Automatic Learning in Proof Planning

Mateja Jamnik 2> and Manfred Kerber? and Martin Pollet 32

Abstract.
learning within mathematical reasoning systems. In paldit this
framework enables proof planning systems to automatidabyn
new proof methods from well chosen examples of proofs whghau
similar reasoning pattern to prove related theorems. Camé&work
consists of a representation formalism for methods and eéhimac
learning technique which can learn methods using this sgmtation
formalism. We present the implementation of this framewaithin

In this paper we present a framework for automatedhence, presents a difficulty in applying a proof strategy smyndo-

mains.

In this work, we show how a system can learn new methods auto-
matically given a typically small number of well chosen exdes of
related proofs of theorems. This is a significant improvetnsince
examples (e.g., in the form of classroom example proofsteyp-
ically in abundance, while the extraction of methods fromstn ex-
amples can be considered as a major bottleneck of the praofhiplg

the QMEGA proof planning system, and some experiments we ran onmethodology.

this implementation to evaluate the validity of our appioac

1 Introduction

Proof planning [3] is an approach to theorem proving whichsus
proof methods rather than low level logical inference ruteéind a
proof of a theorem at hand. A proof method specifies a geneaal r
soning pattern that can be used in a proof, and typicallyesgnts a
number of individual inference rules. For example, mathérahin-
duction can be encoded as a proof method. Proof plannershskear
a proof plan of a theorem which consists of applications &g
methods. An object level logical proof may be generated feosnc-
cessful proof plan. Proof planning is a powerful technigaeaduse it
often dramatically reduces the search space, since thehsisattone
on the level of abstract methods rather than on the level wdraé
inference rules that make up a method. Therefore, typictilgre
are fewer methods than inference rules explored in the Bespace.
Proof planning also allows reuse of proof methods, and mamreo
generates proofs where the reasoning strategies of proefsams-
parent, so they may have an intuitive appeal to a human maititem
cian. Indeed, the communication of proofs amongst mathierans
can be viewed to be on the level of proof plans.

The idea is that the system starts with learning simple progth-
ods. As the database of available proof methods grows, the sy
tem can learn more complex proof methods. Inference rulaeshea
treated as methods by assigning to them pre- and postoomsliti
Thus, from the learning perspective we can have a unified wiew
inference rules and methods as given sequences of prisitioen
which the system is learning a pattern. We will refer to a éxisting
methods available for the construction of proofs as primitineth-
ods. As new methods are learnt from primitive methods, these
become primitive methods from which yet more new methodsean
learnt. Clearly, there is a trade-off between the increasedch space
due to a larger number of methods, and increasingly betteciid
search possibilities for subproofs covered by the learnthogs.
Namely, on the one hand, if there are more methods, then tetse
space is potentially larger. On the other hand, the orgtiaisaf a
planning search space can be arranged so that the newly, leeme
complex methods are searched for first. If a learnt methoolisd to
be applicable, then instead of a number of planning steps ¢thre-
spond to the lower level methods encapsulated by the leastitad),
a proof planner needs to make one step only. Generally, plaofs
consisting of higher level methods will be shorter than itieeirre-
sponding plans that consist of lower level methods. Heheese¢arch

One of the ways to extend the power of a proof planning systenor a complete proof plan is shallower, but also bushier. rfeo to

is to enlarge the set of available proof methods. This isi@dsrly
beneficial when a class of theorems can be proved in a simédsy w
hence a new proof method can encapsulate the general reggat
tern of a proof for such theorems. A proof method in proof piag
basically consists of a triple — preconditions, postcandi and a
tactic. A tactic is a program which given that the precormdis are
satisfied transforms an expression representing a subgaahiay
that the postconditions are satisfied by the transformedaalb If
no method on an appropriate level is available in a givenmtan
state, then a number of lower level methods (with inferentesras
the lowest level methods) have to be applied in order to paoyeen
theorem. Alternatively, a new method can be added by thelalese
of a system. However, this is a very knowledge intensive sk

1 University of Cambridge Computer Laboratory, J.J. Thomgwmenue,
Cambridge, CB3 OFD, UKhttp://www.cl.cam.ac.uk/"mj201

2 School of Computer Science, The University of BirmingharimBngham
B15 2TT, England, UKhttp://www.cs.bham.ac.uk/"mmk

3 Fachbereich Informatik, Universitat des Saarlandes 4668aarbriicken,
Germanyhttp://www.ags.uni-sb.de/pollet

measure this trade-off between the increased search spddeetier
directed search, an empirical study is carried out in theseé@art
of this paper.

Here, we present a hybrid proof planning systeERRNQMATIC,
which uses the existing proof plann@mEGA [1], and combines it
with our own machine learning system. This enhancesXaeGa
system by providing it with the learnt methods tiaEGA can use
in proving new theorems.

Automatic learning by reasoning systems is a difficult andiam
tious problem. Our work demonstrates one way of startingltiress
this problem, and by doing so, it presents several contdbstto the
field. First, although machine learning techniques have lz@eund
for awhile, they have been relatively little used in reasgraystems.
Making a reasoning system learn proving strategies fronmgkas,
much like children learn to solve problems from examples aiem
strated to them by the teacher, is hard. Our work makes anriano
step in a specialised domain towards a proof planning sysian
can reasomandlearn.

Second, proof methods have complex structures, and areehen¢[” and “|" are auxiliary symbols used to separate subexpressions,

very hard to learn by the existing machine learning techesqwe
approach this problem by abstracting as much informatiomfthe
proof method representation as needed, so that the maeainerig
techniques can tackle it. Later, after the reasoning paftetearnt,
the abstracted information is restored as much as possible.
Third, unlike in some of the existing related work [5, 14], ae
not aiming to improve ways of directing proof search withifixed
set of primitives. In theorem proving systems these priragiare
typically inference steps or tactics, and in proof planngygtems
these primitives are typically proof methods. Rather, we i learn
the primitives themselves, and hence improve the framevaoick
reduce the search within the proof planning environmenmalg,
instead of searching amongst numerous low level proof nastha
proof planner can now search for a newly learnt proof methbitiv
encapsulates several of these low level primitive methods.

Running Example We demonstrate our approach with running
examples. There is a large class of residue class theoregreup
theory that can be proved using the same pattern of reasoRtaiy
use is well documented in [10]. Here are examples of thredues
class theorems (whet&; is the residue class of integers modujo
and the lambda expression is the operation over this set):

1. closed-unde{ZZs, (A\z Ay.z+(z+y)))
2. associative-und€#Zs, (Az Ay« (zXy)))
3. commutative-und¢#s, (Az Ay« (z+y)))

The pattern of reasoning to prove them is as follows. First,

the definitions are expanded (e.glpsed-under, associative-under,

“" denotes asequence”|” denotes alisjunction “x” denotes aep-
etition of a subexpression any number of times (includilgn a
fixed number of times, an@ is a constructor for a branching point
(list is a list of branches), i.e., for proofs which are not seqesnc
but branch into a treéWe refer to expressions in languafjavhich
describe compound methodsrasthod outlines

Learning Techniqgue Method outlines are abstract methods which
have a simple representation that is amenable to learnimg algo-
rithm that learns method outlines can find an adequate miranth
least general generalisation within the given languaggicésns. It
is based on the generalisation of the simultaneous compres$
well-chosen examples.

Our learning technique considers some typically small nemab
positive examples which are represented in terms of segseot
identifiers for primitive methods, and generalises themted the
learnt pattern is in languagk. The pattern is omallest sizavith
respect to a defined heuristic measuresiag[6], which essentially
counts the number of primitives in an expression. The iignifor
it is that a good generalisation is one that reduces the seqaeof
method identifiers to the smallest number of primitives (g«f] is
better thar{a, a]). The pattern is alsmost specifi¢or equivalently,
least general) with respect to the definition of specifisipec spec
is measured in terms of the number of nestings for each patteof
generalisation [6]. Again, this is a heuristic measure. Tteition
for this measure is that we give nested generalisationatyrsince
they are more specific and hence less likely to over-gerserali

We take both, the size (first) and the specificity (secondacn
count when selecting the appropriate generalisation.dfgbneral-

commutative-undgr Then, all of the statements on residue classeSgations considered have the same rating according to thertea-

are rewritten into corresponding statements on integerséansfer-
ring the residue class set into a set of corresponding irgedéen,
the proofs diverge: if the statements are universally gfiedtf then
an exhaustive case analysis over all elements of the satiedtaut.

If the statements are existentially quantified, then alinalets of the
set are examined until one is found for which the statemeuits h

The aim of our work is to learn and generalise such pattertas in

proof methods that can then be used for proofs of other eblidue-
orems. We now show how this learning is done automaticaltiiwi
our framework.

2 Learning

The methods we aim to learn are complex and beyond the complex

ity that can typically be tackled in the field of machine léamn
Thus, we first simplify the problem and aim to learn so-caftezthod

outlines For this purpose we use a simple representation formalism

which abstracts away as much information as possible foleidma-
ing process, which is described next. Second, we restoragbes-
sary information as much as possible so that the proof ptacere
use the newly learnt method using the mechanism describggi‘in

Let us define the following languade whereP is a set of known
identifiers of primitive methods used in a method that is gééarnt:

foranyp € P,letp € L,

foranyly,l» € L, let[l1,12] € L,

foranyls,ls € L, let[l;|l2] € L,

foranyl € L, letl* € L,

foranyl € Landn € N, leti" € L,

foranylist such that all; € list are alsd; € L, letT (list)

eL.

4 Some information may be irrecoverably lost. In this caseeextra search
in the application of the newly learnt methods will typigalie necessary.

sures, then we return all of them. For example, consider togsip
ble generalisations constructed by the learning algorittescribed
below: [[a?]*] and[a*]. According to sizesize([[a*]*]) = 1 and
size([a*]) = 1. However, according to specificitype¢[[a®]*]) = 2
andsped[a*]) = 1. Hence, the algorithm seledia?]].

Here is the learning algorithm. Given some number of example
(e.g..e1 = [a,a,a,a,b,c] ande; = [a,a,a,b, c]):

1. For every example;, split it into sublists of all possible lengths
plus the rest of the list. We get a list of pattern ligfs, each of
which containing patterns;.° E.g.:

for e1: {{[al, [a], [a], [a],], [c]}, [[a, a]. [a, a], [b,]}, [[a], [a. al,

[a,], [c]], [[a, a,al, [a,b, c]], [[a], [a, a, al, b,]], ... }
for e {[lal, [al, [al, (8], [c]].[[a, a], [a, b], [c]], [[a], [a, al, b, c]],
[[a, aal, [b; c]], [[a], [a, a,b], [c]], ... }

2. If there is any branching in the examples, then recurgikgpeat

this algorithm on every element of the list of branches.

For every example; and for every pattern ligil; find sequential
repetitions of the same patterpsin the same example. Using an
exponent denoting the number of repetitions, compress them
pi and hencels. E.g.:

pli = {[lal", [0, [c]], [lla, al], [by €], - . }

Note the difference between the disjunction and the trestoactors: for
disjunction the proofs covered by the method outline carcfispplying
either the left or the right disjunct. However, with the tenstructor every
proof branches at that particular node to all the branchekerlist. Note
also, that there is no need for an empty primitive as it canrfoeded with
the use of the existing language. E.g.,ddie an empty primitive and we
want to expressa, b, [¢|c], d]. Then an equivalent representation without
the empty primitive ida, [b|[b, c]], d]. We avoid using the empty primitive
as it introduces a large number of unwanted generalisatissipilities.

6 Notice that there are modm ways of splitting an example of lengthinto
different sublists of lengthn.. Namely, the sublists of lengtte can start in
positionsl, 2, ... ,n modm.

3.

S

pls = {[[a]*, [0}, []], [[a], [a, a], [b,c]], ... }
. For every compressed patterhe pl{ of every example;, com-
pare it withp$ in all other exampleg;, and find matching®

of the algorithm relative to the length of the examples cded
for learning. The algorithm can deal with relatively smalbenples,
which we encounter in our application domain, in an optimayw

(calledm;) with the same constituent pattern, which may occur aThe complexity of the algorithm is exponential in the worase.

different number of times. E.qg.:
m1 = (pl§', pls') due to[a]* and|a]®
ma = (pl§?, pls?), due to[b, c] and[b, c], etc.

examples by joining them disjunctively using th& ¢onstructor.
. For everyp; in a matching, generalise different exponents te’a “
constructor, and the same exponent® a constant. E.g.”
for mi: [a]* and[a]® are generalised tfa]*;
for ma: [b, ¢] and[b,] are generalised tib, c]

left and on the right op, back to the example list, and recursively
repeat the algorithm on them. E.qg.:

for my inei: LHS=[], py = [a]*, repeat on RHS3, (]

for my inex: LHS=[], py = [a]”, repeat on RHS3, (]

for ma ine;: repeat on LHS: [a,a, a,a], pg = [b, ¢], RHS=[]

for ma in es: repeat on LHS: [a, a, a], pg = [b,], RHS=[].

. Repeat recursively this algorithm on all possible gelfeatons
inside the method outline (i.e., “*", exponent “|” and “") in
order to find nested generalisations (sucH[ag]*). Terminate,
when no success.

. If there is more than one generalisation remaining at tiee af
the recursive steps, then pick the ones with the smallestasid

. Foreveryp, of amatch, transform the rest of the pattern list on the

Hence, we use some heuristics for large and badly behaved-exa
ples [6].

. Ifthere are no matches; in the previous step, then generalise the 3 Using learnt methods

Method outlines that have been learnt so far do not contatheln-
formation which is needed for the proof planner to use thear. F
instance, they do not specify what the pre- and postcomditiaf
methods are, they also do not specify how the nhumber of loep ap
plications of methods is instantiated when used to provesarém.
Hence, we need to restore the missing information.

For each learnt outline we automatically create a method/fich
its precondition is fulfilled if there is a sequence of methtitht is an
instantiation of the method outline, and each method of ¢élgeisnce
is applicable. The postcondition introduces the new opeisgand
hypotheses resulting from applying the methods of the sezpi0
the current goal. We will call this kind of methodearnt method

Since methods if2MEGA may be very complex, the precondition
of a learnt method cannot be extracted from the pre- and postc
ditions of theuninstantiatedmethods in the method outline. Hence,
we actually have to apply a method to produce a proof sitndto
which we can test the preconditions of the subsequent methibe
method outline. That is, we have to perform proof planninglgd

among these the ones with the largest specificity. Else, xhe e by the learnt outline.

amples cannot be generalised. E.g.: for the examples ahove,
applicable yet; after the algorithm is repeated on the résiuo
examples, the learnt method outline will fe]”, [b, c]].

The precondition test performs a depth first search on thmtlea
method outline. Besides the choice points of the learnt atkthe.,
disjunctions and number of repetitions for”} we also have to de-

The learning algorithm was implemented in Standard ML v.110 cide to which open goal every single method in the methodreaitl

Its input are the sequences of proofs constructedmEGA. Its out-
put are method outlines which are passed backRMEGA. The al-
gorithm was tested on several examples of proofs and it sstudéy
produced the required method outlines.

In particular, for our example of the residue class theorabwve,
the sequences of methods identifiers from the proofs of ttresz
rems are as follows:

1. {defn-expV¥;-sorty¥;-sort, convert-resclass-to-num, defn-exp, or-

e-rec, simp-num-exp, simp-num-exp, simp-num-exp, simp-n

exp, simp-num-exp, simp-num-exp, simp-num-exp, SIMgERpM

simp-num-exp

. {defn-expV;-sort¥;-sort, V;-sort,convert-resclass-to-num, or-e-
rec, simp-num-exp, sSimp-num-exp, Simp-num-exp, SimgEerRpm
simp-num-exp, simp-num-exp, Simp-num-exp, Simp-NUNSERP-
num-exp, Simp-num-exp, Simp-num-exp, SiMp-NUM-exp;nNsimp
exp, simp-num-exp, Simp-num-exp, Simp-num-exp, SiMExXEIM
simp-num-exp, simp-num-exp, Simp-num-exp, Simp-NUNSERP-
num-exp, simp-num-exp, simp-num-exp, simp-nurh-exp

. {defn-exp, V;-sort¥;-sort, convert-resclass-to-num, or-e-rec,
simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp

The algorithm described here learnt the expected methdheut

tryanderror = [defn-exp[vi-sort} *, convert-resclass-to-num
[[or-e-red|[defn-exp, or-e-ré¢, simp-num-exp)]
Due to lack of space the reader is referred for the discussion

some properties of our learning algorithm to [6]. There an@s dis-
advantages to our technique, mostly related to the run tipeed

7 Notice that here is a point where our generalisation teaiican over-
generalise, namely when there is a pattern in the exponelike prime
number — this is ignored and justds selected.

should be applied. Additionally, for methods containinggaeters
an instantiation has to be chosen. More details on the atjgictest
and on the learnt method reuse can be found in [6].

4 Evaluation — experiments

In order to evaluate the success of our approach, we cartiedro
empirical study in different problem domains on a numberhafo:
rems. This test set includes the theorems from which new odsth
were learnt, but most of them are new and more complex. Ingart
ular, we tested our framework on examples of residue cla@sgs
like our running examples), set theBrgnd group theory.The aim
of these experiments was to investigate if the proof plasheeca
enhanced with the learnt methods, can perform better thasttn-
dardQMEGA planner® The learnt methods were added to the search
space in a way that their applicability is checked first, befte ex-
isting standard methods.

The measures that we consider am@verage- the ability to prove
new theorems with the help of learnt methoti®ming — the time it
takes to prove a theoremroof length— the number of steps in the
proof plan; andnatchings- the number of all true and false attempts

8 Here are a set theory theorem and a non-theok&my, z« ((zUy) N z) =
(xNz)U(ynz)andvVz,y,z(z Uy)Nz) = (xUz)N(yUz).

9 Here are some group theory examples:(((a~! ob)o(cod))o f) = (bo
(cod))of and(co(bo(a™ " o(acb™1))))o(((doa)oa")o f) = co(dof).
There are several reasons for comparing the performanfaveiGA with
and without a learning capability, rather than with the perfance of other
learning reasoning systems. First, there are only few gutaofners around.
In the future, we plan to apply our learning approach@amproof plan-
ner in order to assess the benefits of our approach in othirsgsSecond,
as discussed i§b, little work has been done on applying machine learning
techniques to automated theorem provers, hence a diregiarson with
another approach is infeasible.

to match candidate methods. Checking the candidate methatls
may be applied in the proof, i.ematchingsis by far the most ex-

pensive part of the proof search, and is hence the best neetsur
indicate the validity of our approach.

Table 1 compares the values wfatchingsand proof lengthfor
the three problem domain$.It compares the values for these mea-
sures when the planner searches for the proof with the staiséaof
available methods (column marked with S), and when in aalulitd
these, there are also our newly learnt methods availableetplan-
ner (column marked with L). “—” means that the planner ran afut
resources (four hours of CPU time) and could not find a proafpl

Theorem Matchings Length
S L s L

assoc-z3z-times 65 118 63 2
assoc-z6z-times 4431 68D 441 2
| __ _awerageres.class_ _ || 13620 _2195 1340 _ PO
closed-z3z-plusplus 681 551 49 34
closed-z6z-plusplus 3465 2048 235 115
average res. class 1438:,8 9183 101.0 5f.3
average set examples 3315 125 13.0 P.0
average group theory (simple) 9412 790 18.5 .3

| average group theory (complexf) ~ ~ ~ =" "189[6 ~ "L~ "9

Table 1. Evaluation results.

Group theory domain: We notice an improvement also in the
case of the group theory examples. Our learning mechaniamtle
five new methods, but since some are recursive applicatibothe
ers, we only tested the planner by using two newly learnt derp
recursive methods. The methods simplify group theory esgioms
by applying associativity left and right methods, and theduce the
expressions by applying appropriate inverse and identiéghods.
The entries in Table 1 refer to two types of examples. Firgtgive
the average figures for simple theorems that can be provédseen-
dard and with learnt methods. Second, we give the average figures
for complex theorems that caonly be proved within the resource
limits when our learnt methodsre available to the planner.

It is evident from Table 1 that the number ofatchingsis im-
proved, butitis only reduced by about 15%. We noticed thasdone
very simple theorems, a larger numbemaditchingds required if the
learnt methods are available in the search space. Howevandre
complex examples, this is no longer the case, and an imprevem
is noticed. The reason for this behaviour is that additionathods
increase the search space, so when there are only a few waps to
ply methods in the case of simple theorems, this causes seene o
heads. In the case of complex examples, there are many me+re po
sible ways to apply methods, hence the presence of compdentie
methods causes small or no overheads, or in fact, a reducedartu

Residue class domain: In the domain of residue classes, we gave of matchings

our learning mechanism examples such that it learnt two nethm

The success of our approach is also evident from the fadt, tha

ods: tryanderror (as demonstrated in our running examples), andWhen our learnt methods are not available to the planne, itfwan-
choose The first two theorems in Table 1 (about associativity) andNOt Prove some complex theorems, i.e., doverageof the system

the average for all theorems of a similar type that we testad,use
the tryanderror method, if it is available to the planner. It is clear
from Table 1 that the number of candidate methods that thepla
has to check if they can be applied in the proof (ireatching} is
reduced by roughly a factor of six in the case where our needyrit
methods are available. As expected, pheof lengthis much shorter
when using newly learnt methods, since the learnt methodapen
sulate a pattern in which a number of other methods are ustttin

proof. In facttryanderrorcan in most cases prove the entire theorem.

that uses learnt methods is increased. When trying to appthads
such as associativity left or right, for which the plannes In@ con-
trol knowledge about their application, it runs out of res@s. Our
learnt methods, however, provide control over the way théhots
are applied in the proof, and enable a planner to generatedf pr
plan. Again, theproof lengthis reduced by using learnt methods, as
expected.

On average, théime it took to prove theorems of reside classes
with the newly learnt methods was up to 50% shorter than witho

The next two theorems (about the closed property) and the ave Such methods. For conjectures in set theory the proof seaitth

age of all theorems of a similar type, can use theosemethod.

learnt methods was about 15% shorter. The search in grogpythe

choosecan only prove a subpart of a theorem, hence a number of°0k approximately 100% longer than without the learnt roth

other methods need to be used in additionttoosen order to prove
the theorem. Hence, the proofs of this type are longer thapithofs
of the former type (that usiyanderror), as is evident also from Ta-
ble 1. As expected, the improvement in the numbemaftchings
reflects this, and is a factor of two on average. In generalntbre
complicated the theorem, the better is the improvement rbgdkee
availability of the learnt methods.

Set theory domain: A similar trend can be noticed in the case of
set theory conjectures. We gave our learning mechanism geam
from which it learnt one new method. This method consistdiof-e
inating the universal quantifiers, then transforming stegets about
sets to statement about elements of sets, and then provitigthe
Otter theorem prover) or disproving (with the Satchmo magaier-
ator) these statements. Since all of the theorems on whictested
our proof planner are of a similar type, we only give the agerfig-
ures for the number ahatchingsandproof lengthin Table 1. As in
the residue class case, there is a reduced numberatthingsre-
quired when a learnt method is available. This number is ug
reduced by a factor of two. As expected, treof lengthis smaller
when a planner can use our learnt method.

11 Note that assoc-z3z-times and closed-z3z-plusplus ireThhke our sec-
ond and first running example, respectively.

The time results reflect in principle the behaviour of thegfisearch
measured by methoohatchings but also contain the overhead due
to the current implementation for the reuse of the learnthoes
(see§3). For example, the current proof situation is copied far th
applicability test of the learnt method, and the new operiggaad
hypotheses resulting from a successful application aréedadpack
into the original proof. This overhead could be reducedterkeersions.

Analysis: As it is evident from the discussion above, in general,
the availability of newly learnt methods that capture gahpatterns
of reasoning improves the performance of the proof plaringuar-
ticular, the number ofmatchinggwhich are the most expensive part
of the proof search) is reduced across domains, as indicatéd-
ble 1. Furthermore, as expected, learnt methods causesptodfe
shorter, since they encapsulate a number of other methddse, A
thetimeis in general reduced when using learnt methods. There are
some overheads, and in some cases these are bigger than-the im
provements. Theime should be related to the reduced number of
matchingsbut it is not in all our cases (group theory), this indicates
that our implementation of the execution of learnt methedsde-
scribed in§3, is not the most efficient, and can be improved.

In general, theeoveragewhen using learnt methods is improved,
which is also indicated by the fact that using learnt metHesigE GA
can prove theorems that it can otherwise not prove.

The reason for the improvements described above is due to thieope is that ultimately, as the learning becomes more comiie

fact that our learnt methods provide a structure accordinghich

the existing methods can be applied, and hence they diraottse
This structure also gives a better explanation why certagthods

are best applied in particular combinations. For example stmpli-

fication method for group theory examples indicates how tle¢hm
ods about associativity, inverse and identity should belipned to-

gether, rather than applied blindly in any possible comtiima

5 Related work

Our approach to learning methods is related to technigudedon-

ing macro-operators, which was originally proposed fonpiag in

artificial intelligence [13, 9]. But within theorem provirend proof

planning related work is scarce. E.g., some work has beea daon
applying machine learning techniques to theorem provingpar-

ticular on improving the proof search [5, 14]. However, natah

work has concentrated on high level learning of structufge@ofs

and extending the reasoning primitives within an autom#tedrem

prover.

Silver [15] and Desimone [4] used precondition analysischhi
learns new inference schemas by evaluating the pre- andqrabt
tions of each inference step used in the proof. A dependehayt c
between these pre- and postconditions is created, andtctesthe
pre- and postconditions of the newly learnt inference seheérhese
schemas are syntactically complete proof steps, whereddmEGA
methods contain arbitrary function calls which cannot beined
by just evaluating the syntax of the inference steps.

Kolbe, Walter, Melis and Whittle have done related work oe th

use of analogy [11] and proof reuse [8, 7]. Their systemsirecau
lot of reasoning with one example to reconstruct the featwkich

can then be used to prove a new example. The reconstrucfiom ef

needs to be spent in every new example for which the old psotaf i
be reused. In contrast, we use several examples to learrsa@aniag

pattern from them, and then with a simple application, withany

reconstruction or additional reasoning, reuse the leawdfgmethod

in any number of relevant theorems.

In terms of a learning mechanism, more recent work on legrnin

regular expressions, grammar inference and sequencerigdfi6]

is related. Learning regular expressions is equivalenesworiing fi-
nite state automata, which are also recognisers for regudanmars.
Muggleton has done related work on grammatical inferencoas
[12]. The main difference to our work is that these technitygi-

cally require a large number of examples in order to makeiabia

generalisation, or supervision or an oracle which confirrhemnew
examples are representative of the inferred generalisaEarther-
more, these techniques only learn sequences. Howevegmguage
is larger than regular grammars as it includes constantitepes of

expressions and expressions represented as trees.

Related is also the work on pattern matching in DNA sequence
[2], as in the GENOME project, and some ideas on our learnin

mechanism have been inspired by this work.
6 Conclusion and future work

In this paper we described a hybrid systesARNQMATIC, which is

based on th&MEGA proof planning system enhanced by automatic

learning of new proof methods. This is an important advancad-
dressing such a difficult problem, since it makes first stepthée
direction of enabling systems to better their own reasomioger.
Proof methods can be either engineered or learnt. Engimgeésiex-
pensive, since every single new method has to be freshiyeaggd.

ogy that enables the system to automatically learn new rdstfithe

[11]
[12]

[14]

[15]
Hence, it is better to learn, whereby we have a general method [16]

system will be able to find better or new proofs of theoremsssa
number of problem domains.

There are several limitations of our approach that couldrbe
proved in the future. Namely, the learning algorithm mayrgeeer-
alise, so we need to examine what are good heuristics forenergl-
isation and how suboptimal solutions can be improved. Iti@dar,
we want to address the question how to deal with noise in taeex
ples. In order to reduce unnecessary steps, the precamlitibthe
learnt methods would ideally be stronger. Currently, wearsappli-
cability test to search if the preconditions of the methotlioa are
satisfied. In the future, preconditions should be learntels winally,
in order to model the human learning capability in theorewvijig
more adequately it would be necessary to model how humarts int
duce new vocabulary for new (emerging) concepts.

A demonstration of EARNQMATIC implementation can be found
on the following web pagehttp://www.cs.bham.ac.uk/
“mmk/demos/LearnOmatic/ Further information,
with links to papers with more comprehensive
can be found on http://www.cs.bham.ac.uk/"mmk/
projects/MethodFormation/

Acknowledgements We would like to thank Alan Bundy, Predrag
Janicic, Achim Jung, and Stephen Muggleton for their foélpdvice
on our work, and Christoph Benzmdlller, Andreas Meier, aotk&f
Sorge for their help with some of the implementation{IMEGA.

also

This work was supported by EPSRC grant GR/M22031 and Eunopea

Commission IHP Calculemus Project grant HPRN-CT-200B201
REFERENCES

[1] C. Benzmiller, et al.,©2MEGA: Towards a mathematical assistant’, in
14th Conference on Automated Deducfied., W. McCune, number
1249 in LNAI, pp. 252-255, (1997). Springer.

[2] A. Brazma, ‘Learning regular expressions by patternchaty’, Tech-
nical Report TCU/CS/1994/1, Institute of Mathematics amanPuter
Science, University of Latvia, (1994).

[3] A. Bundy, ‘The use of explicit plans to guide inductiveopfs’, in 9th
Conference on Automated Deducti@us., E. Lusk and R. Overbeek,
number 310 in LNCS, pp. 111-120, (1988).

[4] R.V. Desimone, ‘Learning control knowledge within anpénation-
based learning framework’, iRrogress in Machine Learning — Pro-
ceedings of 2nd European Working Session on Learning, E8VSL-
eds., |. Bratko and N. Lavrac, (1987). Sigma Press.

[5] M. Fuchs and M. Fuchs, ‘Feature-based learning of seguitiing
heuristics for theorem provingAl Comm, 11, 175-189, (1998).

[6] M. Jamnik, M. Kerber, M. Pollet, and C. Benzmdiller, ‘Aumatic learn-
ing of proof methods in proof planning’, Technical ReportRF502-5,
School of Computer Science, University of Birmingham, URQ@2).

[7] T. Kolbe and J. Brauburger, iRGIATOR — A Learning Prover’, in
14th Conference on Automated Deducfied., W. McCune, number
1249 in LNAI, pp. 256259, (1997). Springer.

[8] T. Kolbe and C. Walther, ‘Reusing Proofs’, Proceedings of the 11th
ECA|, ed., A. Cohn, 80-84, Wiley, (1994).

[9] R.E. Korf, Learning to Solve Problems by Searching for Macro-
operators Pitman Publishing Ltd., 1985.

0] A. Meier and V. Sorge, ‘Exploring properties of residaksses’, in

Symbolic Calculation and Automated Reasoning: The Catcus2000

Symposiumeds., M. Kerber and M. Kohlhase, pp. 175-190, (2001). A

K Peters.

E. Melis and J. Whittle, ‘Analogy in inductive theoremoping’, Jour-

nal of Automated Reasoning2(2), (1998).

S. Muggleton, Acquisition of Expert KnowledgeAddison-Wesley,

1990.

D. Ruby and D.F. Kibler, ‘Learning subgoal sequenceasplanning’,

in Proceedings of the 11th IJCA&d., N.S. Sridharan, pp. 609-614,

(1989). International Joint Conference on Al, Morgan Kaafm.

S. SchulzLearning Search Control Knowledge for Equational Deduc-

tion, Ph.D. dissertation, Fakultat f. Informatik, TU Miunch&®00.

B. Silver, ‘Precondition analysis: Learning controféermation’, inMa-

chine Learning 2eds., R.S. Michalski, et al, (1984). Tioga Press.

R. Sun and L. Giles, edsSequence Learning: Paradigms, Algorithms,

and Applicationsnumber 1828 in LNAI, 2000. Springer.

references

