Large-Scale Taxonomy Mapping for Restructuring and Integrating Wikipedia

Simone Paolo Ponzetto (joint work with Roberto Navigli)

Seminar für Computerlinguistik University of Heidelberg

ponzetto@cl.uni-heidelberg.de

April 29, 2009

© Ponzetto, 1/53

The crisis at **General Motors** threatens to drag down **Adam Opel**, **a storied German brand** that **GM** bought 80 years ago, on the eve of the Great Depression. Many in the industry say **Opel** has a future only if **it** can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

The crisis at General Motors threatens to drag down Adam Opel, a storied German brand that GM bought 80 years ago, on the eve of the Great Depression. Many in the industry say Opel has a future only if it can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

The crisis at General Motors threatens to drag down Adam Opel, a storied German brand that GM bought 80 years ago, on the eve of the Great Depression. Many in the industry say Opel has a future only if it can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

What about a widely used resource like WordNet?

\varTheta 🔿 🔿 WordNet Search - 3.0	
Image: Image)
WordNet Search - 3.0	
WordNet Search - 3.0 - <u>WordNet home page</u> - <u>Glossary</u> - <u>Help</u> Word to search for: Opel Search WordNet	
Display Options: (Select option to change)	
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations	
Noun	
• <u>S: (n) Opel, Wilhelm von Opel</u> (German industrialist who was the first in Germany to use an assembly line in manufacturing automobiles (1871-1948))	

The crisis at General Motors threatens to drag down Adam Opel, a storied German brand that GM bought 80 years ago, on the eve of the Great Depression. Many in the industry say Opel has a future only if it can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

The crisis at General Motors threatens to drag down Adam Opel, a storied German brand that GM bought 80 years ago, on the eve of the Great Depression. Many in the industry say Opel has a future only if it can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

And Cyc?

vpEbGdrcN5Y29y • Q+ Google • cept/Mx4rwBSudpwpEbGdrcN5Y29ycA] 009/04/07/concept/Mx4rwBSudpwpEbGdrcN5Y29ycA]
Opel aycA] GermanCar. The collection OpelCar is an ointObjectType.
e instances do not physically overlap Copyright © 2001-2008 Cycorp, Inc.

© Ponzetto, 5/53

The crisis at General Motors threatens to drag down Adam Opel, a storied German brand that GM bought 80 years ago, on the eve of the Great Depression. Many in the industry say Opel has a future only if it can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

The crisis at General Motors threatens to drag down Adam Opel, a storied German brand that GM bought 80 years ago, on the eve of the Great Depression. Many in the industry say Opel has a future only if it can get a temporary helping hand from the German government.

But whether Chancellor Angela Merkel will make available the public financing needed to help release **Opel** from the clutches of **General Motors** now depends on a reluctant government, an influential automotive union that wants politicians to save jobs, and employees who yearn to re-establish **Opel** as **an independent German company**.

source: Herald Tribune Europe, March 6, 2009

Let's check Wikipedia on that topic!

Wikipedia

Wikipedia

v•d•e								(Ope	10	amb	۶ŀ	l (Ca	te	ego	ry I V	ehic	les	s)													[h	nic	le]		
Passenger	Agila • Antara • Astra • Corsa • GT • Insignia • Meriva • Signum • Tigra • Zafira																																			
LCV	Combo • Movano • Vivaro																																			
Concept	Opel Gran Turismo Concept · Aero GT · Antara GTC · CD · Diesel Rekordwagen · Eco Speedster · Frogster · Frua Diplomat · G90 · GT 2 · Insignia · Maxx · OPC X-Treme · Snowtrekker · Trixx																																			
Historic	Man	ta •	м	lonte	ere	ey • 1	/lon:	za •	Oly	m	pia •	¢	Ome	ga	•	nodo Rekoi Ibfros	d•S	er	nator	• Si	ntra												۰ ۱			
	F	are	ent	cor	mp	bany:	Ge	ner	al M	oto	ors (Co	orpor	at	tion	, • Se	e als	o:	Vau	xhal	M	ote	ors,	н	old	er	n									
v · d · e Automotive brands of General Motors and those of its affiliates and former [show] affiliates																																				
v • d • e General Motors [show]																																				
v · d · e Opel, a subsidiary of General Motors, road car timeline, 1947–1970s – next » [hide																																				
_	1940s 1950s 1960s 1970s																																			
Туре	78	9	0 1	1 2 :	3	4	5	6	7	ε	9	,	0	1	2	3	4		5	6	7	ε	9		0	1	2	3		4 !	5	6	7		3	
																Kad	dett A	١.				k	ade	ett	в				l			ł	Ka	det	С	İ
Small family car		Dlyı	mp	ia	ľ	Olyn	pia	Rei	kord												С	ly	mpi	a/	۸											
arge family car	r Rekord PI Rekord PII Ascona A Asc									ona	8																									
																Reko	rd A	F	Reko	rd B		R	eko	rd	С	I		Re	k	ord	D			R	eko	1
Executive car																																				

Wikipedia

languages

- العربية =
- Aragonés
- Беларуская
- Беларуская (тарашкевіца)
- Bosanski
- Български
- Català
- Česky
- Dansk

Categories: Motor vehicle companies I Automotive companies of Germany I General Motors I Motor vehicle manufacturers of Germany I German brands I Opel I Car manufacturers I General Motors margues I Companies established in 1863

This talk

we are after a "steak and lobster" combination ...

- ✓ manual approaches achieve high quality for a limited coverage
- ✓ automatic ones achieve *large coverage for a lower quality*

This talk

we are after a "steak and lobster" combination ...

- ✓ manual approaches achieve high quality for a limited coverage
- ✓ automatic ones achieve *large coverage for a lower quality*
- start manually annotated semi-structured input
 - \Rightarrow Wikipedia
- use a large-coverage taxonomy developed from Wikipedia
 - WikiTaxonomy
- overcome WikiTaxonomy's limitations by mapping it to WordNet

Outline

WikiTaxonomy

Taxonomy Mapping and Restructuring

Preliminaries Category disambiguation Taxonomy restructuring

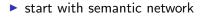
Evaluation

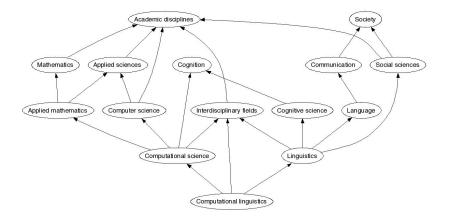
Manual evaluation Instance-based automatic evaluation

Conclusions

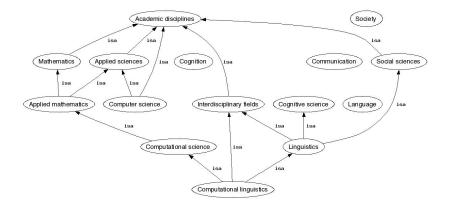
Outline

WikiTaxonomy


Taxonomy Mapping and Restructuring


Preliminaries Category disambiguation Taxonomy restructuring

Evaluation


Manual evaluation Instance-based automatic evaluation

Conclusions

induce semantically-typed relations

originally presented in Ponzetto & Strube (2007)

the category network is merely a *thematic categorization* of the topics of articles

label the relations between categories as *isa* and *notisa*

transform a *thematic categorization* into a **fully-fledged taxonomy**

methods:

- syntactic matching
- connectivity in the network
- lexico-syntactic patterns
- results:
 - ▶ we start with 337,522 categories and 743,140 links
 - we generate 335,128 isa relations

large-scale, multi-domain taxonomy

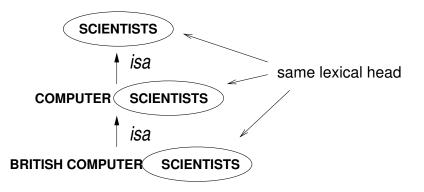
Category network cleanup (1)

- removal of meta-categories used for encyclopedia management, e.g. categories under WIKIPEDIA ADMINISTRATION
- we remove all nodes whose labels contain any of the following strings: MEDIAWIKI, TEMPLATE, USER, PORTAL, CATEGORIES, ARTICLES, PAGES
- this leaves
 - 240,760 categories
 - 515,423 links

still to be processed

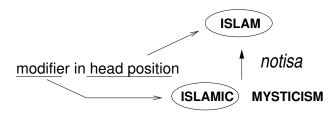
Refinement link identification (2)

ALBUMS BY ARTIST is-refined-bv

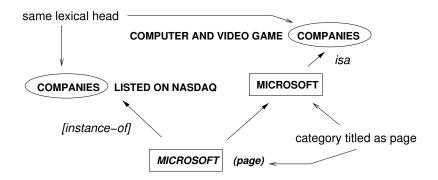

CUISINE BY NATIONALITY is-refined-bv

MILES DAVIS ALBUMS

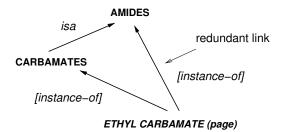
FRENCH CUISINE


- patterns such as y x and x by z
- their purpose is to better structure and simplify the categorization network
- we assume this represents is-refined-by-relations
- this labels 126,920 category links *notisa* and leaves 388,503 relations to be analyzed

Syntax-based methods (3)

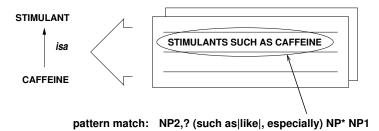

- head matching labels pairs of categories sharing the same lexical head word (or lemma)
- we identify lexical heads using the Stanford parser and lemmata using morpha

Syntax-based methods (3)


- modifier matching labels pairs as notisa, if the stem of the lexical head of one of the categories occurs in non-head position in the other category, e.g. CRIME COMICS and CRIME or ISLAMIC MYSTICISM and ISLAM
- head and modifier matching identify 141,728 isa relations and 67,437 notisa relations
 - \blacksquare relatively 'simple' (\rightarrow **baseline**)
 - still large coverage

Connectivity-based methods (4)

- instance categorization assumes that relations between entities (Wikipedia pages) and classes (categories) can be labeled as *instance-of* (Suchanek et al., 2007)
- identifies 14,886 isa relations


Connectivity-based methods (4)

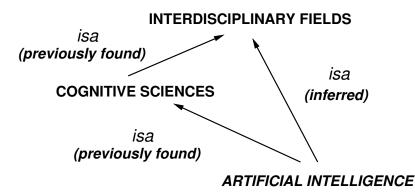
- if users redundantly categorize we take this as evidence for isa relations, e.g. ETHYL CARBAMATE
- identifies 16,523 isa relations

we are left with 147,929 unclassified relations

Lexico-syntactic based methods (5)

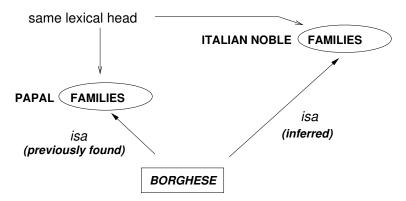
- we apply lexico-syntactic patterns to sentences in large text corpora to identify *isa* relations (Hearst, 1992; Caraballo, 1999)
- we assume that patterns used for identifying *meronymic* relations (Berland & Charniak, 1999) indicate that the relation is not an *isa* relation **motisa**

Lexico-syntactic based methods (5)


examples of ISA patterns:

- NP2,? (such as|like|, especially) NP* NP1 a stimulant such as caffeine
- NP1 NP* (and|or|,like) other NP2 caffeine and other stimulants
- examples of NOTISA patterns:
 - NP2's NP1 car's engine
 - NP2 with NP1 a car with an engine

Lexico-syntactic based methods (5)


- ▶ we use the Tipster corpus (2.5 × 10⁸ words) and the English Wikipedia itself (8 × 10⁸ words)
- Preprocessing: tokenization, sentence splitting, POS-tagging, NP-chunking = 15GB data
- majority voting strategy between isa and notisa patterns
- this method identifies 49,054 isa relations
- we apply this method also to the relations identified in step
 (4) and filter out 3,226 previously identified *isa* relations

Inference-based methods (6)

- assumption: the isa relation models set inclusion, and therefore is a transitive relation
- propagate previously found relations based on transitivity

Inference-based methods (6)

- propagate all *isa* relations to those supercategories whose head lemma matches the head lemma of a *previously identified isa supercategory*
- propagate the *isa* relation to the sisters of the previously identified isa supercategories

Size of the taxonomy

		ResearchCyc	WordNet	Wikipedia (sem. network)	Wikipedia (taxonomy)
	# concepts	300,000			
# nodes	# synsets		117,659		
	# categories			337,522	209,919
	# assertions	3,000,000			
# edges	4 # semantic pointers		285,348		
	# category links			743,140	335,128

1.106 instances evaluated manually by three judges

	R	Р	F
random baseline	51.1	51.6	51.3
syntax (1-3)	17.0	95.4	28.9
connectivity (1-4, 6)	38.9	88.1	54.0
pattern-based (1-3, 5-6)	62.7	84.3	71.9
all (1-6)	69.5	81.6	75.0

... but is it *that* good?

manual inspection reveals that WikiTaxonomy

... but is it *that* good?

manual inspection reveals that WikiTaxonomy

- 1. includes 3,487 roots
- still a sparse set of taxonomic islands

... but is it *that* good?

manual inspection reveals that WikiTaxonomy

- 1. includes 3,487 roots
- still a sparse set of taxonomic islands

- 2. still suffers from errors (being automatically generated)
- ▶ Fruit *isa* Plants

... but is it *that* good?

manual inspection reveals that WikiTaxonomy

- 1. includes 3,487 roots
- still a sparse set of taxonomic islands

- use WordNet as top-level taxonomy, thus integrating WikiTaxonomy
- 2. still suffers from errors (being automatically generated)
- ► FRUIT *isa* Plants

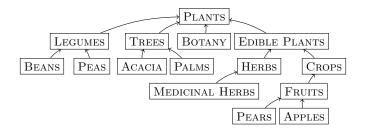
use WordNet as reference taxonomy to *restructure* WikiTaxonomy

Outline

WikiTaxonomy

Taxonomy Mapping and Restructuring

Preliminaries Category disambiguation Taxonomy restructuring


Evaluation

Manual evaluation Instance-based automatic evaluation

Conclusions

input: WikiTaxonomy (Ponzetto & Strube, 2007)¹

¹ www.eml-research.de/nlp/download/wikitaxonomy.php

- ▶ input: WikiTaxonomy (Ponzetto & Strube, 2007)¹
- \blacktriangleright view the taxonomy as a forest ${\cal F}$ of category trees ${\cal T}$
- ▶ for each category c ∈ T find the lexical items heads(c) best matching a category label in WordNet:

¹ www.eml-research.de/nlp/download/wikitaxonomy.php

- ▶ input: WikiTaxonomy (Ponzetto & Strube, 2007)¹
- \blacktriangleright view the taxonomy as a forest ${\cal F}$ of category trees ${\cal T}$
- ▶ for each category c ∈ T find the lexical items heads(c) best matching a category label in WordNet:
- ▶ full match: PLANTS 🗰 plant

¹ www.eml-research.de/nlp/download/wikitaxonomy.php

- ▶ input: WikiTaxonomy (Ponzetto & Strube, 2007)¹
- view the taxonomy as a forest $\mathcal F$ of category trees $\mathcal T$
- For each category c ∈ T find the lexical items heads(c) best matching a category label in WordNet:
- ▶ full match: PLANTS 👐 plant
- partial match:

ICE HOCKEY PLAYERS BY CLUB IN CANADA ice hockey player

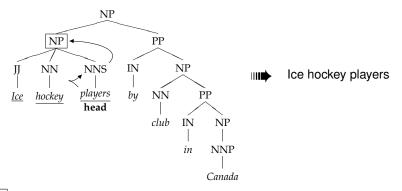
¹ www.eml-research.de/nlp/download/wikitaxonomy.php

- ▶ input: WikiTaxonomy (Ponzetto & Strube, 2007)¹
- view the taxonomy as a forest $\mathcal F$ of category trees $\mathcal T$
- For each category c ∈ T find the lexical items heads(c) best matching a category label in WordNet:
- ▶ full match: PLANTS 👐 plant
- partial match:

ICE HOCKEY PLAYERS BY CLUB IN CANADA ice hockey player

▶ head match: EDIBLE PLANTS 🗯 plant

¹ www.eml-research.de/nlp/download/wikitaxonomy.php


- ▶ input: WikiTaxonomy (Ponzetto & Strube, 2007)¹
- view the taxonomy as a forest $\mathcal F$ of category trees $\mathcal T$
- ▶ for each category c ∈ T find the lexical items heads(c) best matching a category label in WordNet:
- ▶ full match: PLANTS 👐 plant
- partial match:

ICE HOCKEY PLAYERS BY CLUB IN CANADA ice hockey player

- ▶ head match: EDIBLE PLANTS 🗯 plant
- coordinations: BUILDINGS AND STRUCTURES IN GERMANY
 building structure

¹ www.eml-research.de/nlp/download/wikitaxonomy.php

Finding categories' heads

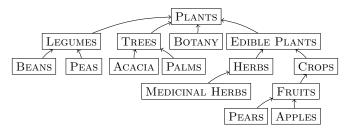
! try first with a full match, if none can be found:

- parse the category label using Klein & Manning (2003)
- find the minimal NP projection of the lexical head:
 - 1. start from the head terminal
 - 2. percolate up the tree until an NP node is found.
- else fall back to the head itself

Category disambiguation

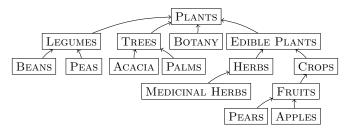
task definition:

- ▶ for each category tree $T \in \mathcal{F}$
 - for each category $c \in T$

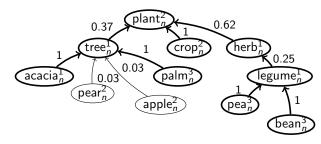

find a mapping from c to the most appropriate synset $\mu_T(c)$

two main steps:

- 1. WordNet graph construction
- 2. disambiguation

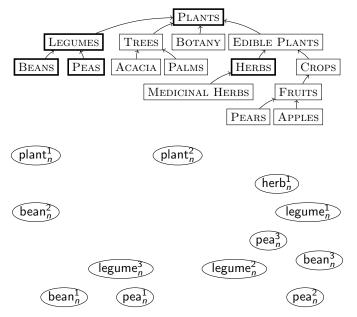


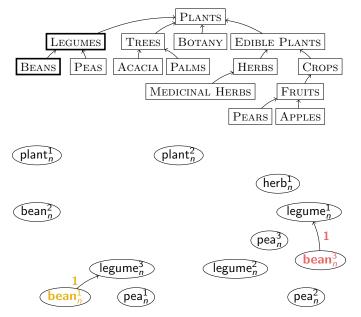
start with WikiTaxonomy

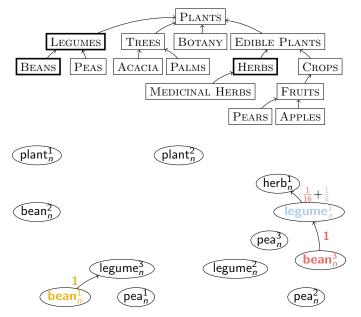


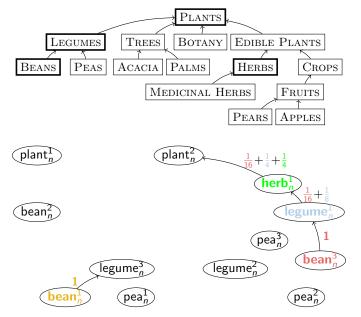
start with WikiTaxonomy

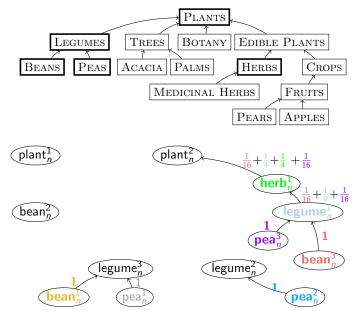
create a WordNet graph

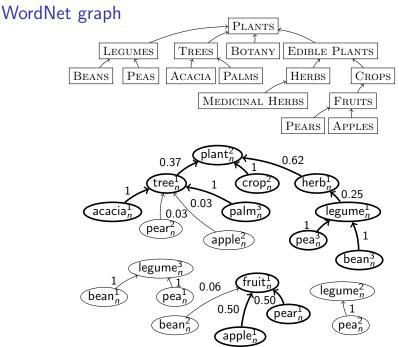

© Ponzetto, 32/53

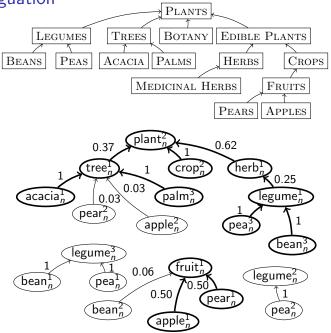

- 1: empty graph G = (V, E)
- 2: for all $c \in T$ do
- 3: for all $h \in heads(c)$ do
- 4: add synsets containing h to V


```
1: empty graph G = (V, E)
 2: for all c \in T do
3: for all h \in heads(c) do
        add synsets containing h to V
 4:
 5: for all vertex v_0 \in V do
6: V \leftarrow V_0
    for all synset v', v \sqsubset v' do
7:
8:
        if v' is root in WordNet then
           break
9:
        else if v' \in V then
10:
           if (v, v') \notin E then
11:
             add (v, v') to E
12:
```


```
1: empty graph G = (V, E)
 2: for all c \in T do
 3: for all h \in heads(c) do
         add synsets containing h to V
 4:
 5: for all vertex v_0 \in V do
6: V \leftarrow V_0
    for all synset v', v \sqsubset v' do
7:
         if v' is root in WordNet then
8:
            break
9:
         else if v' \in V then
10:
11:
            if (v, v') \notin E then
               add (v, v') to E
12:
            increase the edge weight w(v, v')
13:
            w(v, v') = w(v, v') + \frac{1}{2^{d_{WN}(v_0, v') - 1} \cdot 2^{d_{Wiki}(c_0, c') - 1}}
```


```
1: empty graph G = (V, E)
 2: for all c \in T do
 3: for all h \in heads(c) do
         add synsets containing h to V
 4:
 5: for all vertex v_0 \in V do
6: V \leftarrow V_0
    for all synset v', v \sqsubset v' do
7:
         if v' is root in WordNet then
8:
            break
9:
         else if v' \in V then
10:
11:
            if (v, v') \notin E then
               add (v, v') to E
12:
            increase the edge weight w(v, v')
13:
            w(v, v') = w(v, v') + \frac{1}{2^{d_{WN}(v_0, v') - 1} \cdot 2^{d_{Wiki}(c_0, c') - 1}}
            v \leftarrow v': goto (7)
14:
```





© Ponzetto, 35/53

Disambiguation

- ! use the resulting WordNet graph to identify the most relevant synset for each Wikipedia category $c \in T$
- 1: sort E in decreasing order based on w(v, v')
- 2: for all $(v, v') \in E$ do
- 3: if $\nexists \mu_T(c), \mu_T(c')$ then
- 4: $\mu_T(c) = v$ $\mu_T(c') = v'$
 - in the case of ties, assign the synset which maximizes the size of the connected component of G it belongs to

Disambiguation

© Ponzetto, 36/53

task definition: *use the mappings* to the reference taxonomy, i.e. WordNet, to *increase the degree of alignment to it*

three main steps:

- 1. edge penalty weighting
- 2. identification of maximum penalty cuts
- 3. tree restructuring

Edge penalty weighting

 find the edges in WikiTaxonomy which are 'misaligned' with the WordNet isa hierarchy (based on the mappings)

1: for all
$$T \in \mathcal{F}$$
 do
2: for all $e \in T$ do
3: $p(e) \leftarrow 0$
4: for all $c_0 \in T$ do
5: analyze path $c_0 \rightarrow c_1 \rightarrow \cdots \rightarrow c_n$
6: for all (c_i, c_{i+1}) do
7: if $\neg \mu_T(c_0)$ is $\mu_T(c_{i+1})$ then
8: update penalty p :
 $p(c_i, c_{i+1}) = p(c_i, c_{i+1}) + \frac{1}{2^{d_{Wiki}(c_0, c_{i+1}) - 1}}$

Edge penalty weighting

- find the edges in WikiTaxonomy which are 'misaligned' with the WordNet isa hierarchy (based on the mappings)
- example:
 - ▶ Fruits \rightarrow Crops \rightarrow Edible Plants \rightarrow Plants
 - ▶ fruit¹_n notisa crop²_n
 - → $p(\text{FRUITS, CROPS}) + = 1/2^0 = 1$
 - fruit¹_n notisa plant²_n
 - \rightarrow $p(CROPS, EDIBLE PLANTS) + = 1/2^1 = .5$
 - fruit¹_n notisa plant²_n
 - → $p(\text{EDIBLE PLANTS, PLANTS}) + = 1/2^2 = .25$

Identification of maximum penalty cuts

▶ identify those edges in *T* with maximal penalty:

- 1. sort the edges by penalty
- 2. select the subset P_{α} with the top α percentage of them
 - \implies 30% based on 10% development data

Identification of maximum penalty cuts

▶ identify those edges in *T* with maximal penalty:

- $1. \ \mbox{sort}$ the edges by penalty
- 2. select the subset P_{α} with the top α percentage of them
 - \implies 30% based on 10% development data
- example:

$$P_{\alpha} = \{ (BOTANY, PLANTS), (FRUITS, CROPS), (LEGUMES, PLANTS) \}$$

Tree restructuring

Find a better attachment for each category c among the high-penalty edges (c, c') ∈ P_α within the entire forest F

1: for all
$$c_i \in P_{\alpha} = \{(c_1, c'_1) \dots (c_n, c'_n)\}$$
 do
2: for all $c'' \in T', T' \in \mathcal{F}$ do
3: if $\mu_T(c)$ isa $\mu_{T'}(c'')$ then
4: remove (c, c') from T
add (c, c'') to T'

Tree restructuring

Find a better attachment for each category c among the high-penalty edges (c, c') ∈ P_α within the entire forest F

1: for all
$$c_i \in P_{\alpha} = \{(c_1, c'_1) \dots (c_n, c'_n)\}$$
 do
2: for all $c'' \in T'$, $T' \in \mathcal{F}$ do
3: if $\mu_T(c)$ isa $\mu_{T'}(c'')$ then
4: remove (c, c') from T
add (c, c'') to T'

example:

- given $\mu_T(\text{Legumes}) = \text{legume}_n^1$ and $\mu_T(\text{Herbs}) = \text{herbs}_n^1$
- we find legume_n^1 is a herb_n^1 in WordNet
- ➡ we can move the subtree rooted at LEGUMES under HERBS:
 - $\blacktriangleright \quad \frac{\text{Legumes} \rightarrow \text{Plants}}{\text{Legumes} \rightarrow \text{Herbs}}$

Outline

WikiTaxonomy

Taxonomy Mapping and Restructuring

Preliminaries Category disambiguation Taxonomy restructuring

Evaluation

Manual evaluation Instance-based automatic evaluation

Conclusions

Evaluation

evaluation of the two phases

Evaluation

evaluation of the two phases

- two questions:
 - 1. **category disambiguation**: how good is the system at selecting the correct WordNet senses for the Wikipedia category labels?
 - 2. **taxonomy restructuring**: how good is the restructuring of the taxonomy based on the disambiguated categories?

Evaluation

evaluation of the two phases

- two questions:
 - 1. **category disambiguation**: how good is the system at selecting the correct WordNet senses for the Wikipedia category labels?
 - 2. **taxonomy restructuring**: how good is the restructuring of the taxonomy based on the disambiguated categories?
 - proposed evaluation methods:
 - 1. straight, in-vitro manual evaluation
 - 2. automatic, instance-based evaluation

- random sample 2,000 categories from Wikipedia
- annotate them with WordNet synsets (one annotator), e.g.
 - THEATRES IN AUSTRIA \rightarrow theatre¹_n
 - THEATRE IN SCOTLAND \rightarrow theatre²_n

- random sample 2,000 categories from Wikipedia
- annotate them with WordNet synsets (one annotator), e.g.
 - THEATRES IN AUSTRIA \rightarrow theatre¹_n
 - THEATRE IN SCOTLAND \rightarrow theatre²_n
- give 310 categories with the five most frequent lexical heads to a second annotator
- quantify quality and difficulty using κ (Carletta, 1996)
- \bullet $\kappa = 0.92$ (almost perfect agreement)

- random sample 2,000 categories from Wikipedia
- annotate them with WordNet synsets (one annotator), e.g.
 - THEATRES IN AUSTRIA \rightarrow theatre¹_n
 - THEATRE IN SCOTLAND \rightarrow theatre²_n
- give 310 categories with the five most frequent lexical heads to a second annotator
- quantify quality and difficulty using κ (Carletta, 1996)
- \bullet $\kappa = 0.92$ (almost perfect agreement)

two baselines:

- 1. select a sense at random
- 2. select the first (i.e. most-frequent) sense

evaluation metric: accuracy

	tree size			
	2-9	10-100	>100	overall
category disambiguation	62.1	77.7	81.5	80.8
random baseline	36.3	44.2	46.6	46.3
most frequent sense	60.4	69.0	75.2	74.5
# trees	9	65	133	207

Taxonomy restructuring: manual evaluation

- random sample 200 restructuring moves (detachment-attachment pairs)
- check the correctness of the operation:

Taxonomy restructuring: manual evaluation

- random sample 200 restructuring moves (detachment-attachment pairs)
- check the correctness of the operation:
- **correct** if:
 - ► the original edge d is incorrect and the a is correct, e.g. ARISTOTLE → CLASSICAL GREEK PHILOSOPHY ARISTOTLE → PHILOSOPHERS
 - ► d was correct and a specializes d, e.g. $\frac{\text{BANDLEADERS}}{\text{BANDLEADERS}} \rightarrow \text{CONDUCTORS}$

else incorrect, e.g.

 $\frac{\text{Manhattan} \rightarrow \text{New York counties}}{\text{Manhattan} \rightarrow \text{Cocktails}}$

Taxonomy restructuring: manual evaluation

- random sample 200 restructuring moves (detachment-attachment pairs)
- check the correctness of the operation:
- **correct** if:
 - ► the original edge d is incorrect and the a is correct, e.g. ARISTOTLE → CLASSICAL GREEK PHILOSOPHY ARISTOTLE → PHILOSOPHERS
 - ▶ d was correct and a specializes d, e.g. BANDLEADERS → MUSICIANS BANDLEADERS → CONDUCTORS
- else incorrect, e.g.

 $\frac{\text{Manhattan} \rightarrow \text{New York counties}}{\text{Manhattan} \rightarrow \text{Cocktails}}$

- pairs given to two annotators ($\kappa = 0.75$)
- we achieve accuracy: 88.8%

Instance-based evaluation

! how good is the system at populating the reference taxonomy with instances?

we can use instances from Wikipedia to automatically generate two datasets for evaluation

Instance-based evaluation

! how good is the system at populating the reference taxonomy with instances?

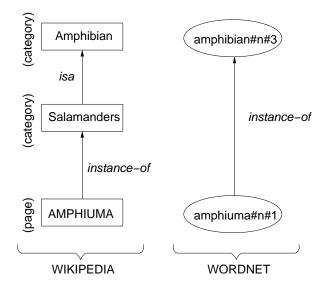
we can use instances from Wikipedia to automatically generate two datasets for evaluation

two main steps:

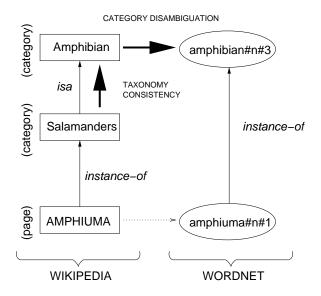
- 1. instance collection
- 2. dataset construction

Instance collection

- 1. use the heuristics from YAGO (Suchanek et al., 2007):
- for each page p of a category $c \in \mathcal{F}$:
 - a. split the category label to $\langle \textit{pre},\textit{head},\textit{post}\rangle$
 - b. assign the relation *p* instance-of *c* if the lexical head of *c* is plural.
- e.g. AMPHIUMA instance-of SALAMANDERS


Instance collection

- 1. use the heuristics from YAGO (Suchanek et al., 2007):
- for each page p of a category $c \in \mathcal{F}$:
 - a. split the category label to $\langle \textit{pre},\textit{head},\textit{post}\rangle$
 - b. assign the relation *p* instance-of *c* if the lexical head of *c* is plural.
- e.g. AMPHIUMA instance-of SALAMANDERS
- filter incorrect instance assignments, e.g. XYLOTHEQUE instance-of BOTANICAL GARDENS: check whether p occurs in HeiNER (Wentland et al., 2008)
- 3. retain instances which are monosemous in WordNet


Dataset construction

- given a Wikipedia instance i of a category c
 - ► AMPHIUMA instance-of SALAMANDERS
- given its corresponding WordNet synset $\mu_T(c) = S_{c,i}$
 - amphiuma¹_n corresponds to AMPHIUMA
- 1. identify the WordNet ancestors $S_{c',i}$ of $S_{c,i}$ such that some Wikipedia category c' maps to them
 - ▶ amphibian³ corresponds to category AMPHIBIANS

Dataset construction

Dataset construction

Instance-based evaluation: results

	before	after	
	restructuring	restructuring	
category disambiguation	95.3	95.7	
random baseline	63.1	63.1	
most frequent sense	79.1	78.5	
taxonomy consistency	38.4	44.3	
# test instances	70,841	73,490	

Discussion

! we obtain high performance figures on all evaluations

- 80.8% on category disambiguation (manual evaluation)
- ▶ 88.8% on taxonomy restructuring (manual evaluation)

Discussion

we obtain high performance figures on all evaluations

- ▶ 80.8% on category disambiguation (manual evaluation)
- ▶ 88.8% on taxonomy restructuring (manual evaluation)

instance-based evaluation provides a way to automatically build a dataset for evaluating **how good WordNet can be populated with instances from Wikipedia**

- up to 95.7% on category disambiguation (instance-based evaluation)
- we populate WordNet synsets with Wikipedia instances with high accuracy

Discussion

we obtain high performance figures on all evaluations

- ▶ 80.8% on category disambiguation (manual evaluation)
- ▶ 88.8% on taxonomy restructuring (manual evaluation)

instance-based evaluation provides a way to automatically build a dataset for evaluating **how good WordNet can be populated with instances from Wikipedia**

- up to 95.7% on category disambiguation (instance-based evaluation)
- we populate WordNet synsets with Wikipedia instances with high accuracy

Ţ

taxonomy restructuring improves the degree of alignment of WikiTaxonomy to WordNet, thus **recovering from errors**

- ► +0.4% on category disambiguation (*instance-based*)
- ▶ +5.9% on taxonomy consistency (*instance-based*)

Outline

WikiTaxonomy

Taxonomy Mapping and Restructuring

Preliminaries Category disambiguation Taxonomy restructuring

Evaluation

Manual evaluation Instance-based automatic evaluation

- we proposed a knowledge-rich approach for disambiguating Wikipedia categories to WordNet synsets
- this mapping can be used to link the system of categories in Wikipedia to WordNet

- we proposed a knowledge-rich approach for disambiguating Wikipedia categories to WordNet synsets
- this mapping can be used to link the system of categories in Wikipedia to WordNet
 - use WordNet as upper-level taxonomy for the Wikipedia category network

- we proposed a knowledge-rich approach for disambiguating Wikipedia categories to WordNet synsets
- this mapping can be used to link the system of categories in Wikipedia to WordNet
 - use WordNet as upper-level taxonomy for the Wikipedia category network
 - populate WordNet with instances from Wikipedia

- we proposed a knowledge-rich approach for disambiguating Wikipedia categories to WordNet synsets
- this mapping can be used to link the system of categories in Wikipedia to WordNet
 - use WordNet as upper-level taxonomy for the Wikipedia category network
 - populate WordNet with instances from Wikipedia
 - get the best of both worlds:
 - fine-grained classification of instances (Wiki)
 - better structured abstract concepts (WordNet)
 - 'sort-of' WikiTaxonomy 2.0

The big picture ...

© Ponzetto, 52/53

The big picture ...

Strube & Ponzetto (2006):

• use the category network as a conceptual network Ponzetto & Strube (2007):

generate a taxonomy from the network

Ponzetto & Navigli (2009):

link that network the WordNet

The big picture ...

Strube & Ponzetto (2006):

• use the category network as a conceptual network Ponzetto & Strube (2007):

generate a taxonomy from the network

Ponzetto & Navigli (2009):

link that network the WordNet

what's next?!

- our approach is resource-independent
 - ➡ apply to other resources, e.g. Cyc
- the backbone of Wikipedia are the articles
 - disambiguate the pages (cf. Wikification)
- Wikipedia is multilingual
 - do it for many languages
- find applications
 - 🗯 knowledge-lean QA

Thanks!

Acknowledgments

- Roberto Navigli
- Anette and NLP group at SCL
- Michael and NLP group at EML Research

Check out

ongoing work and papers at http://www.cl.uni-heidelberg.de/~ponzetto

Berland, Matthew & Eugene Charniak (1999).

Finding parts in very large corpora.

In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, College Park, Md., 20–26 June 1999, pp. 57–64.

Caraballo, Sharon A. (1999).

Automatic construction of a hypernym-labeled noun hierarchy from text.

In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, College Park, Md., 20–26 June 1999, pp. 120–126.

Carletta, Jean (1996).

Assessing agreement on classification tasks: The kappa statistic. *Computational Linguistics*, 22(2):249–254.

Hearst, Marti A. (1992).

Automatic acquisition of hyponyms from large text corpora.

In Proceedings of the 15th International Conference on Computational Linguistics, Nantes, France, 23-28 August 1992, pp. 539–545.

Klein, Dan & Christopher D. Manning (2003).

Fast exact inference with a factored model for natural language parsing.

In Suzanna Becker, Sebastian Thrun & Klaus Obermayer (Eds.), Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 3–10. Cambridge, Mass.: MIT Press.

Ponzetto, Simone Paolo & Roberto Navigli (2009).

Large-scale taxonomy mapping for restructuring and integrating Wikipedia.

In Proceedings of the 21th International Joint Conference on Artificial Intelligence, Pasadena, Cal., 14–17 July 2009.

Ponzetto, Simone Paolo & Michael Strube (2007).

Deriving a large scale taxonomy from Wikipedia.

In Proceedings of the 22nd Conference on the Advancement of Artificial Intelligence, Vancouver, B.C., Canada, 22–26 July 2007, pp. 1440–1445.

Strube, Michael & Simone Paolo Ponzetto (2006).

WikiRelate! Computing semantic relatedness using Wikipedia.

In Proceedings of the 21st National Conference on Artificial Intelligence, Boston, Mass., 16–20 July 2006, pp. 1419–1424.

Suchanek, Fabian M., Gjergji Kasneci & Gerhard Weikum (2007).

YAGO: A core of semantic knowledge. unifying WordNet and Wikipedia.

In Proceedings of the 16th World Wide Web Conference, Banff, Canada, 8-12 May, 2007, pp. 697-706.

Wentland, Wolodja, Johannes Knopp, Carina Silberer & Matthias Hartung (2008).

Building a multilingual lexical resource for named entity disambiguation, translation and transliteration. In Proc. of LREC '08.