. Hence, the algorithm selects[[a2℄�℄.

Here is the learning algorithm. Given some number of examples
(e.g.,e1 = [a; a; a; a; b;
℄ ande2 = [a; a; a; b;
℄):
1. For every exampleei, split it into sublists of all possible lengths

plus the rest of the list. We get a list of pattern listspli, each of
which containing patternspi.6 E.g.:
for e1: f[[a℄; [a℄; [a℄; [a℄; [b℄; [
℄℄, [[a; a℄; [a; a℄; [b;
℄℄, [[a℄; [a; a℄,[a; b℄; [
℄℄, [[a; a; a℄, [a; b;
℄℄, [[a℄; [a; a; a℄, [b;
℄℄; : : : g
for e2: f[[a℄; [a℄; [a℄; [b℄; [
℄℄,[[a; a℄; [a; b℄; [
℄℄, [[a℄, [a; a℄; [b;
℄℄,[[a; a; a℄; [b;
℄℄, [[a℄; [a; a; b℄; [
℄℄; : : : g

2. If there is any branching in the examples, then recursively repeat
this algorithm on every element of the list of branches.

3. For every exampleei and for every pattern listpli find sequential
repetitions of the same patternspi in the same example. Using an
exponent denoting the number of repetitions, compress themintop
i and hencepl
i . E.g.:pl
1 = f[[a℄4; [b℄; [
℄℄; [[[a; a℄2℄; [b;
℄℄; : : : g5 Note the difference between the disjunction and the tree constructors: for

disjunction the proofs covered by the method outline consist of applying
either the left or the right disjunct. However, with the treeconstructor every
proof branches at that particular node to all the branches inthe list. Note
also, that there is no need for an empty primitive as it can be encoded with
the use of the existing language. E.g., let� be an empty primitive and we
want to express[a; b; [�j
℄; d℄. Then an equivalent representation without
the empty primitive is[a; [bj[b;
℄℄; d℄. We avoid using the empty primitive
as it introduces a large number of unwanted generalisation possibilities.6 Notice that there aren modm ways of splitting an example of lengthn into
different sublists of lengthm. Namely, the sublists of lengthm can start in
positions1; 2; : : : ; n modm.

pl
2 = f[[a℄3; [b℄; [
℄℄; [[a℄; [a; a℄; [b;
℄℄; : : : g
4. For every compressed patternp
i 2 pl
i of every exampleei, com-

pare it with p
j in all other examplesej , and find matchingp

(calledmi) with the same constituent pattern, which may occur a
different number of times. E.g.:m1 = (pl
11 ; pl
12) due to[a℄4 and[a℄3m2 = (pl
21 ; pl
22), due to[b;
℄ and[b;
℄, etc.

5. If there are no matchesmi in the previous step, then generalise the
examples by joining them disjunctively using the “j” constructor.

6. For everyp
i in a matching, generalise different exponents to a “�”
constructor, and the same exponentsn to a constantn. E.g.:7

for m1: [a℄4 and[a℄3 are generalised to[a℄�;
for m2: [b;
℄ and[b;
℄ are generalised to[b;
℄

7. For everypg of a match, transform the rest of the pattern list on the
left and on the right ofpg back to the example list, and recursively
repeat the algorithm on them. E.g.:
for m1 in e1: LHS= [℄, pg = [a℄�, repeat on RHS=[b;
℄
for m1 in e2: LHS= [℄, pg = [a℄�, repeat on RHS=[b;
℄
for m2 in e1: repeat on LHS= [a; a; a; a℄, pg = [b;
℄, RHS= [℄
for m2 in e2: repeat on LHS= [a; a; a℄, pg = [b;
℄, RHS= [℄.

8. Repeat recursively this algorithm on all possible generalisations
inside the method outline (i.e., “*”, exponentn, “j” and “,”) in
order to find nested generalisations (such as[[a℄2℄�). Terminate,
when no success.

9. If there is more than one generalisation remaining at the end of
the recursive steps, then pick the ones with the smallest size and
among these the ones with the largest specificity. Else, the ex-
amples cannot be generalised. E.g.: for the examples above,not
applicable yet; after the algorithm is repeated on the rest of our
examples, the learnt method outline will be[[a℄�; [b;
℄℄.
The learning algorithm was implemented in Standard ML v.110.

Its input are the sequences of proofs constructed in
MEGA. Its out-
put are method outlines which are passed back to
MEGA. The al-
gorithm was tested on several examples of proofs and it successfully
produced the required method outlines.

In particular, for our example of the residue class theoremsabove,
the sequences of methods identifiers from the proofs of thesetheo-
rems are as follows:

1. fdefn-exp,8i-sort,8i-sort, convert-resclass-to-num, defn-exp, or-
e-rec, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-
exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp,
simp-num-expg

2. fdefn-exp,8i-sort,8i-sort, 8i-sort,convert-resclass-to-num, or-e-
rec, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp,
simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-
exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp,
simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-
num-exp, simp-num-exp, simp-num-exp, simp-num-expg

3. fdefn-exp, 8i-sort,8i-sort, convert-resclass-to-num, or-e-rec,
simp-num-exp, simp-num-exp, simp-num-exp, simp-num-expg

The algorithm described here learnt the expected method outline:

tryanderror� �
defn-exp; [8i-sort℄�; convert-resclass-to-num;[[or-e-rec℄j[defn-exp, or-e-rec℄℄; simp-num-exp��

Due to lack of space the reader is referred for the discussionof
some properties of our learning algorithm to [6]. There are some dis-
advantages to our technique, mostly related to the run time speed7 Notice that here is a point where our generalisation technique can over-

generalise, namely when there is a pattern in the exponents –like prime
number – this is ignored and just a� is selected.

of the algorithm relative to the length of the examples considered
for learning. The algorithm can deal with relatively small examples,
which we encounter in our application domain, in an optimal way.
The complexity of the algorithm is exponential in the worst case.
Hence, we use some heuristics for large and badly behaved exam-
ples [6].

3 Using learnt methods

Method outlines that have been learnt so far do not contain all the in-
formation which is needed for the proof planner to use them. For
instance, they do not specify what the pre- and postconditions of
methods are, they also do not specify how the number of loop ap-
plications of methods is instantiated when used to prove a theorem.
Hence, we need to restore the missing information.

For each learnt outline we automatically create a method forwhich
its precondition is fulfilled if there is a sequence of methods that is an
instantiation of the method outline, and each method of the sequence
is applicable. The postcondition introduces the new open goals and
hypotheses resulting from applying the methods of the sequence to
the current goal. We will call this kind of method alearnt method.

Since methods in
MEGA may be very complex, the precondition
of a learnt method cannot be extracted from the pre- and postcon-
ditions of theuninstantiatedmethods in the method outline. Hence,
we actually have to apply a method to produce a proof situation for
which we can test the preconditions of the subsequent methodin the
method outline. That is, we have to perform proof planning guided
by the learnt outline.

The precondition test performs a depth first search on the learnt
method outline. Besides the choice points of the learnt method, i.e.,
disjunctions and number of repetitions for “�”, we also have to de-
cide to which open goal every single method in the method outline
should be applied. Additionally, for methods containing parameters
an instantiation has to be chosen. More details on the application test
and on the learnt method reuse can be found in [6].

4 Evaluation – experiments

In order to evaluate the success of our approach, we carried out an
empirical study in different problem domains on a number of theo-
rems. This test set includes the theorems from which new methods
were learnt, but most of them are new and more complex. In partic-
ular, we tested our framework on examples of residue classes(e.g.,
like our running examples), set theory8 and group theory.9 The aim
of these experiments was to investigate if the proof planner
MEGA

enhanced with the learnt methods, can perform better than the stan-
dard
MEGA planner.10 The learnt methods were added to the search
space in a way that their applicability is checked first, before the ex-
isting standard methods.

The measures that we consider are:coverage– the ability to prove
new theorems with the help of learnt methods;timing – the time it
takes to prove a theorem;proof length– the number of steps in the
proof plan; andmatchings– the number of all true and false attempts8 Here are a set theory theorem and a non-theorem:8x; y; z ((x[y)\ z) =(x \ z) [(y \ z) and8x; y; z (x [y) \ z) = (x [z) \ (y [z).9 Here are some group theory examples:aÆ(((a�1 Æb)Æ(
Æd))Æf) = (bÆ(
Æd))Æf and(
Æ(bÆ(a�1Æ(aÆb�1))))Æ(((dÆa)Æa�1)Æf) =
Æ(dÆf).10 There are several reasons for comparing the performance of
MEGA with

and without a learning capability, rather than with the performance of other
learning reasoning systems. First, there are only few proofplanners around.
In the future, we plan to apply our learning approach to�Clamproof plan-
ner in order to assess the benefits of our approach in other systems. Second,
as discussed inx5, little work has been done on applying machine learning
techniques to automated theorem provers, hence a direct comparison with
another approach is infeasible.

to match candidate methods. Checking the candidate methodsthat
may be applied in the proof, i.e.,matchings, is by far the most ex-
pensive part of the proof search, and is hence the best measure to
indicate the validity of our approach.

Table 1 compares the values ofmatchingsand proof lengthfor
the three problem domains.11 It compares the values for these mea-
sures when the planner searches for the proof with the standard set of
available methods (column marked with S), and when in addition to
these, there are also our newly learnt methods available to the plan-
ner (column marked with L). “—” means that the planner ran outof
resources (four hours of CPU time) and could not find a proof plan.

Theorem Matchings Length
S L S L

assoc-z3z-times 651 113 63 2
assoc-z6z-times 4431 680 441 2
average res. class 1362.0 219.5 134.0 2.0

closed-z3z-plusplus 681 551 49 34
closed-z6z-plusplus 3465 2048 235 115
average res. class 1438.8 918.3 101.0 57.3

average set examples 33.5 12.5 13.0 2.0
average group theory (simple) 94.2 79.0 15.5 8.3

average group theory (complex) — 189.6 — 9.8

Table 1. Evaluation results.

Residue class domain: In the domain of residue classes, we gave
our learning mechanism examples such that it learnt two new meth-
ods: tryanderror (as demonstrated in our running examples), and
choose. The first two theorems in Table 1 (about associativity) and
the average for all theorems of a similar type that we tested,can use
the tryanderror method, if it is available to the planner. It is clear
from Table 1 that the number of candidate methods that the planner
has to check if they can be applied in the proof (i.e.,matchings) is
reduced by roughly a factor of six in the case where our newly learnt
methods are available. As expected, theproof lengthis much shorter
when using newly learnt methods, since the learnt methods encap-
sulate a pattern in which a number of other methods are used inthe
proof. In fact,tryanderrorcan in most cases prove the entire theorem.

The next two theorems (about the closed property) and the aver-
age of all theorems of a similar type, can use thechoosemethod.
choosecan only prove a subpart of a theorem, hence a number of
other methods need to be used in addition tochoosein order to prove
the theorem. Hence, the proofs of this type are longer than the proofs
of the former type (that usetryanderror), as is evident also from Ta-
ble 1. As expected, the improvement in the number ofmatchings
reflects this, and is a factor of two on average. In general, the more
complicated the theorem, the better is the improvement madeby the
availability of the learnt methods.

Set theory domain: A similar trend can be noticed in the case of
set theory conjectures. We gave our learning mechanism examples
from which it learnt one new method. This method consists of elim-
inating the universal quantifiers, then transforming statements about
sets to statement about elements of sets, and then proving (with the
Otter theorem prover) or disproving (with the Satchmo modelgener-
ator) these statements. Since all of the theorems on which wetested
our proof planner are of a similar type, we only give the average fig-
ures for the number ofmatchingsandproof lengthin Table 1. As in
the residue class case, there is a reduced number ofmatchingsre-
quired when a learnt method is available. This number is roughly
reduced by a factor of two. As expected, theproof lengthis smaller
when a planner can use our learnt method.11 Note that assoc-z3z-times and closed-z3z-plusplus in Table 1 are our sec-

ond and first running example, respectively.

Group theory domain: We notice an improvement also in the
case of the group theory examples. Our learning mechanism learnt
five new methods, but since some are recursive applications of oth-
ers, we only tested the planner by using two newly learnt complex
recursive methods. The methods simplify group theory expressions
by applying associativity left and right methods, and then reduce the
expressions by applying appropriate inverse and identity methods.
The entries in Table 1 refer to two types of examples. First, we give
the average figures for simple theorems that can be proved with stan-
dardand with learnt methods. Second, we give the average figures
for complex theorems that canonly be proved within the resource
limits when our learnt methodsare available to the planner.

It is evident from Table 1 that the number ofmatchingsis im-
proved, but it is only reduced by about 15%. We noticed that for some
very simple theorems, a larger number ofmatchingsis required if the
learnt methods are available in the search space. However, for more
complex examples, this is no longer the case, and an improvement
is noticed. The reason for this behaviour is that additionalmethods
increase the search space, so when there are only a few ways toap-
ply methods in the case of simple theorems, this causes some over-
heads. In the case of complex examples, there are many more pos-
sible ways to apply methods, hence the presence of complex learnt
methods causes small or no overheads, or in fact, a reduced number
of matchings.

The success of our approach is also evident from the fact, that
when our learnt methods are not available to the planner, then it can-
not prove some complex theorems, i.e., thecoverageof the system
that uses learnt methods is increased. When trying to apply methods
such as associativity left or right, for which the planner has no con-
trol knowledge about their application, it runs out of resources. Our
learnt methods, however, provide control over the way the methods
are applied in the proof, and enable a planner to generate a proof
plan. Again, theproof lengthis reduced by using learnt methods, as
expected.

On average, thetime it took to prove theorems of reside classes
with the newly learnt methods was up to 50% shorter than without
such methods. For conjectures in set theory the proof searchwith
learnt methods was about 15% shorter. The search in group theory
took approximately 100% longer than without the learnt methods.
The time results reflect in principle the behaviour of the proof search
measured by methodmatchings, but also contain the overhead due
to the current implementation for the reuse of the learnt methods
(seex3). For example, the current proof situation is copied for the
applicability test of the learnt method, and the new open goals and
hypotheses resulting from a successful application are copied back
into the original proof. This overhead could be reduced in later versions.

Analysis: As it is evident from the discussion above, in general,
the availability of newly learnt methods that capture general patterns
of reasoning improves the performance of the proof planner.In par-
ticular, the number ofmatchings(which are the most expensive part
of the proof search) is reduced across domains, as indicatedin Ta-
ble 1. Furthermore, as expected, learnt methods cause proofs to be
shorter, since they encapsulate a number of other methods. Also,
the time is in general reduced when using learnt methods. There are
some overheads, and in some cases these are bigger than the im-
provements. Thetime should be related to the reduced number of
matchings, but it is not in all our cases (group theory), this indicates
that our implementation of the execution of learnt methods,as de-
scribed inx3, is not the most efficient, and can be improved.

In general, thecoveragewhen using learnt methods is improved,
which is also indicated by the fact that using learnt methods
MEGA

can prove theorems that it can otherwise not prove.

The reason for the improvements described above is due to the
fact that our learnt methods provide a structure according to which
the existing methods can be applied, and hence they direct search.
This structure also gives a better explanation why certain methods
are best applied in particular combinations. For example, the simpli-
fication method for group theory examples indicates how the meth-
ods about associativity, inverse and identity should be combined to-
gether, rather than applied blindly in any possible combination.

5 Related work

Our approach to learning methods is related to techniques for learn-
ing macro-operators, which was originally proposed for planning in
artificial intelligence [13, 9]. But within theorem provingand proof
planning related work is scarce. E.g., some work has been done on
applying machine learning techniques to theorem proving, in par-
ticular on improving the proof search [5, 14]. However, not much
work has concentrated on high level learning of structures of proofs
and extending the reasoning primitives within an automatedtheorem
prover.

Silver [15] and Desimone [4] used precondition analysis which
learns new inference schemas by evaluating the pre- and postcondi-
tions of each inference step used in the proof. A dependency chart
between these pre- and postconditions is created, and constitutes the
pre- and postconditions of the newly learnt inference schema. These
schemas are syntactically complete proof steps, whereas the
MEGA

methods contain arbitrary function calls which cannot be determined
by just evaluating the syntax of the inference steps.

Kolbe, Walter, Melis and Whittle have done related work on the
use of analogy [11] and proof reuse [8, 7]. Their systems require a
lot of reasoning with one example to reconstruct the features which
can then be used to prove a new example. The reconstruction effort
needs to be spent in every new example for which the old proof is to
be reused. In contrast, we use several examples to learn a reasoning
pattern from them, and then with a simple application, without any
reconstruction or additional reasoning, reuse the learnt proof method
in any number of relevant theorems.

In terms of a learning mechanism, more recent work on learning
regular expressions, grammar inference and sequence learning [16]
is related. Learning regular expressions is equivalent to learning fi-
nite state automata, which are also recognisers for regulargrammars.
Muggleton has done related work on grammatical inference methods
[12]. The main difference to our work is that these techniques typi-
cally require a large number of examples in order to make a reliable
generalisation, or supervision or an oracle which confirms when new
examples are representative of the inferred generalisation. Further-
more, these techniques only learn sequences. However, our language
is larger than regular grammars as it includes constant repetitions of
expressions and expressions represented as trees.

Related is also the work on pattern matching in DNA sequences
[2], as in the GENOME project, and some ideas on our learning
mechanism have been inspired by this work.

6 Conclusion and future work

In this paper we described a hybrid system LEARN
MATIC , which is
based on the
MEGA proof planning system enhanced by automatic
learning of new proof methods. This is an important advance in ad-
dressing such a difficult problem, since it makes first steps in the
direction of enabling systems to better their own reasoningpower.
Proof methods can be either engineered or learnt. Engineering is ex-
pensive, since every single new method has to be freshly engineered.
Hence, it is better to learn, whereby we have a general methodol-
ogy that enables the system to automatically learn new methods. The

hope is that ultimately, as the learning becomes more complex, the
system will be able to find better or new proofs of theorems across a
number of problem domains.

There are several limitations of our approach that could be im-
proved in the future. Namely, the learning algorithm may overgener-
alise, so we need to examine what are good heuristics for our general-
isation and how suboptimal solutions can be improved. In particular,
we want to address the question how to deal with noise in the exam-
ples. In order to reduce unnecessary steps, the preconditions of the
learnt methods would ideally be stronger. Currently, we usean appli-
cability test to search if the preconditions of the method outline are
satisfied. In the future, preconditions should be learnt as well. Finally,
in order to model the human learning capability in theorem proving
more adequately it would be necessary to model how humans intro-
duce new vocabulary for new (emerging) concepts.

A demonstration of LEARN
MATIC implementation can be found
on the following web page:http://www.cs.bham.ac.uk/
˜mmk/demos/LearnOmatic/ . Further information, also
with links to papers with more comprehensive references
can be found on http://www.cs.bham.ac.uk/˜mmk/
projects/MethodFormation/ .
Acknowledgements We would like to thank Alan Bundy, Predrag
Janičić, Achim Jung, and Stephen Muggleton for their helpful advice
on our work, and Christoph Benzmüller, Andreas Meier, and Volker
Sorge for their help with some of the implementation in
MEGA.
This work was supported by EPSRC grant GR/M22031 and European
Commission IHP Calculemus Project grant HPRN-CT-2000-00102.

REFERENCES
[1] C. Benzmüller, et al., ‘
MEGA: Towards a mathematical assistant’, in

14th Conference on Automated Deduction, ed., W. McCune, number
1249 in LNAI, pp. 252–255, (1997). Springer.

[2] A. Brazma, ‘Learning regular expressions by pattern matching’, Tech-
nical Report TCU/CS/1994/1, Institute of Mathematics and Computer
Science, University of Latvia, (1994).

[3] A. Bundy, ‘The use of explicit plans to guide inductive proofs’, in 9th
Conference on Automated Deduction, eds., E. Lusk and R. Overbeek,
number 310 in LNCS, pp. 111–120, (1988).

[4] R.V. Desimone, ‘Learning control knowledge within an explanation-
based learning framework’, inProgress in Machine Learning – Pro-
ceedings of 2nd European Working Session on Learning, EWSL-87,
eds., I. Bratko and N. Lavrač, (1987). Sigma Press.

[5] M. Fuchs and M. Fuchs, ‘Feature-based learning of search-guiding
heuristics for theorem proving’,AI Comm., 11, 175–189, (1998).

[6] M. Jamnik, M. Kerber, M. Pollet, and C. Benzmüller, ‘Automatic learn-
ing of proof methods in proof planning’, Technical Report CSRP-02-5,
School of Computer Science, University of Birmingham, UK, (2002).

[7] T. Kolbe and J. Brauburger, ‘PLAGIATOR — A Learning Prover’, in
14th Conference on Automated Deduction, ed., W. McCune, number
1249 in LNAI, pp. 256–259, (1997). Springer.

[8] T. Kolbe and C. Walther, ‘Reusing Proofs’, inProceedings of the 11th
ECAI, ed., A. Cohn, 80–84, Wiley, (1994).

[9] R.E. Korf, Learning to Solve Problems by Searching for Macro-
operators, Pitman Publishing Ltd., 1985.

[10] A. Meier and V. Sorge, ‘Exploring properties of residueclasses’, in
Symbolic Calculation and Automated Reasoning: The Calculemus 2000
Symposium, eds., M. Kerber and M. Kohlhase, pp. 175–190, (2001). A
K Peters.

[11] E. Melis and J. Whittle, ‘Analogy in inductive theorem proving’, Jour-
nal of Automated Reasoning, 22(2), (1998).

[12] S. Muggleton,Acquisition of Expert Knowledge, Addison-Wesley,
1990.

[13] D. Ruby and D.F. Kibler, ‘Learning subgoal sequences for planning’,
in Proceedings of the 11th IJCAI, ed., N.S. Sridharan, pp. 609–614,
(1989). International Joint Conference on AI, Morgan Kaufmann.

[14] S. Schulz,Learning Search Control Knowledge for Equational Deduc-
tion, Ph.D. dissertation, Fakultät f. Informatik, TU München, 2000.

[15] B. Silver, ‘Precondition analysis: Learning control information’, inMa-
chine Learning 2, eds., R.S. Michalski, et al, (1984). Tioga Press.

[16] R. Sun and L. Giles, eds.Sequence Learning: Paradigms, Algorithms,
and Applications, number 1828 in LNAI, 2000. Springer.

