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Abstract. In order to incorporate meta-modelling in Description Logic, we add
equations between individuals and concepts. We naturally require that the individ-
ual and the concept are semantically equal and the interpretation domain should
be a well-founded set. In this paper, we consider the Description Logics behind
the three OWL 2 profiles extended with meta-modelling and study the problems
of checking consistency, classification and instance checking which turn out to
be all tractable.

1 Introduction

We extend Description Logic with axioms a =m A for equating an individual a to a
concept A in a knowledge base [30,31,28]. Since the interpretations of a and A should
be exactly the same, the domain of the interpretation cannot longer consist of only basic
objects. We require that the domain should be a well-founded set. In particular, we do
not allow sets that belong to themselves. Suppose we have a set X = {X} that belongs
to itself. Intuitively,X is the set {{{. . .}}}. We exclude sets likeX because they cannot
represent any real object in the area of semantic information systems (in other areas or
aspects of Computer Science, representing such objects is useful [4]).

This extension is motivated by real-world case studies where it is necessary to in-
tegrate and relate standard (or existing) ontologies where the same real object has been
represented at different levels of granularity. In this case, we say that the ontologies are
related through meta-modelling and the equation a =m A is called a meta-modelling
axiom. By adding meta-modelling axioms, concepts can become instances of another
concept (called meta-concept) which itself can be an instance of yet another concept
(called meta meta-concept) and so on.

The Web Ontology language OWL 2 profiles are lightweight Description Logics
that have some modelling restrictions in order to improve reasoning efficiency and scal-
ability, so that consistency, classification and instance checking can be performed in
polynomial time [24,41]. Then, our main challenge is, taking into account the partic-
ular formal properties of OWL-EL, OWL-RL and OWL-QL, to extend them with
meta-modelling keeping their nice computational properties.

As an example of an ontology in the OWL-EL profile, we consider SNOMED-CT
which is a comprehensive clinical and medical ontology that covers a wide range of
concepts in the health domain [38,18]. On one hand, suppose we have the ontology of
SNOMED-CT with diseases represented as concepts, e.g. Endocarditis, and on the
other hand, we have an ontology of clinical records linking patients with diseases rep-
resented as individuals, e.g. Juan hasDisease endocarditis [7,5]. In order to connect
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both views, we equate each individual in one ontology with the corresponding concept
in the other, e.g. endocarditis =m Endocarditis. This is illustrated in the next figure.

In order to exploit the SNOMED-CT hierarchy, it is useful to get inferences like “if
Juan has endocarditis then Juan has a heart disease”, since Endocarditis is a subcon-
cept of HeartDisease. To do this we introduce a new role characteristic

Propagate(hasDisease)

in such a way that from the following explicit knowledge:

Juan hasDisease endocarditis Endocarditis v HeartDisease
endocarditis =m Endocarditis heartDisease =m HeartDisease

the reasoner will infer that Juan hasDisease heartDisease. The role characteristic
Propagate(R) has the advantage of solving some common queries that happen often
in practice such as “find out all the patients that suffer from heart disease” by just
using the DL-query ∃hasDisease.{heartDisease}. Because of the ad-hoc evolution
of SNOMED-CT, without ontological rigour, several studies have suggested rethinking
the SNOMED-CT logical model. The need to represent some concepts as individuals
and propagate some properties in the hierarchy has already been observed in earlier
work but these problems have been tackled in different ways [40,36,39,35].

The kind of meta-modelling we consider in this paper can be expressed in OWL Full
(OWL together with its metalanguage RDF) but it cannot be expressed in OWL DL.
The fact that it is expressed in OWL Full is not very useful since the meta-modelling
provided by OWL Full is so expressive that leads to undecidability [29]. OWL 2 DL
has a very restricted form of meta-modelling called punning where the same identifier
can be used as an individual and as a concept [11,15]. These identifiers are treated as
different objects by the reasoner (engine that validates ontologies) and it is not possible
to detect certain inconsistencies.
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Glimm et al. do not define a set-theoretical semantics for meta-modelling. Instead,
they codify meta-modelling within OWL DL [10]. This encoding is used to formalize the
rules from the OntoClean methodology in OWL [14] but it has the limitation of having
only two levels of meta-modelling (concepts and meta-concepts) and it is not enough
to “fully” detect inconsistencies coming from meta-modelling [31]. A similar approach
is followed by Rector et al. who consider codes to represent diseases as individuals and
bind SNOMED with HL 7 [35,5].

There are several papers on meta-modelling in Description Logic that follow a Hilog
style semantics [29,9,16,17,27,25,13]. In this style of semantics, the same object can
have different interpretations depending on the position or role it plays in a sentence
(subject or predicate). From the Description Logic point of view, this means that the
same object can have different interpretations depending on the way it is represented.
For example, the object endocarditis as an individual inDiseaseObject(endocarditis)
does not have the same interpretation as the same object endocarditis represented as a
class in Endocarditis v Disease.

We use a direct semantics (Henkin’s style semantics) and give the object endocardi-
tis the same semantics independent from the way it was represented. Our semantics de-
tects inconsistencies that the Hilog semantics cannot. For example, if the user wrongly
states that Pancarditis ≡ Endocardits and pancarditis 6= endocarditis then Hilog
semantics cannot detect the inconsistency while we can.

Hilog semantics also ignores the delicate issue on well-founded sets. For example,
suppose the user adds the axiom DiseaseObject v HeartDisease to the ontology.
Then, we would infer that HeartDisease(heartdisease) which is non-sense because
the notion of “heart disease” can not itself be a heart disease. Our approach reports this
ontology as inconsistent because we require that the interpretation domain should be a
well-founded set.

In our approach, the well-foundness of the interpretation domain is not ensured
by means of fixing layers beforehand as in [33,19,16,17] but it is our reasoner which
checks for circularities. The fixed layer approach forces the user to explicitly write
the information of the layer in the syntax and this means that standard ontologies
have to be modified by adding this extra information in all its classes and individu-
als, e.g. Endocarditis1 in SNOMED CT and Juan1 and endocarditis1 in the on-
tology of patients records. Another drawback of the fixed layer approach is that we
cannot mix levels. In particular, we would not be able to re-write the concept hierarchy
of SNOMED because inclusions of concepts at different levels are not allowed, e.g.
DiseaseObject2 ≡ Disease1.

Using our approach, the layers are silent in the syntax. The user does not have to
write or know the layer of the concept because the reasoner will infer it for him. The
user has the flexibility of changing the status of an object at any point without having to
make any substantial change to the ontology. Our approach does not restrict the level j
ofB to be the successor of the level i of awhenB(a) holds. This has the advantage that
individuals with meta-modelling can co-exist with individuals without meta-modelling
in the same concept. In a real scenario of evolving ontologies, that need to be integrated,
not all objects of a given class need to have meta-modelling and hence, they do not have
to belong to the same level.
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Contributions and Outline. This is the first paper to study the lightweight ontology
languages extended with equations between individuals and concepts based on a direct
semantics of well-founded sets. The role characteristic Propagate has not been consid-
ered before and it is a useful and simple device to solve some common queries involving
meta-modelling.

Section 2 recalls the Description Logics behind the three OWL2 profiles. Section 3
gives the syntax and semantics of the extension of an arbitrary Description Logic with
meta-modelling. This section also studies general conditions for building a model of a
knowledge base with meta-modelling. Section 4 gives a general algorithm for comput-
ing semantic consequences for certain logics called consequential. Section 5 outlines
our future work.

2 Preliminaries on the Lightweight Ontology Languages

In this section, we recall the syntax for the three OWL profiles OWL-EL, OWL-RL
and a variant of OWL-QL. The semantics for the constructors is shown below.

Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
nominal {a} {aI}

complement ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI

existential restriction ∃R.C {x ∈ ∆I | (x, y) ∈ RI and y ∈ CI}
universal restriction ∀R.C {x ∈ ∆I | for all y ∈ ∆I if (x, y) ∈ RI then y ∈ CI}

cardinality restriction 6 1R.C {x ∈ ∆I | ]{y ∈ ∆I | (x, y) ∈ RI and y ∈ CI} ≤ 1}
range range(R) {y ∈ ∆I | (x, y) ∈ RI}

self restriction ∃R.Self {x ∈ ∆I | (x, x) ∈ RI}

empty role chain ε {x ∈ ∆I | (x, x) ∈ ∆I}
inverse role R− (R−)I = {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}

GCI C v D CI ⊆ DI
key C key R1 . . . Rn if aI1 ∈ CI , aI2 ∈ CI , (aI1 , b

I
i ) ∈ Ri

I and
restriction (aI2 , b

I
i ) ∈ Ri

I for 1 ≤ i ≤ n then aI1 = aI2

RI R1 ◦ · · · ◦Rk v R RI1 ◦ · · · ◦RIk ⊆ RI
disjoint roles Dis(R,S) RI ∩ SI = ∅

irreflexive role Irr(R) (x, x) 6∈ RI for all x ∈ ∆I

concept assertion C(a) aI ∈ CI
role assertion R(a, b) (aI , bI) ∈ RI

same individuals a = b aI = bI

different individuals a 6= b aI 6= bI

The Description LogicOWL-EL is essentially EL++ extended with reflexive roles,
range restrictions and keys [2,3,34,41]. Concepts and axioms are defined as follows.

Axiom := C v C | C key R1 . . . Rn | R1 ◦ · · · ◦Rk v R | range(R) v C
C := A | > | ⊥ | C u C | ∃R.C | {a} | ∃R.Self
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When k = 0, we assume that the role inclusion is ε v R which allows us to
declare that R is reflexive. Roles can have range declarations provided they satisfy the
restriction that if R1 ◦R2 ◦ . . . ◦Rk v S ∈ K with k ≥ 1 and K |= range(S) v C then
K |= range(Rk) v C [3].

Recall that the axioms of an Abox can be expressed using nominals and inclusions
as follows: C(a) is equivalent to {a} v C, R(a, b) is equivalent to {a} v ∃R.{b},
a = b is equivalent to {a} ≡ {b} and a 6= b is equivalent to {a} u {b} = ⊥. More-
over, the OWL-EL profile allows class disjointness, transitive object properties, do-
main restrictions and negative object property assertions, which can be expressed as
C uD v ⊥, R ◦R v R, ∃R.> v C and {a} u ∃R.{b} v ⊥.

For simplicity, we do not include concrete domains. Since meta-modelling makes
sense only between individuals and concepts, adding concrete domains seems like an
orthogonal problem and it should not be difficult to add them.

We now recall the Description Logic OWL-RL (without ObjectHasValue in the
superclasses) as described in [23]. Concepts, roles and axioms are defined as follows.

Axiom := CL v CR | CR(a) | R(a, b) | a = b | a 6= b | R1 ◦ · · · ◦Rk v R, k > 0 |
CL key R1 . . . Rn | Dis(R,S) | Irr(R)

CL := ⊥ | > | A | ⊥ | CL u CL | ∃R.CL | CL t CL | {a}
CR := ⊥ | > | A | ¬CL | CR u CR | ∀R.CR |6 1R.CL
R := R | R−

OWL-RL includes range restrictions, symmetric and asymmetric rol characteristics
which can be expressed as > v ∀R.C, R v R− and Dis(R,R−) respectively.

We also consider OWL-QL∗, a variant of OWL-QL with axioms a = b and
without role disjointness, irreflexive and asymmetric roles [1]. In the presence of meta-
modelling where individuals can represent concepts, we cannot assume the unique name
assumption. An implementation could replace a by b but the user should be able to see
the inference a = b when A ≡ B, a =m A, b =m B hold.

Axiom := CL v CR | CR(a) | R(a, b) | a = b | a 6= b | R v S | ε v R
CL := A | > | ⊥ | ∃R.>
CR := A | > | ⊥ | ¬CL | CR u CR | ∃R.CR
R := R | R−

OWL-QL∗ includes class disjointness, range restrictions and symmetric rol char-
acteristics which can be expressed as C v ¬D, ∃R−.> v C andR v R− respectively.

An isomorphism between two interpretations I and I ′ of a knowledge base K is a
bijective function f : ∆I → ∆I

′
such that

– f(aI) = aI
′

– x ∈ AI if and only if f(x) ∈ AI′

– (x, y) ∈ RI if and only if (f(x), f(y)) ∈ RI′ .

The description logics OWL-EL, OWL-RL or OWL-QL∗ all satisfy the follow-
ing lemma which holds for first order logic:
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Lemma 1 (Isomorphism). Let I and I ′ be two isomorphic interpretations of a knowl-
edge base K in L where L is either OWL-EL, OWL-RL or OWL-QL∗. Then, I is
a model of K if and only if I ′ is a model of K.

From now on, we assume that when we refer to a generic description logic L, that
logic also satisfies the above lemma.

3 Extending a Description Logic with Meta-modelling

The logic LM extends an arbitrary description logic L by adding metamodelling ax-
ioms and propagations. A metamodelling axiom is an equation a =m A between an
individual a and atomic concept A [30,31]. Propagations are role characteristics of the
form Propagate(R) where R is a role (not a chain of roles). The precise semantics of
these new constructors is described in the table below.

Name Syntax Semantics

Metamodelling a =m A aI = AI

Axiom
Propagation Propagate(R) if (cI , aI) ∈ RI and aI ⊆ bI then (cI , bI) ∈ RI

for all c ∈ (K,M), a =m A, b =m B inM

We recall that a set X is well-founded if X does not have infinite 3-decreasing
sequences, i.e. there is no {xi | i ∈ N} ⊆ X such that xi 3 xi+1 for all i ∈ N.

Let K be a knowledge base in the logic L without meta-modelling. A knowledge
base in LM is KM = (K,M) whereM is a set of metamodelling axioms and propa-
gations, called Mbox.

We will show how to build a model for a knowledge base (K,M) with meta-
modelling from a model for the knowledge base K without meta-modelling. For this,
we start introducing some examples.

Suppose we have an ontology (K,M) with four individuals a, b, c and d with ax-
ioms B(a), A(c), A(d) and the meta-modelling axioms given by a =m A and b =m B.
We consider the model I of K defined as follows.

∆I = {a, b, c, d} AI = {c, d} BI = {a}

In order to get a model I ′ of the knowledge base with meta-modelling, we need to
impose the equations aI

′
= AI

′
= {c, d} and bI

′
= BI

′
= {aI′}. We can see that

aI
′

and bI
′

are not longer basic objects. We can build a model I ′ of (K,M) from the
model I of K as follows.

∆I
′
= {{c, d}, {{c, d}}, c, d} (A)I

′
= {c, d} (B)I

′
= {{c, d}}

Suppose now we have an ontology (K,M) with two individuals a and b, the individ-
ual assertionsB(a) andA(b), and the meta-modelling axioms a =m A and b =m B. We
consider the model I of the ontology without meta-modelling given by ∆I = {a, b},
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AI = {b} and BI = {a}. In order to take into account the meta-modelling, we impose
the equations aI

′
= AI

′
= {bI′} and bI

′
= BI

′
= {aI′}. This interpretation cannot

be made into a model of (K,M) because aI
′ ∈ bI′ ∈ aI′ .

Suppose now we have a knowledge base (K,M) with three individuals a, b and c,
the individual assertions: A2(c), A1(b) and the meta-modelling axioms: a =m A1 and
a =m A2. We consider the model I of K given by

∆I = {a, b, c} AI1 = {b} AI2 = {c}

In order to build a model of (K,M) we need to force the equations aI
′
= {b} and

aI
′
= {c}. In this case, we cannot build a model of (K,M) because the interpretation

of a is not uniquely determined when b and c are different.
A relation≺ is well-founded on X if X has no infinite ≺-decreasing sequences, i.e.

there are no {xi | i ∈ N} ⊆ X such that xi+1 ≺ xi for all i ∈ N. Note that the relation
≺ does not have to be transitive [42].

Definition 1 (Coherent Model). We say that a model I of K is coherent w.r.t.M if it
satisfies the following conditions:

1. aI = bI if and only if AI = BI for all a =m A and b =m B inM.
2. ≺ is a well-founded relation where ≺ as the smallest relation on ∆I such that
y ≺ x if and only if aI = x and a =m A and y ∈ AI .

3. If (cI , aI) ∈ RI and AI ⊆ BI then (cI , bI) ∈ RI for all a =m A, b =m B and
R such that Propagate(R).

The model of a knowledge base (K,M) is built as the composition of two func-
tions: a coherent model of K and a function set that computes the set associated to an
individual with meta-modelling recursively.

LM

I′

<<

I // ∆I
∼= // set(∆I)

More precisely, we define I ′ by

∆I
′
= {set(x) | x ∈ ∆I} aI

′
= set(aI)

AI
′
= {set(x) | x ∈ AI} RI

′
= {(set(x), set(y)) | (x, y) ∈ RI}

where the function set is defined by recursion on ≺ as follows.

set(x) = {set(y) | y ∈ AI} if aI = x and a =m A
set(x) = x otherwise

In the case when x is an individual a with meta-modelling, the recursive step applies
the function set to y where y ≺ x. The idea of the function set is that for an individual
a with meta-modelling, set(a) gives the set of objects that a represents.

Theorem 1 (Model Construction). LetK be a knowledge base in L. IfK has a coher-
ent model I w.r.t.M then, the interpretation I ′ defined above is a model of (K,M).
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Proof. Suppose I is a coherent model of K. We first prove that set is indeed a function
and then prove that set is injective.

To prove that set is a function we consider x = aI with a =m A and x = bI with
b =m B. As aI = bI , by Item 1 of Definition 1 we have that AI = BI . Hence, set(x)
is uniquely determined.

To prove that set is injective, we assume that set(x) = set(y) and prove that x = y
by induction on (∆I ,≺). We can do this induction because ≺ is well-founded on ∆I

by Item 2 of Definition 1. Suppose set(x) = a and x has no meta-modelling. Hence,
x = set(x) = set(y) = y. Suppose now that x = aI , and a =m A. Then, y = bI and
b =m B. Moreover,

set(x) = {set(x′) | x′ ∈ AI}
set(y) = {set(y′) | y′ ∈ BI}

Since set(x) = set(y), we have that for all x′ ∈ AI , there exists y′ ∈ BI such that
set(x′) = set(y′). Since x′ ≺ x, it follows from induction hypothesis that x′ = y′.
Hence, AI ⊆ BI . Similarly, we can conclude that BI ⊆ AI . Hence, AI = BI . By
Item 1 of Definition 1 we have that aI = bI which means that x = y.

One can prove that ∆I
′

is well-founded using the fact that set(x) ∈ set(y) if and
only if x ≺ y. Since set is a bijection from ∆I into ∆I

′
, the interpretation I ′ is iso-

morphic to I. By Isomorphism Lemma, it is also a model ofK. It only remains to prove
that I ′ is a model ofM. Suppose that a =m A inM. It follows from the definitions of
I ′ and set that

aI
′
= set(aI) = {set(y) | y ∈ AI} = AI

′
(1)

Suppose a =m A, b =m B and Propagate(R) are in M, (cI
′
, aI

′
) ∈ RI

′
and

aI
′ ⊆ bI

′
. By Eq. (1), aI

′
= AI

′
and bI

′
= BI

′
, so AI

′ ⊆ BI
′

and by the iso-
morphism of I and I ′, we have that (cI , aI) ∈ RI and AI ⊆ BI . It follows from the
fact that I is coherent that (cI , bI) ∈ RI . By the isomorphism, (cI

′
, bI

′
) ∈ RI′ . �

4 A General Subsumption Algorithm for Consequential Logics

Since there are several algorithms for computing semantic consequences in a logic L
(without meta-modelling), we wonder whether it is possible to define a corresponding
algorithm for a knowledge base (K,M) in a logic LM (with meta-modelling) reusing
any of the existing algorithms for L. For this, we study under what conditions we can
give a general polynomial reduction of the subsumption problem from LM to L. The
search of these conditions lead us to identify some logics which, for any knowledge base
K in that logic, have the particularity of admitting models which capture the semantic
consequences of K. We call these kinds of models “consequential models”.

Definition 2 (Consequential Model). We say that a model I of K is consequential if
the domain ∆I consists of only basic objects and for all α, if I |= α thenK |= α where
α is either A v B, A(a), R(a, b) or a = b.

Note in the above definition we used the converse of what holds for all model I of K.
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Definition 3 (Consequential Description Logic). We say that a description logic L is
consequential if all consistent knowledge bases in L have a consequential model.

The consequential models in the following proof are variants of the counter-models
used to prove completeness of the subsumption algorithms forOWL-EL andOWL-RL
[8,23,22]. We prefer to give an explicit and direct definition of consequential model be-
cause, besides being more neat, it is independent of any particular algorithm.

Theorem 2. The description logics OWL-EL, OWL-RL and OWL-QL∗ are all
consequential.

Proof. Given a consistent knowledge base K of OWL-EL, we define I as follows.

∆I = {[C] | K 6|= C v ⊥} where [C] = {C ′ | K |= C ≡ C ′}
AI = {[C] ∈ ∆I | K |= C v A}

(∃R.Self)I = {[C] ∈ ∆I | K |= C v ∃R.Self}
aI = [{a}]
RI = {([C] , [D]) ∈ ∆I ×∆I | K |= C v ∃R.D and K |= D v range(R)}

Since K is consistent, we have that ∆I 6= ∅. The fact that I is consequential follows
immediately from its definition. In order to prove that I is a model of K, it is necessary
to prove the following property which follows by induction on C.

CI = {[D] ∈ ∆I | K |= D v C} (2)

Eq. (2) holds for C = ⊥ because we excluded [D] such that K |= D v ⊥ from ∆I .
For convenience in the proof, even though the knowledge base K should satisfy the
required restrictions on the syntax for OWL-EL, we consider semantic consequences
with more permissive syntax, i.e. K |= D v range(R) and also allow [D u range(R)]
as an element of DI .

Given a consistent knowledge base K of OWL-RL, we define I as follows.

∆I = {[C] | K 6|= C v ⊥} ∪ {[a] | a is an individual}
aI = [a] where [a] = {b | K |= a = b}
AI = {[C] ∈ ∆I | K |= C v A} ∪ {[a] ∈ ∆I | K |= A(a)}
RI = {([a] , [b]) ∈ ∆I ×∆I | K |= R(a, b)}

The fact that I is consequential follows immediately from its definition. One can
prove that I is a model of K using the following two claims. The first claim is proved
by induction on C ∈ CL and the second one by induction on C ∈ CR.

Claim 2.1: Let C ∈ CL.

1. If [D] ∈ CI then K |= D v C.
2. If [a] ∈ CI then K |= C(a).

Claim 2.2: Let C ∈ CR.

1. If K |= D v C and K 6|= D v ⊥ then [D] ∈ CI .
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2. If K |= C(a) then [a] ∈ CI .

Given a consistent knowledge base K of OWL-QL∗, we define I as follows.

∆I = {[C] | K 6|= C v ⊥ for C ∈ CR} ∪ {[a] | a is an individual}
aI = [a] where [a] = {b | K |= a = b}
AI = {[C] ∈ ∆I | K |= C v A} ∪ {[a] ∈ ∆I | K |= A(a)}
RI = {([C] , [D]) ∈ ∆I ×∆I | K |= C v ∃R.D and K |= D v ∃R−.C}∪

{([a] , [b]) ∈ ∆I ×∆I | K |= R(a, b)}∪
{([a] , [C]) ∈ ∆I ×∆I | K |= ∃R.C(a) and K |= C v ∃R−.>}∪
{([C] , [a]) ∈ ∆I ×∆I | K |= C v ∃R.> and K |= ∃R−.C(a)}

Again, the fact that I is consequential follows immediately from its definition. One
needs to prove two claims similar to the above ones. �

In the above proof, the interpretation domains are infinite. The size of ∆I is irrele-
vant since this result is independent of the algorithm. We have not included irreflexive
roles inOWL-QL∗ because ([C] , [C]) could belong to RI even if Irr(R) is in K (sim-
ilar reason for not including disjoint roles).

Definition 4. We say that K is saturated w.r.t.M if for all a =m A and b =m B inM,
the following conditions hold:

1. K |= A ≡ B if and only if K |= a = b.
2. If K |= R(c, a), K |= A v B then K |= R(c, b) for all c in K ∪M and for all R

such that a =m A, b =m B,Propagate(R) ∈M.

Definition 5 (Circularity). Let K be a knowledge base in L. We say that K has a
circularity w.r.t.M if there is a sequence of meta-modelling axioms a1 =m A1, a2 =m

A2, . . ., an =m An all inM such thatK |= A2(a1),K |= A3(a2), . . . ,K |= An(an−1),
K |= A1(an).

Lemma 2. LetK be saturated and without circularities w.r.t.M. If I is a consequential
model of K then I is a coherent model w.r.t.M.

Proof. It is easy to show that K |= a = b iff K |= A ≡ B using the fact that K is
saturated and I is a consequential model of K. We now show that ≺ is well-founded.
Suppose by contradiction that ≺ is not a well-founded relation. Hence, there exists
an infinite ≺-decreasing sequence of the form . . . ≺ xi ≺ . . . ≺ x1. By definition
of ≺, we have that xi ∈ ∆I for all i ∈ N and there exists an individual ai in the
Mbox such that aIi = xi. Since the Mbox is finite, there exists an element in the above
sequence that should occur at least twice. Then, there exist x1 . . . xn ∈ ∆I such that
x1 ≺ x2 ≺ . . . ≺ xn−1 ≺ xn ≺ x1. So, we have that aiI = xi ∈ Ai+1

I for
1 ≤ i ≤ n− 1 and anI = xn ∈ A1

I . Since I is a consequential model, K |= A2(a1),
K |= A3(a2), . . ., K |= An(an−1) and K |= A1(an). This contradicts the fact that K
has no circularities w.r.t.M.

We now show Item 3 of Definition 1. Suppose (cI , aI) ∈ RI and AI ⊆ BI with
a =m A, b =m B and Propagate(R) inM. Since I is a consequential model, we have
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that K |= R(c, a) and K |= A v B. By Item 2 of Definition 4, K |= R(c, b). Since I is
a model of K, (cI , bI) ∈ RI . �

Below, we show a general procedure for calculating a saturated knowledge base
w.r.t. M. We iteratively transfer equalities at the level of individuals to equalities at
the level of concepts and conversely. This procedure could be seen as an algorithm
parametric on the way we compute the semantic consequences of the form K |= α
where α is either A v B, a = b or R(a, b).

Saturation Procedure
Input: knowledge base K and MboxM
Output: a saturated knowledge base w.r.t.M

1. Initialization is Kold := K.
2. We calculate Knew as follows.

Knew := Kold ∪
{A ≡ B | Kold |= a ≡ b ∈M and a =m A and b =m B ∈M} ∪
{a ≡ b | Kold |= A ≡ B and a =m A and b =m B ∈M} ∪
{R(c, b) | Propagate(R) and a =m A and b =m B and

Kold |= A v B and Kold |= R(c, a)}

3. If Knew = Kold then go to 4) else Kold := Knew and go to 2).
4. saturate(K,M) := Knew.

Lemma 3 (Termination). Let T (m) be the complexity of computing the entailments of
a knowledge baseK of sizem. The saturation procedure terminates and has complexity
T (n3)× n3 where n is the size of the input knowledge base K ∪M.

Proof. The saturation procedure terminates because each step augmentsKnew which is
bounded byK∪{A ≡ B, a = b | a =m A, b =m B ∈M}∪{R(a, b) | a, b ∈ (K,M)}.
The size of Knew is at most n3 and the number of times we compute the entailments of
Knew is at most n3. Hence, the whole procedure is at most T (n3)× n3. �

Theorem 3. Let L be a consequential description logic. Then, the following statements
are equivalent:

1. either saturate(K,M) has circularities w.r.t.M or saturate(K,M) |= α
2. (K,M) |= α

where α is either > v ⊥, A v B or A(a) or R(a, b) or a = b.

Proof. Since the saturation procedure terminates, there exists an n ∈ N and an increas-
ing sequence K = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn which satisfies:

Claim 3.1: If (Ki,M) |= α then (K,M) |= α for all 1 ≤ i ≤ n.

Claim 3.2: Kn is saturated w.r.t.M.
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(1⇒ 2). We have that Kn = saturate(K,M).

1. SupposeKn has a circularity w.r.t.M, it is easy to see that (Kn,M) is inconsistent.
By Claim 3.1, (K,M) is inconsistent too.

2. SupposeKn |= α. It is easy to see that (Kn,M) |= α. By Claim 3.1, (K,M) |= α.

(2⇐ 1). SupposeKn does not have a circularity w.r.t.M andKn 6|= α. Since the logic
L is consequential and Kn is consistent, there exists a consequential model I of Kn.
If α is > v ⊥ then obviously, I 6|= > v ⊥ since I is a model. Otherwise, it follows
from Definition 2 that I 6|= α. Since Kn is saturated and has no circularities w.r.t.M,
it follows from Lemma 2 that I is a coherent model. By Theorem 1, there exists an
isomorphic interpretation I ′ of I such that I ′ is a model of (K,M). Since I and I ′ are
isomorphic, we have that I ′ 6|= α. �

It is easy to see that Theorem 3 provides us with an algorithm for computing the
semantic consequences of the form (K,M) |= α provided we have a way of computing
K |= α where α is either > v ⊥, A v B, a = b or R(a, b) for any consequential logic
L. In particular, we know that (K,M) is consistent if and only if saturate(K,M) has
no circularities w.r.t.M and K is consistent.

Checking that saturate(K,M) has circularities w.r.t.M is equivalent to checking
that a graph is acyclic. The nodes of the graph are the individuals with metamodelling
and there is an edge from a to b if a ≺ b. Determining whether a directed graph contains
a cycle can be done in polinomial time [37,12].

Using Theorem 2 and Lemma 3, we can conclude that checking consistency, classi-
fying and instance checking in OWL-ELM, OWL-RLM or OWL-QLM∗ can all
be done in polinomial time on the size ofK∪M [2,3,22,21]. For that purpose, we can in-
voke any algorithm that computes the entailments of the form K |= α [1,2,3,22,21,23].

In the presence of meta-modelling, it still makes sense to distinguish between com-
bined and data complexity when the size of the Mbox (and the Tbox) is negligible
compared with the size of the Abox.

It is easy to see that consistency, classification and instance checking inOWL-ELM
and OWL-RLM are P-complete for combined and data complexity [2,3,23].

Even though these three problems are NLOGSPACE for OWL-QL∗ [1], having to
check for circularities increases the combined complexity making them P-complete. To
prove this, we use the fact that checking cycles in a graph is P-complete [12,26] and
define the knowledge base (KG ,MG) associated to a graph G by

KG = {Av(aw) | there is an edge from w to v} MG = {av =m Av | v ∈ G}

where av , Av are names created for each vertex v of G. It is easy to see that G has a
cycle if and only if KG has a circularity w.r.t.MG .

The procedure just described does not work for logics beyondALCM as shown by
the following two examples.

Consider the knowledge base (K,M) where K has the axioms A t B(b) and A t
B(a) and M has the axiomas a =m A and b =m B. It is not difficult to see that
(K,M) |= > v ⊥ but K is saturated, it has no circularities w.r.t.M and K 6|= > v ⊥.
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In the previous example, we used the fact that the domain of an interpretation of
LM has to be well-founded. We now show an example where the algorithm does not
work even if we did not have this requirement. The idea is to build a knowledge base in
ALCOM that expresses the following facts:

1. If a and b are equal then A and B are disjoint.
2. If a and b are different then A and B are equal.

K {c} v A > v (Eq({a}, {b}) t Eq(A,B)) > v (Disj(A,B) t Disj({a}, {b}))
M a =m A b =m B

where we use Eq(C,D) as an abbreviation for (¬C tD) u (¬D t C) and Disj(C,D)
for ¬C uDtC u¬D. We have that (K,M) is inconsistent. However, K is consistent,
saturated and does not have circularities w.r.t.M.

The procedure for checking consistency in the fixed level approach uses a saturation
procedure similar to ours and in their case it works for logics beyond ALC [33]. The
reason for this is that the fixed level approach is less expressive than ours and cannot
express the above two examples. The first one because an individual at level i has to
belong to a concept at level i + 1. The second one is because we are mixing levels by
having the disjunction of a meta-concept with a concept.

5 Future Work

We have studied the problems of consistency, classification and instance checking in
the three OWL 2 profiles extended with meta-modelling. Though, it still remains to see
how we can include irreflexive and disjoint roles to the third profile. We also leave the
study of data complexity for the third profile as future research. There is still work to
be done by combining meta-modelling with other variants of DLs. It should also be
possible to generalize Theorem 2 to Horn-Description Logics [20,32].

We could also consider a more liberal semantics of Propagate(R) defined by: if
(x, aI) ∈ RI and aI ⊆ bI then (x, bI) ∈ RI for all a =m A, b =m B in M. It
will also be interesting to study ways of incorporating the rules of Ontoclean using role
characteristics similar to Propagate(R) [14].

The next important step will be to study ontology-mediated query answering for
Description Logics extended with our approach to meta-modelling and to solve queries
that cannot be covered by Propagate(R) [6].

As a final remark, we would like to add that we are extending the OWL-EL rea-
soner ELK with metamodelling [22].
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A Model Construction

We show more examples of models of K that cannot be transformed into a model of
(K,M).

Example 1. Consider the knowledge base (K,M) with individuals a, b, c, d, e and ax-
ioms: A(c), B(c), R(a, d) and R(b, e). We also have that R is functional. The meta-
modelling is given by the axioms: a =m A and b =m B. We consider the model I of K
given by:

∆I = {a, b, c, d, e} where a, b, c, d are pairwise different elements,
AI = {c}
BI = {c}
RI = {(a, d), (b, e)}

In order to get a model of the knowledge base with metamodelling, we need to force
the equations a = {c} and b = {c}. Now, we obtain an interpretation I ′ whose domain
is:

∆I
′
= {{c}, c, d, e}

Since AI
′
= BI

′
= {c}, we see that a = aI

′
= bI

′
= b. However, I ′ is not a model

of (K,M) because in order to be a model we would need besides that a = b also that
d = e to make R functional.

Note that if we add the axiom d 6= e to the original ontology then this ontology is
inconsistent.

Example 2. We consider the following knowledge base:

K A(c) B(c) C(a) D(b) C uD ≡ ⊥

M a =m A b =m B

Suppose we have an interpretation that satisfies the following:

AI = BI = {cI}
CI = {aI}
DI = {bI}

Then, I is a model of K if and only if aI 6= bI . But AI = BI and aI 6= bI . It is not
possible to transform this interpretation into a model of (K,M).
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B Consequential Logics

We prove that that [D] ∈ CI iff K |= D v C and K 6|= D v ⊥ by induction on C.

– Case C = A follows by definition of AI .
– Case C = ∃R.Self follows by definition of (∃R.Self)I .
– CaseC is ∃R.E. Suppose [D] ∈ (∃R.E)I . Hence, there isF such that ([D] , [F ]) ∈
RI and [F ] ∈ EI . It follows from the definition of RI that K |= D v ∃R.F and
from induction hypothesis that K |= F v E. It is easy to show that K |= D v
∃R.E. We now prove the converse. Suppose K |= D v ∃R.E and K 6|= D v ⊥.
Hence,K |= D v ∃R.(Eurange(R)). By definition ofRI , ([D] , [E u range(R)]) ∈
RI . By induction hypothesis, [E u range(R)] ∈ EI . Hence, [D] ∈ (∃R.E)I .

– Case C is E u F . Suppose [D] ∈ (E u F )I . Then [D] ∈ EI and [D] ∈ F I .
By induction hypothesis, K |= D v E and K |= D v F . It is easy to see that
K |= D v E u F . We now prove the converse. Suppose K |= D v E u F and
K 6|= D v ⊥. It is easy to show that K |= D v E and K |= D v F . By induction
hypothesis, [D] ∈ EI and [D] ∈ F I . So, [D] ∈ (E u F )I .

– Case C is a nominal {a}. Suppose [D] ∈ {a}I = {aI}. Hence, [D] = [{a}].
Obviously, K |= D v {a} and K 6|= D v ⊥. We now prove the converse. Suppose
K |= D v {a} and K 6|= D v ⊥. It is not difficult to show that K |= D ≡ {a}.

– Case C is ⊥. It is trivially true since CI = ∅.
– Case C is >. By definition of ∆I , [D] ∈ >I = ∆I if and only if K |= D v > and
K 6|= D v ⊥.

Proof that the interpretation I for OWL-EL is a model of K.

– Suppose C v D is in K and [E] ∈ CI . It follows from Eq. (2) that K |= E v C.
Hence, K |= E v D. By applying Eq. (2) again, we have that [E] ∈ DI . This
proves that CI ⊆ DI .

– Suppose that R1 ◦ · · · ◦Rk v R is in K.
• Case k = 0. It is not difficult to see that K |= C v ∃R.C if ε v R is in K.

Hence, ([C] , [C]) ∈ RI for all [C] ∈ ∆I .
• Case k ≥ 1. Suppose ([C1] , [C2]) ∈ RI1 , . . ., ([Ck] , [Ck+1]) ∈ RIk . Hence,
K |= C1 v ∃R1.C2, . . .,K |= Ck v ∃Rk.Ck+1 andK |= Ck+1 v range(Rk).
It is not difficult to show thatK |= C1 v ∃R.Ck+1. According to the restriction
imposed on chains, if K |= range(R) v C then K |= range(Rk) v C. In
particular, we have that K |= range(Rk) v range(R). Hence, K |= Ck+1 v
range(R) and ([C1] , [Ck+1]) ∈ RI .

– Suppose range(R) v E is in K and ([C] , [D]) ∈ RI . It follows from definition of
RI that K |= D v E. Using Eq. (2), we conclude that [D] ∈ EI .

– Suppose C key R1, . . . Rn is in K and consider individuals a1, a2 and b1, . . . , bn
such that aIi ∈ CI and (aIi , b

I
j ) ∈ RIj for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ n. By

the definition of I on individuals and Eq. (2), K |= {ai} v C and K |= {ai} v
∃Rj .{bj}. Then,K |= {a1} ≡ {a2}. Using again the definition of I on individuals,
we conclude that aI1 = aI2 .

Proof of Claim 2.1. We prove both parts by induction on C.
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– Case C = A. Both parts follow from the definition of AI .
– Case C = >. Both parts are trivial since K |= D v > and K |= >(a) for all D and
a.

– Case C = ⊥. Both parts are trivial since CI = ∅.
– Case C isEuF . We prove the first part. Suppose [D] ∈ (EuF )I . Then [D] ∈ EI

and [D] ∈ F I . By induction hypothesis, K |= D v E and K |= D v F . It
is easy to see that K |= D v E u F . We now prove the second part. Suppose
[a] ∈ (EuF )I . Then [a] ∈ EI and [a] ∈ F I . By induction hypothesis,K |= E(a)
and K |= F (a). It is easy to see that K |= (E u F )(a).

– Case C is ∃R.E. The first part is trivially true since [D] 6∈ (∃R.E)I . We prove the
second part. Suppose [a] ∈ (∃R.E)I . Hence, there is and individual b such that
([a] , [b]) ∈ RI and [b] ∈ EI . By definition of RI , we have that K |= R(a, b) and
by induction hypothesis that K |= E(b). It is easy to show that K |= (∃R.E)(a).

– Case C isEtF . We prove the first part. Suppose [D] ∈ (EtF )I . Then [D] ∈ EI
or [D] ∈ F I . By induction hypothesis, K |= D v E or K |= D v F . It is easy
to see that K |= D v E t F . We prove the second part. Suppose [a] ∈ (E t F )I .
Then [a] ∈ EI or [a] ∈ F I . By induction hypothesis, K |= E(a) or K |= F (a). It
is easy to see that K |= (E t F )(a).

– Case C is a nominal {a}. The first part holds trivially since [D] 6∈ {a}I = {aI}.
We prove the second part. Suppose [a] ∈ {b}I = {bI}. By definition of bI , [a] =
[b]. Hence, K |= {b}(a).

Proof of Claim 2.2.

– Case C = A. Both parts follow from the definition of AI .
– Case C = > follows because ∆I contains all concepts and all individuals.
– Case C = ⊥. The first part follows because K |= D v ⊥ and K 6|= D v ⊥ is not

possible. The second part follows because ⊥(a) is not possible for K consistent.
– Case C is ¬E. We prove the first part. Suppose K |= D v ¬E and K 6|= D v ⊥.

Since K is consistent, K 6|= D v E. By Claim 2.1 part 1, [D] /∈ EI . Hence,
[D] ∈ (¬E)I .
We now prove the second part. Suppose K |= (¬E)(a). Since K is consistent,
K 6|= E(a). By Claim 2.1 part 2, [a] /∈ EI , so [a] ∈ (¬E)I .

– Case C is E uF . We prove the first part. Suppose K |= D v E uF and K 6|= D v
⊥. It is easy to show that K |= D v E and K |= D v F . By induction hypothesis,
[D] ∈ EI and [D] ∈ F I . So [D] ∈ (E u F )I .
We now prove the second part. Suppose K |= (E u F )(a). It is easy to show that
K |= E(a) and K |= F (a). By induction hypothesis, [a] ∈ EI and [a] ∈ F I . So
[a] ∈ (E u F )I .

– Case C is ∀R.E. The first part is trivially true because there is no F such that
([D] , [F ]) ∈ RI . We now prove the second part. Suppose K |= (∀R.E)(a). Sup-
pose ([a] , [b]) ∈ RI . By definition of RI , K |= R(a, b). It is easy to show that
K |= E(b). By induction hypothesis [b] ∈ EI . Hence, [a] ∈ (∀R.E)I .

– Case C is 6 1R.E. The first part is trivially true because there is no F such that
([D] , [F ]) ∈ RI . We now prove the second part. Suppose K |= (6 1R.E)(a).
Suppose also ([a] , [b1]), ([a] , [b2]) ∈ RI such that [b1] , [b2] ∈ EI .
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By definition of RI , K |= R(a, b1) and K |= R(a, b2). By Claim 2.1 part 2,
K |= E(b1) and K |= E(b2). It is easy to show that K |= b1 = b2. Hence,
[a] ∈ (6 1R.E)I .

It is easy to see that RI is the inverse of (R−)I . Suppose ([a] , [b]) ∈ RI . By
definition of RI , K |= R(a, b). From this, it is easy to show that K |= R−(b, a). By
definition of RI , ([b] , [a]) ∈ (R−)I .

Proof that the interpretation I for OWL-RL is a model of K.

– Suppose C v D is in K.
1. Suppose [E] ∈ CI . It follows from Claim 2.1 part 1, that K |= E v C.

Hence, K |= E v D. It follows from Claim 2.2 part 1, that [E] ∈ DI .
2. Suppose [a] ∈ CI . It follows from Claim 2.1 part 2, that K |= C(a). Hence,
K |= D(a). It follows from Claim 2.2 part 2, [a] ∈ DI .

This proves that CI ⊆ DI .
– Suppose that R1 ◦ . . . Rk v R is in K for k > 0. Suppose ([a1] , [a2]) ∈ RI1 ,
. . ., ([ak] , [ak+1]) ∈ RIk . Hence, K |= R(a1, a2), . . ., K |= R(ak, ak+1). It is not
difficult to show that K |= R(a1, ak+1). Hence, ([a1] , [ak+1]) ∈ RI .

– Suppose that Irr(R) inK. Hence,K 6|= R(a, a) for all individuals a. Hence, ([a] , [a]) /∈
RI .

– Suppose that Dis(R,S) in K. Suppose towards a contradiction that ([a] , [b]) ∈ RI
and ([a] , [b]) ∈ SI . By definition of RI , K |= R(a, b) and K |= S(a, b).

– Suppose that C(a) in K (only allowed for C in CR). By Claim 2.2 part 2, we have
that [a] ∈ CI .

– Suppose that R(a, b) in K. By definition of RI , we have that ([a] , [b]) ∈ RI .
– The cases a = b or a 6= b in K follow immediately from the definition of the

interpretation.

Proof that the interpretation I for OWL-QL∗ is a model of K.
We show first that RI is the inverse of (R−)I . We have three cases:

1. Suppose ([C] , [D]) ∈ RI . By definition of RI , K |= C v ∃R.D and K |= D v
∃R−.C. Now we apply the definition of the interpretation of roles on R− and it is
trivial to see that ([D] , [C]) ∈ (R−)I .

2. Suppose ([a] , [b]) ∈ RI . By definition of RI , K |= R(a, b). From this, it is easy to
show that K |= R−(b, a). By definition of RI , ([b] , [a]) ∈ (R−)I .

3. It is also easy to show that ([a] , [C]) ∈ RI if and only if ([C] , [a]) ∈ (R−)I .

Claim 3.3: Let C ∈ CL.

1. If [D] ∈ CI then K |= D v C.
2. If [a] ∈ CI then K |= C(a).

The above claim is proved by induction on C ∈ CL.

– Case C = A. Both parts follow from the definition of AI .
– Case C = >. Both parts are trivial since K |= D v > and K |= >(a).
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– Case C = ⊥. Both parts are trivial since CI = ∅.
– Case C is ∃R.>. We prove the first part. Suppose [D] ∈ (∃R.>)I . Hence, there is
F such that ([D] , [F ]) ∈ RI or there is a such that ([D] , [a]) ∈ RI In both cases,
we have that K |= D v ∃R.> by definition of RI . We now prove the second part.
Suppose [a] ∈ (∃R.>)I . Hence, there is an individual b such that ([a] , [b]) ∈ RI
or there is a concept E such that ([a] , [E]) ∈ RI . In both cases, we have that
K |= (∃R.>)(a) by definition of RI .

Claim 3.4: Let C ∈ CR.

1. If K |= D v C and K 6|= D v ⊥ then [D] ∈ CI .
2. If K |= C(a) then [a] ∈ CI .

The above claim is proved by induction on C ∈ CR.

– Case C = A from the definition of AI .
– Case C = > follows because ∆I contains all concepts and all individuals.
– Case C = ⊥. The first part follows because K |= D v ⊥ and K 6|= D v ⊥

is a contradiction. The second part follows because ⊥(a) is not possible for K
consistent.

– Case C is ¬E. We prove the first part. Suppose K |= D v ¬E and K 6|= D v ⊥.
Since K is consistent, K 6|= D v E. By Claim 3.3 part 1, [D] /∈ EI . Hence,
[D] ∈ (¬E)I .
We now prove the second part. Suppose K |= (¬E)(a). Since K is consistent,
K 6|= E(a). By Claim 3.3 part 2, [a] /∈ EI , so [a] ∈ (¬E)I .

– Case C is E uF . We prove the first part. Suppose K |= D v E uF and K 6|= D v
⊥. It is easy to show that K |= D v E and K |= D v F . By induction hypothesis,
[D] ∈ EI and [D] ∈ F I . So [D] ∈ (E u F )I .
We now prove the second part. Suppose K |= (E u F )(a). It is easy to show that
K |= E(a) and K |= F (a). By induction hypothesis, [a] ∈ EI and [a] ∈ F I . So
[a] ∈ (E u F )I .

– Case C is ∃R.E. We prove the first part. Suppose K |= D v ∃R.E and K 6|= D v
⊥. It is easy to show thatK |= D v ∃R.(Eu∃R−.D). By definition ofRI , we have
that ([D] , [E u ∃R−.D]) ∈ RI . By induction hypothesis, [E u ∃R−.D]) ∈ EI .
Hence, [D] ∈ (∃R.E)I .
We now prove the second part. Suppose K |= (∃R.E)(a). Hence, K |= (∃R.(E u
∃R−.>))(a). Hence, ([a] , [E u ∃R−.>]) ∈ RI and so [a] ∈ (∃R.E)I .

We now prove that I is a model of K.

– Suppose C v D is in K.
1. Suppose [E] ∈ CI . It follows from Claim 3.3 part 1, that K |= E v C. Hence,
K |= E v D. It follows from Claim 3.4 part 1, that [E] ∈ DI .

2. Suppose [a] ∈ CI . It follows from Claim 3.3 part 2, that K |= C(a). Hence,
K |= D(a). It follows from Claim 3.4 part 2, that [a] ∈ DI .

This proves that CI ⊆ DI .
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– Suppose R v S is in K.

1. Suppose ([E] , [F ]) ∈ RI . By definition of RI , K |= E v ∃R.F and K |=
F v ∃R−.E. Hence,K |= E v ∃S.F andK |= F v ∃S−.E. So, by definition
of SI , ([E] , [F ]) ∈ SI .

2. Suppose ([a] , [b]) ∈ RI . By the definition of RI , K |= R(a, b). Hence, K |=
S(a, b). So, by definition of SI , ([a] , [b]) ∈ SI .

3. Suppose ([a] , [F ]) ∈ RI . By definition of RI , K |= ∃R.F (a) and K |= F v
∃R−.>. Hence,K |= ∃S.F (a) andK |= F v ∃S−.>. So, by definition of SI ,
([a] , [F ]) ∈ SI .

4. Suppose ([E] , [b]) ∈ RI . By definition of RI , K |= E v ∃R.> and K |=
∃R−.E(b). Hence, K |= E v ∃S.> and K |= ∃S−.E(b). So, by definition of
SI , ([E] , [b]) ∈ SI .

This proves that RI ⊆ SI .
– Suppose Ref(R) is in K.

1. Since K |= E v ∃R.E, we have that ([E] , [E]) ∈ RI .
2. Since K |= R(a, a), we have that ([a] , [a]) ∈ RI .

– Suppose that C(a) in K (only allowed for C in CR). By Claim 3.4 part 2, we have
that [a] ∈ CI .

– Suppose that R(a, b) in K. By definition of RI , we have that ([a] , [b]) ∈ RI .
– The cases a = b or a 6= b in K follow from the definition of I.

C Non Consequential Logics

In this section, we give more examples that show that the algorithm of Section 4 does
not work for logics beyond ALCM. We use Eq(C,D) as an abbreviation for (¬C t
D) u (¬D t C) and Disj(C,D) for ¬C uD t C u ¬D.

Example 3. We show another example in ALCM.

M a =m A b =m B c =m C

K A(b) B(c)

> v (Eq(A,B) t Eq(A,C))

Example 4. We show an example in ALCQM.

M a =m A b =m B

K A(b) R(c, a) R(c, b)

> v (6 1R.>) t Eq(A,B)
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Example 5. We consider the following knowledge base in ALCQM.

M a =m A b =m B

K A(e) R(c, a) R(c, b) C(a) D(b)

> v Disj(C,D) t Disj(A,B)

> v (6 1R.>) t Eq(A,B)

None of these examples can be written in the logic of [33]
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