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Abstract

This article describes a 2D and 3D simulation engine that guantitatively models the statics, dynamics, and
nonlinear deformation of heterogeneous soft bodies in a computationally efficient manner. There is a large body
of work simulating compliant mechanisms. These normally assume small deformations with homogeneous
material properties actuated with external forces. There is also a large body of research on physically based
deformable objects for applications in computer graphics with the purpose of generating realistic appearances at
the expense of accuracy. Here we present a simulation framework in which an object may be composed of any
number of interspersed materials with varying properties (stiffness, density, Poisson’s ratio, thermal expansion
coefficient, and friction coefficients) to enable true heterogeneous multimaterial simulation. Collisions are
handled to prevent self-penetration due to large deformation, which also allows multiple bodies to interact. A
volumetric actuation method is implemented to impart motion to the structures, which opens the door to the
design of novel structures, and mechanisms. The simulator was implemented efficiently such that objects with
thousands of degrees of freedom can be simulated at suitable frame rates for user interaction with a single thread
of a typical desktop computer. The code is written in platform agnostic C++ and is fully open source. This
research opens the door to the dynamic simulation of freeform 3D multimaterial mechanisms and objects in a
manner suitable for design automation.

Introduction graphics community. Many of the well-established physics
engines provide support for dynamic deformable bodies,

SCIENTIFIC PHYSICS SIMULATORS ARE TRADITIONALLY whether 1D rope, 2D cloth, or 3D “jello.”“’5
used to model small deformations of homogeneous The goal of these simulations is generally to create realistic
linear-elastic materials." Recently, multimaterial additive visual effects in real time at the expense of accuracy.®™ For
manufacturing methods have been developed that fabricate  instance, lattice shape-matching'® creates visually appealing
heterogeneous objects out of two or more materials.”> The rubber effects very efficiently and is unconditionally stable.
properties of these cofabricated materials can range from However, the underlying methods are geometrically based,
rigid plastics and metals to very soft rubber with linear de- which limits their direct application to quantitative engi-
formation greater than 200%. The inclusion of these soft, neering analysis problems. Other simulators are derived from
rubbery materials necessitates the consideration of large, more physically based principles,'’ but their performance at
nonlinear geometric deformations to accurately predict predicting real-world behaviors is unverified. Deformable
physical behavior. Because hard and soft materials can be body simulators have also been developed specifically for
internally combined and patterned in 3D with very few real-time surgery simulation.'>'? These simulators address
constraints, a new paradigm of physics simulation becomes challenges such as modifying the geometry dynamically to
necessary to efficiently predict the combined material prop- simulate incisions, but because of the variance of biological
erties and dynamic behavior. materials, it is also difficult to verify quantitative accuracy.
There are many established methods and implementations There is also a large body of work regarding the simulation
for simulating deformable soft bodies.® Considering the large ~ of compliant mechanisms and design thereof.'*'*> Existing
deformations and relatively low stiffness of the materials efforts focus on small displacements'® or discrete thin beam
involved, the physically based dynamics are often significant members that can flex significantly.'”'® In the simulation
and must be modeled (Fig. 1). Much of the development in  framework presented here, an entire freeform 3D shape can
simulating soft bodies has been driven by the computer be non-linearly deformed, leading to many novel possibilities
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FIG. 1.

Two frames of a hollow ball bouncing under gravity illustrate the undeformed ball just before impact (a) and the

highly deformed ball at the moment of highest deformation (b).

for soft mechanisms that cannot be simulated efficiently us-
ing current techniques.

Finite element vs. mass-spring methods

Finite element analysis (FEA) is a well-established method
of simulating the mechanical behavior of objects. Ad-
vantages include the ability to solve a system with irregularly
spaced discretized mesh elements. A stiffness matrix is
composed containing information about the connectivity of
the entire mesh and the local material properties at each node.
However, this system can only be efficiently solved if the
underlying equations are linear. Thus, deformations that
chan§e the geometry significantly require periodic remesh-
ing."> Other nonlinearities such as friction and advanced
material models require additional levels of iteration to solve.

Mass-spring methods are widely used for deformable
bodies, especially in dynamic simulations for computer
graphics.” Advantages include relative simplicity and han-
dling large deformations and other nonlinearities with ease.
An object is decomposed into discrete point masses con-
nected by springs. Thus, the entire system forms a system of
ordinary differential equations (ODEs) that can be integrated
directly to solve for the behavior of the system. This makes
these particle-based physical simulations very computation-
ally efficient at the expense of accuracy.

Freeform mesh vs. voxels on a lattice

There are a number of tradeoffs associated with choosing
either a freeform mesh or a lattice of voxels to dynamically
simulate a heterogeneous object. Both FEA methods and
many existing gaming physics simulators use a freeform
mesh to discretize a 3D object for simulation. By allowing the
vertices to lie at any position within the object, there is greater
control over the local detail of the simulation. Specifically,
this allows objects to be meshed based on the desired accu-
racy in a given region or dynamically remeshed based on the
current regions of interest in a deformed shape.'® Care must
be taken when forming the mesh such that the aspect ratio of

each element does not vary significantly in order to preserve
accuracy. However, the advantages of freeform meshes
quickly diminish as materials of different stiffnesses and
properties are interspersed within the object. This constrains
the mesh generation process and can potentially create very
large and inefficient meshes, such as the case of a dithering
between two materials.

Limiting the discretized elements in a simulation to voxels
has a number of favorable advantages. This approach enables
efficient computation of the force of each constituent ele-
ment, since they begin on a principal axis with identical
lengths. Additionally, the stiffness of each linking beam can
be precomputed based on the stiffnesses of each constituent
voxel so that each individual voxel can have a unique stift-
ness without altering the efficiency of the simulator (Fig. 2).
This allows heterogeneous materials to be simulated with the
same computational complexity as homogeneous materials.
Additionally, using a voxel lattice eliminates the possibility
of ill-formed meshes.>’ However, voxel lattices are at a dis-
advantage compared to freeform meshes when large regions
of homogeneous material are present or very fine local details
must be simulated.

Application in design automation

Because of the exponentially increasing design space en-
abled by multimaterial additive fabrication methods, design
automation will play an increasing role in the design and
optimization of structures that fully take advantage of these
capabilities. Most design automation algorithms depend on
many, many physical evaluations.”’ Therefore, a balance
must be struck between calculating accurate results while
minimizing central processing unit (CPU) cycles. In the
simulation framework presented here, static and dynamic
properties are quantitatively very close to the analytical so-
lutions for simple textbook scenarios. Features such as col-
lision detection are in place to avoid the great inaccuracy of
self-intersection, but are not meant to draw scientific con-
clusions about the interaction between two soft bodies. By
carefully budgeting CPU cycles, the simulator can accurately
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FIG. 2. Advantages of a
lattice-based voxel simulation
include the native ability to
simulate objects with multiple
interspersed  materials  of
varying properties (a). Here,
the blue material is 100 times
stiffer than the red, leading to
higher deformation along the
top (b). Internal deformation
(strain) is also shown (c).
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model physical properties while not wasting undue time on
negligible effects.

Physics Engine
Heterogeneous deformable body core simulator

A voxel-based, mass-spring lattice was chosen to best sim-
ulate the dynamics of highly deformable heterogeneous mate-
rials. Several measures were incorporated to mitigate the lack
of quantitative accuracy normally associated with the discrete
particle-based simulations. Each lattice point was modeled with
six degrees of freedom. In addition to the traditional three
translational degrees of freedom, all three rotational degrees of
freedom are stored and updated as part of the state.

It follows that not only is a mass stored for each voxel,
but also its rotational equivalent moment of inertia. Instead
of using simple extension springs to connect adjacent
points, more complex beam elements were used that resist
lateral shearing and rotation in all axes in addition to ex-
tension. By setting the properties of the beam equal to the
equivalent size and stiffness of the bulk material connect-
ing two voxels, a good approximation of the aggregate bulk
material behavior is obtained.

To prepare a given geometry for simulation, the target ge-
ometry was first voxelized into cubic voxels. Each subsequent
relaxation step consists of two steps: (1) calculating all internal
forces, and then (2) updating all positions. In order to preserve
the proper dynamics of the system, positions were updated

synchronously. Therefore, the order of calculation is irrelevant.
To capture information about both translation and rotation of the
voxels relative to each other, a constant cross-section beam
element was used to connect adjacent voxels in the lattice.
Beam elements resist both translation and rotation by exerting
biaxial bending, transverse shear, and axial stretching forces in
response to appropriate displacements (Fig. 3). Here we use a
standard Bernoulli-Euler beam theory.** It is important to note
that the Bernoulli-Euler beam theory assumes a linearized beam
model. This implies that even though the physics engine pre-
sented here is capable of modeling large aggregate nonlinear
deformations, the accuracy drops off as the angle between any
two adjacent voxels becomes too large for a reasonable small-
angle approximation.

Compositing adjacent dissimilar materials. The Bernoulli-
Euler beam theory also requires the material to be elastic and
isotropic. When two adjacent voxels are composed of the
same material, the elastic modulus and stiffness of this ma-
terial are used in the equivalent beam connection. However,
when the materials have differing properties, an appropriate
composite property must be calculated. To this end, we ap-
proximate the composite stiffness of a bond between two
dissimilar materials by:

_ 2EE

_ 1
Ei+E> @

c


http://online.liebertpub.com/action/showImage?doi=10.1089/soro.2013.0010&iName=master.img-001.jpg&w=360&h=350

SOFT ROBOTO SIMULATION

91

FIG. 3. Each voxel is mod-
eled as a lattice point with
mass and rotational inertia
(red). Voxels are connected
by beam elements (blue) with
appropriate translational and
rotational stiffness leading to
realistic deformation under
applied forces and moments.

where E. is the composite elastic modulus and E; and E,
are the two constituent stiffnesses. Since the elastic modulus
directly corresponds to the spring constant of each bond, this
is analogous to combining two springs of half the length in
series with dissimilar stiffnesses. The composite shear
modulus are calculated in a similar manner:

26,6
G +G

(@)

where G, is the composite shear modulus and G| and G,
are the two constituent shear moduli. Because Poisson’s ratio
relates the elastic modulus to shear modulus, it follows that
the composite Poisson’s ratio u,. is calculated by:

-1 3)

Simulation elements. Since solid objects are represented
by a network of beams connecting nodes, the physical pa-
rameters for these beams must be calculated. Because the
geometry is constrained to voxels, the length [ of the beam
was taken to be the distance between the voxels, and the
cross-sectional area of the beam A was /°. The standard for-
mula was used to calculate the bending moment of inertia (/),
given that in this case both the base b and height & equal the
lattice dimension /.

s

"1 @

The torsion constant (J) was approximated by the polar
moment of inertia of a rectangular cross-section beam and
calculated as

J_ bhb -ty 1

12 6 ©)

Using the standard Hermitian cubic shape functions for
beam elements, the stiffness matrix was determined for a
beam element with 12 degrees of freedom: Three transla-
tional and three rotational degrees of freedom for each end-

point of the beam. This can be assembled into a stiffness
matrix. The result for a beam element oriented in the positive
X direction is as follows:

FX} Xl
EV] Yl
FZ] Zl
Moy, 0.,
Mg,\’l 0}’1
Mez — 0)’|
£ =Y ©
FY2 YZ
FZz ZZ
ngz 0.,
Mg}’z 9}’2
_Mgzz_ _922_
where the stiffness matrix [K] is
aa 0 00 0 0 -t O O O O O
by 00 0 b, 0O —=by O 0 O by
b0 —-b, 0 0 0 —by 0 —b, O
a 0 0 0 0 0 —a 0 O
2b O 0 O by O b3 O
_ 2b; O —b, 0O O O b3
[KT=|l aa 0 0 0 O O
by 0 0 0 —b
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(sym) 2b; 0
2bs
(7
where
E.A
ar="= ®)
G.J
ay == ©)


http://online.liebertpub.com/action/showImage?doi=10.1089/soro.2013.0010&iName=master.img-002.jpg&w=360&h=167

92

12E.1

b= (10)
6E,.1

b= "5 (1
2E.1

by == (12)

To reduce the computational complexity, the transforma-
tions to rotate each individual element from its initial ori-
entation into the positive X direction were precomputed.
Because of the cubic voxel lattice constraints, all elements
are initially located on principal axes. This makes the trans-
formation into the X-direction stiffness matrix computa-
tionally trivial. As the structure deforms over the course of a
simulation, an additional transformation was calculated and
applied to each element to translate the position and angle of
the first voxel to zero. Therefore X, Y 1, Z, 0,, 0,;, and 0
all become zero and drop out of the calculation. The large
matrix calculation above is reduced to:

Fy=—aiXp (13)

Fy, = — b Y, + by0, (14)
F. = —b1Zy+by0,, (15)
My, = —ax0, (16)
My, = b7, + b30),, (17)
My, = —byYs + bs0, (18)
F,= —F, (19)
F,,= —F, (20)
F,=—F, (1)

My, =as0,, (22)

Mo, = brZ +2bs30, (23)
My = —byY, +2b30., (24)

2

The resulting forces and moments are then transformed
back to the current orientation of the bond using the inverse of
the transform calculated to arrange them in the positive X
axis. The forces for all the bonds are calculated separately,
then total forces (F,) and moments (M,) on each voxel are
summed according to how many bonds n are connected to it.

b=n

F,= ) Fp (25)
b=0
b=n _,

M= ) M, (26)
b=0

Integration. Because momentum plays a key role in all
dynamic simulations, two integrations are necessary to up-
date the position realistically. For this physics engine, double
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Euler integration was used. Although there are more accurate
integration methods, such as the Runge-Kutta (RK4) method,
Euler was chosen because the massive number of discrete
voxels and nonlinear effects such as stick-slip friction are not
well suited for the predictive steps of the RK4 integration
scheme. The state of each voxel was represented by 3D po-
sition (5) and rotation (0) vectors and 3D linear (ﬁ) and
angular momentum (¢) vectors. In order to advance the
simulation from time ¢, to time ¢, ; =t+dt,

P, =P, +Fdt 27)
. . P
D, ., =D, + " dt (28)
m
b, =, +Mdt (29)
0,. =0, + %dt (30)

where m is the mass of the voxel, and / is the rotational inertia.

Choosing the timestep. A critical aspect of implement-
ing a robust physics simulation driven by Euler integration is
to choose a suitably small timestep to prevent numerical in-
stability. However, in order to be computationally efficient,
the timestep should not be unduly small. Fortunately, it is
trivial both conceptually and computationally to determine
the longest stable timestep at each iteration of the simulation.
In an oscillating system, the simulation will be stable if

1

dt<
27‘C(L)0m

(€29

Because each bond between voxels is essentially a mass-
spring-damper system, y,, is simply the maximum natural
frequency of any bond in the system. The stiffness of each
bond was divided by the minimum mass of either voxel
connected to it to calculate the maximum natural frequency
of each bond according to

ki,
@0, =
mpy,

where k, is the stiffness of the bond and m,,, is the minimum
of either mass connected by this bond.

(32)

Damping. Once an optimal timestep has been chosen, it is
necessary to implement damping into the system to avoid the
accumulation of numerical error as well as to enable realisti-
cally damped material properties. Because one application goal
of this simulation involves unconstrained motion of soft bodies,
damping must be included at the local interaction between
voxels, not just applying a force proportional to each voxel’s
global velocity, which would damp rigid body motion.

The local damping between adjacent voxels ensures that
modal resonances at the scale of a single voxel do not ac-
cumulate. For each bond between two voxels, a force was
applied to each voxel opposing the relative velocity between
them. However, because rotational degrees of freedom allow
this bond to be spinning, both angular and translational
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velocities must be correctly accomodated to make sure rigid
body motion is not being damped. For each bond, first the
average position, velocity, and angular velocity were calcu-
lated. Then the velocity of the second voxel relative to the
first (V> 1) is calculated according to
Va1 =(Va—= Vo) + (D2 — Do) X &y (33)
where ‘72 is the velocity of the_‘second voxel, Va is the
average velocity of two voxels, D, is the position of the
second voxel, 5a is the average position, and @, is the average
angular velocity. This is in effect subtracting out the rigid
motion components of the relative velocity such that they are
not damped. Then for each voxel the damping force is cal-
culated according to the standard linear damping formula:
Fy=2{VmkV, (34)
where F, is the damping force to be applied to the voxels
with mass m attached to a bond with stiffness k and a relative
velocity V,. The damping ratio { is normally selected to be 1,
corresponding to critical damping. Likewise, angular veloc-
ities are also damped according to
My =20\/Tkyw, (35)
where M, is the damping force to be applied to the voxels
with a rotational moment of inertia / attached to a bond with
rotational stiffness k and a relative angular velocity ,. The
rotational damping ratio { is also normally selected to be
unity. However, even though each bond is critically damped
locally, the structure as a whole is still quite underdamped.
So, each voxel was also variably damped relative to the
ground in a similar manner.

Collisions

Gravity, floor, and friction model. In order to properly
simulate freely moving soft bodies, gravity is necessary. As
the force is summed on each voxel, the mass of the voxel
times the acceleration of gravity was subtracted from the
vertical component of force. In conjunction with gravity, a
floor was implemented for objects to rest on. Because the
maximum simulation timestep that can be taken is limited
by the maximum stiffness between any two connected
masses, the effective normal stiffness of the floor on any
voxels in contact with it cannot be infinitely high. In order to
keep the simulation as efficient as possible, the stiffness of
each voxel contacting the floor was the stiffness of the floor
in that location. Although this allows significant floor pen-
etration in some cases, the qualitative behavior is appro-
priate. Potential collisions with the floor are trivial to detect
by simply comparing the vertical position of each voxel to
the ground plane after accounting for the current size of the
voxel.

Although a standard linear friction model would provide a
relatively realistic simulation, much more interesting and
realistic behavior can be observed using a Coulomb friction
model. This implies that a voxel at rest with the floor will
resist any motion until

|Fl‘ >:uan (36)
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where F; is the horizontal force parallel to the ground, y is
the coefficient of static friction between the voxel and the
ground plane, and F, is the normal force pressing this voxel
into the plane of the ground. A Boolean flag is set, indicating
to the simulation that this voxel should not move laterally, but
can still move in the direction normal to the ground such that
it can be unweighted and then moved laterally. Once the
static friction threshold has been exceeded at any given time-
step, the voxel is allowed to begin motion in the appropriate
lateral direction by clearing the Boolean static friction flag.
The voxel is allowed to move in all three dimensions, but a
friction force is applied, opposing the lateral direction of
motion according to:
|F1| = usFy (37)
where p, is the dynamic coefficient of friction. In order to
properly detect when a voxel has stopped lateral motion, a
minimum motion threshold must be set. Otherwise the voxel
will never reenter the static friction state until the velocity is
less than the precision of a floating point variable. To detect a
stopping voxel, especially one that would change direction
and incorrectly bypass the effects of static friction, a voxel is
artificially halted if

V< Fn:uddt
=

(38)

where m is the mass of the voxel in question. Because the
force of friction (F,u,) is always directly opposed to the
voxel’s lateral velocity (V)), the voxel is stopped if the pro-
jected change in velocity would change the direction of the
surface velocity, which would involve the momentary stop-
ping of the voxel. Collisions are also damped normal to the
direction of contact with a user variable damping ratio
ranging from zero (no damping) to one (critical damping).

Self-collision detection and handling. Collision detection
between voxels must be implemented carefully to avoid this
being a bottleneck in CPU cycles. Especially in simulations
with many independently moving particles, the O(n”) process
of checking every particle against every other to detect col-
lisions is prohibitively expensive in CPU cycles. In a voxel
simulation such as this there are many ways we can make
collision detection more efficient. Since large deformations
and multiple bodies are possible, we cannot simply exclude
collision detecting between voxels that are connected.
However, we can suppose that voxels on the interior of an
object may be disregarded for any collisions, assuming that
collisions are handled in such a way that overlaps cannot
penetrate the outer shell. Upon import into the simulation, a
list of surface voxels is precomputed, since this information
will never change.

The next step is to build a list of voxel pairs that are within
a collision horizon (reasonable range) of each other. Voxels
on this shortlist should be compared at every timestep for
potential overlap. The collision horizon was chosen to be a
distance equivalent to two voxels. However, it is undesirable
to watch for potential collisions between voxels that are ad-
jacent and connected in the lattice since the internal forces
between them already resist penetration. To account for this,
a list of voxels within a 3D Manhattan distance of 3 in the
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lattice is precompiled upon import into the simulation for
each voxel. Once complete, any potential collision interac-
tions can be compared against this list in linear time to ex-
clude the computational overhead of calculating spurious
collision interactions.

Finally, the list of potential voxel collision pairs must be
updated often enough that out-of-range voxels beyond the
collision horizon do not have a chance to penetrate before
being recognized as potential collisions. To accomplish this,
a global maximum motion variable is initialized in the sim-
ulation. Each timestep, the magnitude of the maximum ve-
locity of any voxel in the simulation is added to this variable.
While the maximum motion is less than half the collision
horizon, it is guaranteed that no voxels can overlap into a
collision. This is extremely conservative, but also computa-
tionally trivial to compute.

Volumetric actuation

For convenience, we will refer to volumetric actuation in
the context of materials with a nonzero coefficient of thermal
expansion (CTE) in conjunction with a changing ‘“‘tempera-
ture’’ control variable. However, volumetric actuation may be
physically achieved in a variety of ways, so there is no reason
to assume that the results presented here are applicable only to
temperature changes. There is also no reason that different
materials within the simulation couldn’t expand or contract
out of sync to multiple independent control variables. This
would be analogous to having multiple “‘temperatures’” that
only affect certain materials. But in the following discussion,
we will refer to only a single temperature control variable.

With the soft-body relaxation engine in place, such volu-
metric actuation is implemented by simply changing the
nominal rest length between adjacent voxels when computing
the elastic force between them. If the elastic force (Ff) be-
tween two voxels is normally calculated according to

Fp=K(P,—P,—Dy, _,) (39)

to add in the effects of volumetric actuation,

o+ o —
T(Tc - Tr)) Dnp,—p, [7=T1,

(40)

Dy, lr=1. = (1 +

where DﬂNi,lﬂP2 |7 =7, is the modified rest distance based on
the current temperature, o; and o, are the coefficients of
thermal expansion of the bond’s constituent materials, 7,
is the current temperature, and 7, is the reference tempera-
ture, at which there is no temperature-based expansion or
contraction.

Validation

In order to ensure that the physics engine was performing
properly, we compared both static and dynamic behaviors of
cantilever beams to finite element and analytical solutions.
To verify the static behavior of the simulation, beam de-
flections of both thin and thick cantilever beams were com-
pared to a linear direct stiffness method and (in the case of the
thin beam) to the analytical solution. The results are outlined
in Table 1. For the thin beams, 20X 1 X 1 voxels were used

HILLER AND LIPSON

TABLE 1. MAXIMUM DISPLACEMENTS
OF THIN AND THICK CANTILEVER BEAMS

Mass/ Direct
Geometry spring stiffness  Analytical
Thin cantilever beam  0.822mm 0.823mm 0.823 mm
Thick cantilever beam 0.538 mm 0.546 mm N/A

with a physical size of 1 mm each for a total beam size of
20 mm long by 1 mm thick. A material stiffness of 1 MPa was
specified. The force at the end of the beam was selected to be
0.03 mN so that the displacement would be small (less than a
voxel-height). This ensures that small-angle approximations
of the analytical solution are valid. The thick beams were
modeled as 10x5 x5 blocks of 1 mm voxels with the same
stiffness. In this case, 0.1 N of force was applied at the free
end to achieve a non-negligible displacement.

The nonlinear mass-spring method presented here results
in slightly smaller displacements than the direct stiffness
method and the analytical solutions (Table 1). This difference
is negligible in the thin beam case. The difference is more
pronounced in the thick beam case. This is likely because the
deformation (Fig. 4) is large enough that the change in ge-
ometry in the relaxation method factors into the results.
Therefore, we suspect that in this case the linear methods
slightly overpredict the deflection.

To verify the dynamic properties of the simulation, a thin
cantilever beam of the same dimensions and properties as
used in the previous section was excited with an impulse
force at the free end. Damping was turned off, except a trace

] 11 ]

FIG. 4. The deflection of a thick cantilever beam as cal-
culated by the direct-stiffness method (finite element anal-
ysis) (a) and the mass-spring method (b).
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amount of local bond rotational damping ({=0.01) to main-
tain numerical stability. A total of 20,000 data points were
collected of the z position of the voxel at the free end of the
beam, corresponding to 0.13 seconds of physical time, or
about 60 oscillations of the lowest-frequency fundamental
mode. The frequency characteristics of this data were then
plotted with the analytically calculated natural frequencies of
a thin cantilever beam. (Fig. 5). The analytical natural fre-
quencies were calculated according to

EI
w, =K, ﬁ

where w,, is the natural frequency of mode 7 in radians per
second, K, is the standard scaling factor for this mode, and m
is the mass per unit length of the beam.>® These values are
overlaid on Figure 5, and the simulated and analytical natural
frequencies are tabulated in Table 2. The simulation predicts
natural frequencies that are slightly lower than those pre-
dicted by beam theory. This is likely because the 20x 1 as-
pect ratio of the simulated beam is not quite an ideal thin
beam, and because there is a small amount of damping in the
simulation that would tend toward under-predicting natural
frequencies.

(41)

Results
Simulation performance

Several parameters were explored to characterize the
performance of the soft body simulator. All results presented
here assume the simulation is run on a single worker thread of
a Corel7 CPU at 2.67 GHz. As implemented, the simulation
proved very computationally efficient. For a reasonable size
object of 4000 voxels, 122 complete simulation iterations
were completed per second, or approximately 500,000 voxel
calculations per second. As the number of voxels increases in
the object, the total voxels calculated per second decreases,
but not dramatically. The simulation speed per voxel for

Iyl
=)

' 2 10° 10 10
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TABLE 2. THE MODAL FREQUENCIES OF A SIMULATED
THIN BEAM AND ANALYTICALLY CALCULATED RESULTS,
WITH DYNAMIC MASS-SPRING SIMULATION
UNDER-PREDICTING SLIGHTLY DUE TO DAMPING
AND HAVING A FINITE THICKNESS

Mode Analytical Mass-spring
1 389 Hz 404 Hz
2 2428 Hz 2531 Hz
3 6749 Hz 7087 Hz
4 13070 Hz 13890 Hz
5 21260 Hz 22960 Hz
6 31180 Hz 34290 Hz

cubic blocks of various numbers of elements are shown in
Figure 6.

Effects of local bond damping

By applying a combination of damping both to the indi-
vidual bonds and to the voxels relative to ground, the solution
converges quickly to steady state with very little numerical
jitter. The additional local damping does not significantly
affect the convergence speed but allows the solution to
converge to a residual static error approximately seven orders
of magnitude lower (Fig. 7). By suppressing jitter in this
manner, both static and dynamic solutions are less suscepti-
ble to numerical instability.

Speedup of self-collision schemes

Different combinations of self-collision detection methods
were directly compared using the test geometry shown in
Figure 8. All materials in this setup were defined with a
stiffness of 1 MPa. The red and blue materials each were
assigned to have a thermal expansion coefficient with mag-
nitude of 0.02, although one was positive and one negative.
The temperature of the environment was then sinusoidally
varied with an amplitude of 30 degrees, which corresponds to
a 60% expansion and contraction of the red and blue mate-
rials 180 degrees out of phase. This sets up a periodic colli-
sion between the extremities that are repeatedly entering and
exiting the assigned collision horizon.

10 10
Frequency (Hz)

FIG. 5. The frequency response of a simulated cantilever
beam with low damping clearly shows modal resonances
that agree well with analytically calculated values (red
overlay lines).
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FIG. 6. The computational speed per voxel drops off
slightly as the number of voxels in the simulation increases.
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FIG. 7. Damping individual bonds critically (B,=1.0)
lowers the noise floor by approximately seven orders of
magnitude compared to the undamped case (B,=0).

The case of comparing the distance from all voxels to all
other voxels in the structure at every timestep (All + Every) was
included as a baseline. Comparing only surface voxels to each
other at every timestep (Surf+ Every) resulted in a very minor
speedup. This is expected given the geometry chosen, because
the majority of voxels in the structure are surface voxels.
However, large gains in speed are realized when incorporating
the collision horizon. Even when comparing all voxels to all
voxels when recalculation is needed (All+ Horizon), the sim-
ulation as a whole speeds up almost 6 X. Again, minor accel-
eration is realized when considering only surface voxels with
the collision horizon (Surf+ Horizon) (Table 3).

It should be stressed that these results are merely repre-
sentative. In cases with larger numbers of voxels, the bot-

FIG. 8. An arbitrary clapper setup to test net iteration rates
with different collision types. The red and blue materials
change volume sinusoidally 180 degrees out of phase to
provide the actuation.
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tleneck of the entire simulation is in collision detection. In
this case, comparing all voxels to all other voxels is O(Nz)
(where N is the number of voxels), which dominates the O(N)
scaling of calculating forces and updating positions. In this
case, precompiling a list of surface voxels and only using
them in collision detection can reduce collision detection
down to approximately O(N 13, although this depends on the
geometry. Of course, if the geometry is thin such that all
voxels are on the surface, no speedup will be observed.

Additionally, incorporating the collision horizon has
widely variable effects on the speed of the simulation. In the
extreme case of voxels moving very fast, no speedup is ob-
served since the collision horizon may be exceeded at every
timestep. However, this is only possible in extremely fast,
rigid-body motion collisions, for which this simulation is not
intended. On the opposite end of the spectrum, if the object is
stationary or moving slowly the collision horizon will take
many timesteps to be exceeded. Therefore, almost no colli-
sion detection calculations will be needed, resulting in dra-
matic acceleration of the simulation.

Demonstrations of Simple Volumetrically
Actuated Mechanisms

Several demonstration scenes were created to illustrate the
simulator in action. In the first scene, (Fig. 9a—c), an actuated
beam kicks a ball into a bowling pin. The beam has a stiffness
10 times greater than the ball, which in turn has a stiffness 10
times greater than the bowling pin. The frequency of the red
and blue volumetric actuation was selected such that the
beam would swing in resonance. The second scene (Fig. 9d—f)
shows a 2D layer of voxels falling and interacting with a fixed
sphere as cloth would. In the third scene, a quadruped with
periodic leg actuation walks forward using the nonlinearities
of the surface friction with the floor as well as the side-to-side
resonance of the head swinging back and forth. Animations
of each example may be viewed online.* These illustrations
demonstrate not just the dynamics and large deformation
capabilities of the simulation, but also the use of volumetric
actuation and the efficient collision system.

Conclusion

We have demonstrated a computationally efficient soft
body simulator with applications in nonlinear material
modeling and dynamic soft object simulation. By virtue of
being voxel-based, this simulation can accurately model
heterogeneous materials with differing stiffnesses and den-
sities in a physically accurate environment, even when the
materials are well-interspersed among each other. This en-
ables modeling of gradient and composite materials. By in-
corporating a collision horizon that is updated only when
needed, self-intersection is eliminated with low computa-
tional overhead. By implementing volumetric actuation,
structures can be actuated without imposing arbitrary exter-
nal forces to create self-contained mechanisms.

Several practical projects have already successfully uti-
lized the simulation engine presented here. It has been used to
evolve various locomoting soft robots by the authors® and
their colleagues.® This has enabled a new level of compu-
tational design and analysis of soft robots. Fueled by
the freely available graphical user interface (GUI) (VoxCad)
and the intuitiveness of making 3D objects with voxels
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FIG. 9. Frames from demonstration scenes show a volumetrically actuated flexible beam swung in resonance to kick a
soft ball into an even softer pin (a—c). A 2D layer of voxels falling under gravity and interacting with a fixed sphere (d—f),
and a locomoting quadruped (g-i).

(blocks), it has found educational applications as well.
There is a growing online library of soft robotics design
challenges and science fair projects for children ages 8 and u
that involve designing and racing soft robots in VoxCad.
The multimaterial modeling capabilities have also been used
for analyzing the static and time-varying properties of 3D-
printed multimaterial objects. The programmable materials
developed by Stratasys in their 4D printing research collab-
orations with the Massachusetts Institute of Technology
utilized the large-deformation and volumetric actuation fea-
tures presented here to design active joints and hinges.*®

TABLE 3. ITERATION RATES FOR VARIOUS COLLISIONS
DETECTION AND HANDLING SCHEMES (HIGHER Is BETTER)

Geometry Rate (iter/sec)
All +every 140.4
Surf +every 140.6
All +horizon 834.4
Surf + horizon 8354

All code and documentation is freely available online in-
cluding a standalone GUI for editing and simulating objects
in a real-time interactive environment. A brief overview of
how to use the code is included in the appendix. This simu-
lation opens the door to the design automation of a wide
variety of nonlinear physical structures and mechanisms that
were not possible with previous soft body physics simulation
packages.
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Appendix

Simple implementation of the simulator

A minimal C++ program is provided here to demonstrate the ease of coding a bare-bones dynamic simulation.
A 5mmx 10 mm X 5mm beam with a material stiffness of 10 MPa is cantilevered, and a 1 kN force is applied to the
free end.

CVX_Object Object; //Voxel object
CVX_Environment Environment; /Environment object
CVX_Sim Simulator; //Simulator object

Object.InitializeMatter(0.001f, 5, 10, 5); //Creates a 5x 10X 5 workspace of 1 mm voxels
int MatIndex = Object. AddMat(*“Material1”’, 10000000.0f, 0.3f); /Adds a 10 MPa material to the palette
for (int x=0; x<5; x++){
for (int y=0; y<10; y++){
for (int z=0; z<5; z++){
Object.SetMat(x, y, z, MatIndex); //Sets each voxel to 10 MPa material
}
}

}

Environment.AddObject(&Object); /Imports the object into the environment
Environment.AddFixedRegion(Vec3D(0, 0, 0), Vec3D(1.0f, 0.01f, 1.0f)); /Fixes the —Y plane
Environment.AddForcedRegion(Vec3D(0, 0.99, 0), Vec3D(1.0f, 0.01f, 1.0f), Vec3D(0, 0, —1000.0f));
//Adds a downward force of 1 kN to the +Y plane

Simulator.Import(&Environment); /Imports the environment into the simulator
Simulator.SetSlowDampZ(0.013); //Sets the global damping ratio to an appropriate value

for(int i=0; 1<400; i++ )Simulator.TimeStep(); /Simulates 400 timesteps

Selected function definitions from dynamic voxel simulation classes

A small subset of functions used in the voxel simulator are documented here. With only these functions, a dynamic
simulation may be created and run. Complete documentation of the source code is available at www.voxcad.com

Class CVX_Object. Describes the geometry and materials of a voxel object.
void CVX_Object::InitializeMatter (float iLattice_Dim, int xV, int yV, int zV)

Initializes voxel object with the specified voxel size and default lattice. A cubic lattice is assumed at the provided inter-voxel
lattice dimension.

in iLattice_ Dim The base lattice dimension between adjacent voxels in meters.
in xV The number of voxels in the X dimension of the workspace.
in yV The number of voxels in the Y dimension of the workspace.
in zV The number of voxels in the Z dimension of the workspace.

int CVX_Object::AddMat (std::string Name, double EMod, double PRatio, std::string *RetMessage=
NULL)

Appends a material to the palette. Returns the index within the palette that this material was created. This index may change
if materials are deleted from the palette. All colors and physical properties besides elastic modulus and Poisson’s ratio are set
to defaults.
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in | Name The name of the material to add. If the name is already in use a variant will be generated.
in | EMod The elastic modulus of the new material in Pascals.
in | PRatio The Poisson’s ratio of the new material.

out | RetMessage | Pointer to an initialized string. Messages generated in this function will be appended to the string.

bool CVX_Object::SetMat (int x, inty, int z, int MatIndex) [inline]

Sets a single voxel to the specified material. Returns true if successful. Returns false if provided indices are outside of the
workspace, or the material index is not contained within the current palette.

in X Integer X index of voxel location to set.
in y Integer Y index of voxel location to set.
in Z Integer Z index of voxel location to set.
in MatIndex Specifies the index within the material palette at which to set this voxel.

Class CVX_Environment. Describes the physical environment and boundary conditions for the voxel object.
void CVX_Environment: :AddObject (CVX_Object *pObjIn) [inline]

Links a voxel object to this environment. Only one voxel object may be linked at a time.

in pObjIn Pointer to an initialized voxel object to link to this simulation.

void CVX_Environment: :AddFixedBc (Vec3D<>& Location, Vec3D<>& Size, char DofToFix=DOF_ALL)

Adds a region of voxels to be fixed to ground in the specified degrees of freedom. All voxels touching this region will be
affected in the simulation.

in | Location | The corner of the region closest to the origin. Specified as a percentage (in X, Y, and Z respectively)
of the overall workspace. (Location.x, Location.y, and Location.z each have a range of [0.0, 1.0]).

in | Size The size of the region. Specified as a percentage (in X, Y, and Z respectively) of the overall
workspace. (Size.x, Size.y, and Size.z each have a range of [0.0, 1.0]).

in | DofToFix | The degree(s) of freedom to fix, specified by an 8-bit field where each set bit indicates a fixed
degree of freedom. Translation degrees of freedom: DOF_X=0x01, DOF_Y =0x02, and
DOF_Z=0x04. Rotational degrees of freedom: DOF_TX =0x08, DOF_TY =0x10, and
DOF_TZ=0x20. By extension (and for convenience), DOF_ALL =0x3F and DOF_NONE =0x00
are also defined. Individual degrees of freedom may be combined in any way.

void CVX_Environment::AddForcedBc (Vec3D<>& Location, Vec3D<>& Size, Vec3D<>& Force, Vec3D<>&
Torque=Vec3D<>(0,0,0))

Applies a force and/or torque to a region of voxels. All voxels touching this region will be affected. The provided force or
torque vector will be divided equally among all voxels.
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in | Location | The corner of the region closest to the origin. Specified as a percentage (in X, Y, and Z respectively)
of the overall workspace. (Location.x, Location.y, and Location.z each have a range of [0.0, 1.0]).

in | Size The size of the region. Specified as a percentage (in X, Y, and Z respectively) of the overall
workspace. (Size.x, Size.y, and Size.z each have a range of [0.0, 1.0]).

in | Force The force to be distributed across this region in Newtons. The force is divided equally among
all voxels in the specified region.

in | Torque The torque to be distributed across this region in Newton-meters. The torque is divided equally
among all voxels in the specified region. Currently torques are only applied if all rotational
degrees of freedom are unfixed.

Class CVX_Sim. Contains the current physical state of the voxel object and advances the simulation.

void CVX_Sim::Import (CVX_Environment *pEnvIn=NULL, CMesh *pSurfMeshIn=NULL, std::string *Re-
tMessage=NULL)

Imports a physical environment into the simulator. The environment should have been previously initialized and linked with
a single voxel object. This function sets or resets the entire simulation with the new environment.

in pEnvIn A pointer to initialized CVX_Environment to import into the simulator.

in pEnvpSurfMeshIn A pointer to initialized CMesh object containing a smooth surface to paste
onto the underlying voxels. If NULL, a surface will be automatically generated.

out RetMessage A pointer to initialized string. Output information from the import function
is appended to this string.

void CVX_Sim::SetSlowDampZ (double SlowDampIn) [inline]

Sets the damping ratio that slows downs voxels. When this is nonzero, each voxel is damped (based on its mass and stiffness)
to ground. Range is [0.0, 1.0]. Values greater than 1.0 may cause numerical instability.

out SlowDampln Damping ratio for damping each voxel relative to ground.

void CVX_Sim::SetCollisionDampZ (double ColDampZIn) [inline]

Sets the damping ratio for voxels in a colliding state. When this is nonzero, each voxel is damped (based on its mass and stiffness)
according to the relative penetration velocity. Range is [0.0, 1.0]. Values greater than 1.0 may cause numerical instability.

out ColDampZIn Collision-damping ratio for colliding voxels.

void CVX_Sim: :SetBondDampZ (double BondDampZIn) [inline]

Sets the damping ratio for connected voxels. When this is nonzero, each voxel is damped (based on its mass and stiffness)
according to its relative velocity to the other voxel in each bond. Range is [0.0, 1.0]. Values greater than 1.0 may cause
numerical instability.

out BondDampZIn Damping ratio between each connected voxel.

bool CVX_Sim::TimeStep (std::string *pRetMessage=NULL)

Advances the simulation one-time step. Given the current state of the simulation (voxel positions and velocities) and
information about the current environment, this function advances the simulation by the maximum stable timestep. Returns
true if the time step was successful, false otherwise.

out pRetMessage Pointer to an initialized string. Messages generated in this
function will be appended to the string.
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