
Footprint Analysis: A Shape Analysis that
Discovers Preconditions

Cristiano Calcagno1, Dino Distefano2, Peter W. O’Hearn2, and
Hongseok Yang2

1 Imperial College, London
2 Queen Mary, University of London

Abstract. Existing shape analysis algorithms infer descriptions of data
structures at program points, starting from a given precondition. We
describe an analysis that does not require any preconditions. It works by
attempting to infer a description of only the cells that might be accessed,
following the footprint idea in separation logic. The analysis allows us
to establish a true Hoare triple for a piece of code, independently of
the context in which it occurs and without a whole-program analysis.
We present experimental results for a range of typical list-processing
algorithms, as well as for code fragments from a Windows device driver.

1 Introduction

Existing shape analysis engines (e.g., [25, 9, 15, 13, 4]) require a precondition to
be supplied in order to run. Simply put, this means that they cannot be used
automatically without either knowing the execution context (which might be
an entire operating system, or even be unknown) or by manually supplying a
precondition (which for complex code can be hard to determine). If, though,
we could discover preconditions then, combined with a usual forwards-running
shape analysis, we could automatically generate true Hoare triples for pieces of
code independently of their context.

This paper defines footprint analysis, a shape analysis that is able to dis-
cover preconditions (as well as postconditions). Our results build on the work
on shape analysis with separation logic [9]; the footprint analysis algorithm is
itself parameterized by a standard shape analysis based on separation logic. In
essence, we are leveraging the “footprint” idea of [21]. Separation logic gives us
mechanisms whereby a specification can concentrate on only the cells accessed
by a program, while allowing the specification to be used in wider contexts via
the “frame rule”. For program analysis this suggests, when considering a code
fragment in isolation, to try to discover assertions that describe the footprint,
rather than the entire global state of the system. This is the key idea that makes
our analysis viable: the entire global state can be enormous, or even unknown,
where we can use much smaller assertions to talk about the footprint.

Footprint analysis runs forwards, updating the current heap when it can in
the usual way of shape analysis. However, when a dereference to a potentially-

dangling pointer is encountered, that pointer is added into the “footprint asser-
tion”, which describes the cells needed for the program to run safely. If we start
the analysis with the empty heap as the initial footprint assertion then, ideally,
it would find the collection of safe states, ones that do not lead to a dereference
of a dangling pointer or other memory fault.

We say ideally here because there is a complication. In order to stop the
footprint assertion from growing forever it is periodically abstracted. The ab-
straction we use is an overapproximation and, usually in shape analysis, this
leads to incompleteness while maintaining soundness. But, abstracting the foot-
print assertion is tantamount to weakening a precondition, and so for us is a
potentially unsound step. As a result, we also use a post-analysis phase, where
we run a standard forwards shape analysis to filter out the unsafe preconditions
that have been discovered. For each of the safe preconditions, we also generate
a corresponding postcondition.

The source of this complication is, though, also a boon. In shape domains
it can be the case that a reasonably general assertion can be obtained from a
specific concrete heap using the domain’s abstraction function. For example, a
linked list of length three is often abstracted as a linked list of unknown length.
This nature of the shape domains is what lets footprint analysis often find a
reasonably general precondition, which is synthesized from concrete assertions
generated when we encounter potential memory faults.

We show by experimental results that footprint analysis is indeed able to
discover non-trivial preconditions, in a number of cases resembling the precondi-
tion that we would normally write by hand. Intuitively, the algorithm works well
because pointer programs are often insensitive to the abstractions we use, and so
the step for filtering out unsound preconditions often does nothing. A limitation
of the paper is that we do not have a thorough theoretical explanation to back
this intuition up,3 so the method might be regarded as having a heuristic char-
acter. We felt it reasonable to describe our discovery algorithm now because the
results of the analysis are encouraging, and the algorithm itself employs the foot-
print idea in a novel way. Also, there are several potential further applications
of having in place an analysis that discovers preconditions, which we describe
at the end of the paper. We hope that further theoretical understanding of our
method will be forthcoming in the future.

Context and Further Discussion. For precondition discovery one of the first
things that come to mind is to use an underapproximating backwards analysis.
While possible in principle, we have found it difficult to obtain precise and effi-
cient backwards analyses for shape domains. As far as we are aware the problem
of finding a useful backwards-running shape analysis is open.

Footprint analysis can be seen as an instance of the general idea of relational
program analysis [8]. The purpose of a relational analysis is to compute an
3 Mooly Sagiv has suggested starting from a > value and homing in on the needed

states using a greatest fixed-point computation, as in [27]. We have not been able to
make that approach work, and it does not describe what our analysis is doing, but
it and other approaches are worth exploring.

2

1: while (c!=NULL) {

2: t=c;

3: c=c->tl;

4: free(t);

5: }

Discovered Precondition: c==c ∧ lseg(c ,NULL)

Fig. 1. Program delete list, and discovered precondition when run in start state
(c==c ∧ emp, emp)

overapproximation of the transition relation of a program. After the post-analysis
check to filter out unsound preconditions, footprint analysis returns a set of true
Hoare triples for a program, and from this it is easy to construct the relational
overapproximation.

The shape analysis of [14] tracks relationships between input and output
heaps. In the examples there, a precondition was typically supplied as input;
for example, for in-place list reversal the input indicated an acyclic linked list.
However, it might be possible to use a similar sort of idea to replace the separate
preconditions and postconditions used in our algorithm, which might result in
an improved precondition discovery method.

2 Basic Ideas

In this section we illustrate how our algorithm finds a precondition via a fixed-
point calculation, using a simple example. The paper continues in the next sec-
tion with the formal development.

The abstract states in the analysis consist of two assertions (H,F), repre-
sented as separation logic formulae (see [22] for the basics of separation logic). H
represents the currently known or allocated heap and F the cells that are needed
(the footprint). As described above, the analysis runs forwards, adding pointers
into the footprint assertion F when dereferences to potentially dangling point-
ers are encountered. In doing this care is needed in the treatment of variables,
especially what we call footprint variables.

The algorithm is attempting to discover a precondition that describes “safe
heaps”, ones that do not lead to a dereference of a dangling pointer or other
memory fault when the program in question is run. We illustrate with a program
that disposes all the elements in an acyclic linked list. Footprint analysis discovers
the precondition pictured in Figure 1, which says that c points to a linked list
segment terminating at NULL. This precondition describes just what is needed
in order for the program not to dereference a dangling pointer during execution.
We now outline how footprint analysis finds this assertion.

We begin symbolic execution with c==c ∧ emp as the current heap and emp
as the footprint. Note that c==c allows for a state where c (or any other location)
is dangling. The current heap includes a footprint variable c , and assertion emp

3

Current Heap Footprint Heap
First iteration

pre: c!=NULL ∧ c==c ∧ t==c ∧ emp emp

post: t!=NULL ∧ c==c1 ∧ t==c ∧ c 7→ c1 c 7→ c1

Second Iteration

pre: c!=NULL ∧ c==c1 ∧ t==c1 ∧ emp c 7→ c1

post: t!=NULL ∧ c==c2 ∧ t==c1 ∧ c1 7→ c2 c 7→ c1 * c1 7→ c2

abs post: t!=NULL ∧ c==c2 ∧ t==c1 ∧ c1 7→ c2 lseg(c ,c2)

Third Iteration

pre: c!=NULL ∧ c==c2 ∧ t==c2 ∧ emp lseg(c ,c2)

post: t!=NULL ∧ c==c3 ∧ t==c2 ∧ c2 7→ c3 lseg(c ,c2) * c2 7→ c3

abs post: t!=NULL ∧ c==c3 ∧ t==c2 ∧ c2 7→ c3 lseg(c ,c3)

Fig. 2. Pre and Post States at line 3 during footprint analysis of delete list

represents the empty heap. When execution enters the loop and gets to line 3,
we will attempt a heap dereference to c->tl but where we do not know that c is
allocated in the precondition. This is represented in the precondition for the first
iteration in Figure 2. At this point the knowledge that c points to something is
added to the footprint: we need that information in order for our program not to
commit a memory fault. Also, though, in order to continue symbolic execution
from this point, this knowledge is added to the allocated heap as well, as pictured
in the postcondition for the first iteration in Figure 2. Notice that we express
that c points to something in terms of the footprint variable c . Because it is
not a program variable, and so not changed by the program, this will enable us
to percolate the footprint information back to the precondition.4

Now, the next statement in the program, line 4, removes the assertion c 7→
c1 from the current heap, using the knowledge that t=c , but that assertion
is left in the footprint. Then, when we execute the second iteration of the loop
we again encounter a state where c is not allocated in the current heap. At this
point we again add a pointer to the footprint and to the current heap: see the
pre and post for the second iteration in Figure 2. The assertion in the footprint
part uses the separating conjunction *, which requires that the conjuncts hold
for separate parts of memory (and so here, denote distinct cells). Notice that
the footprint variable c1 was known to equal c in the precondition. Also, in the
postcondition we generate another footprint variable, c2 .

So, after two iterations, we have found a linked list of length two in the
footprint. But, this way of generating new footprint variables is a potential source
of divergence in the analysis. In order to enable the fixed-point calculation to
converge we abstract the footprint part of the assertion, as indicated in Figure

4 Notice also, though, that an additional footprint variable c1 is added: the footprint
variables resemble those typically used for seeding initial program states, but seeding
does not cover all of their uses.

4

2, and the footprint now says that there is a list segment from c to c2 . This
abstraction step has lost the information that the list is of length two, in that
the assertion is satisfied by lists of length three, four, and so on.5

Continuing our narrative symbolic execution, the free statement will delete
the assertion “c1 7→ c2 ” from the current heap (but not the footprint), and
when we go into the third iteration we will again try to dereference c->tl when
it is not known to be allocated from the current heap in the free command. We
put a 7→ assertion in the current and footprint parts again, and then abstract.
Now, when we apply abstraction the assertion “c2 7→ c3 ” is swallowed into the
list segment. Except for the names of newly-generated footprint variables, the
abstracted post we obtained in the second iteration is the same as in the third,
and we view the newly-generated footprint variables as alpha-renameable. The
reader can see the relevance to fixed-point convergence.

Finally, we can exit the loop by removing “c2 7→ c3 ” from the current
heap in the free command, and adding the negation of the loop conditional to
the heap and footprint, and forgetting about t because it is a local variable.
A bit of logic tells us that the footprint part is equivalent to c3 == NULL ∧
lseg(c ,c3), and when we add this to the initial precondition c== c we obtain
the overall precondition pictured in Figure 1.

3 Programming Language and Generic Analysis

In this section we define the programming language used in the formal part of
the paper. We also set up a generic analysis, following the tradition of abstract
interpretation [7], which will have the shape and footprint analyses described
later as instances.

Programming Language. In the paper, we use a simple while language extended
with heap operations:

E,F ::= x | f(E1, . . . , En)
b ::= E = F | E 6= F
a[E] ::= [E] := F | dispose(E) | x := [E]
a ::= x := E | x := new(E)
c ::= a[E] | a | c1; c2 | if b c1 c2 | while b c

An expression E is either a variable or a heap-independent term f(E1, . . . , En).
The language has two classes of atomic commands. a[E] attempts to dereference
cell E, updating it ([E] := F), disposing it (dispose(E)), or reading its content
(x := [E]). The other atomic commands, denoted a, do not access existing cells.
5 This step of abstraction depends on which abstract domain we plug into our footprint

analysis; several have appeared in the literature, and the footprint analysis does not
depend on any one choice. In this example, we have assumed that the “lseg” predicate
describes “possibly circular list segments”, which allows the abstraction step we have
done. If circularity were outlawed in our abstract domain, as in the particular domain
of [9], then one more loop iteration would be needed before abstraction could occur.

5

Generic Analysis. The analyses in this paper will use the topped powerset P>(S)
of a set S; i.e., the powerset with an additional greatest element. A set X ∈ P(S)
represents a disjunction of its elements x ∈ X, and > indicates that the analysis
detected an error in a given program. When D = P>(S), we call S the underlying
set of the abstract domain D.

Given function t:S → P>(S′) and partial or total function f :S ⇀ S′, we
can lift them to functions t†,P>(f) : P>(S) → P>(S′) by

t†(X) def= if (X = >) then > else
⊔

x∈X t(x)
P>(f)(X) def= if (X = >) then > else {f(x) | x ∈ X}.

The generic analysis framework consists of the following data.

(1) A set S of abstract states, inducing the abstract domain D = P>(S), which
forms a complete lattice (D,v,⊥,>,t,u).

(2) For all boolean expressions b, atomic commands a, a[E] and expressions E,
the operators

rearr(E):S → P>(S[E]), filter(b):S ⇀ S,

exec(a[E]):S[E] → S, exec(a):S → S, abs:S → S.

Here S[E] is a subset of S, and it consists of symbolic states where cell E is
explicitly represented by a points-to fact E 7→E′.

This framework does not ask for transfer functions to be given directly, but
rather asks for more refined ingredients, out of which transfer functions are
usually made in shape analysis. rearr(E) typically takes a symbolic state and
attempts to “concretize” cell E, making it a points-to fact of the form E 7→E′.
When instantiating the generic analysis with the one in [9], this operation cor-
responds to unwinding an inductive definition, and when instantiating with [24]
it is the materialization of a summary node. The abstraction map abs simplifies
states, as illustrated in the example in the previous section. In [9, 25] it is called
canonicalization. filter(b) is used to filter states that do not satisfy boolean con-
dition b, and exec(a[E]) and exec(a) implement update (after rearrangement).

Given this data, abstract transfer functions of the primitive commands are:6

[[b]] def= P>(filter(b))
[[a[E]]] def= (P>(abs ◦ exec(a[E])) ◦ rearr(E))† [[a]] def= P>(abs ◦ exec(a)).

The execution of a command accessing E is done in three steps: first the cell
E is exposed by rearr(E), then the state is updated according to the semantics
of the command a[E] by exec(a[E]) and finally the resulting state is abstracted
by abs. The execution of a command a that does not access the heap does not
6 Our analysis specification presumes that abstraction is applied after every transfer

function, but it is also possible to instead take it out of the transfer functions and
apply only often enough to allow the loop computations to converge.

6

involve the rearrangement phase. The reader is referred to [9] for an extensive
treatment of transfer functions defined in terms of rearr, exec and abs.

We may then define monotone functions [[c]]:D → D for each command c in
the usual way of abstract interpretation.7

[[c1; c2]] = [[c2]] ◦ [[c1]] [[if b c1 c2]](d) = ([[c1]] ◦ [[b]])(d) t ([[c2]] ◦ [[¬b]])(d)
[[while b c]](d) = [[¬b]](lfix λd′. d t ([[c]] ◦ [[b]])(d′))

4 Underlying Shape Analysis based on Separation Logic

We assume that we are given three disjoint countable sets of variables:

– Vars for program variables x, y;
– PVars for primed variables x′, y′;
– FVars for footprint variables x, y.

Let Locs and Vals be countable infinite sets of locations and values, respectively,
such that Locs ⊆ Vals. When V is set to be the union of Vars, PVars and FVars,
our concrete storage model is given by:

Stacks
def= V → Vals Heaps

def= Locs ⇀fin Vals States
def= Stacks× Heaps.

Each state consists of stack and heap components. The stack component s
records the values of program, primed and footprint variables, and the heap
component h specifies the identities and contents of allocated cells. Note that
this model can allow data structures of complex shape, because a pair of ad-
dresses can be a value so a cell can have two outgoing pointers.

The analysis described in this paper uses separation logic assertions (called
symbolic heaps) to represent abstract states. Symbolic heaps H are given by the
following grammar:

E,F ::= nil | x | x′ | x̄ | · · ·
Π ::= true | E = E | E 6= E | Π ∧Π | · · ·
Σ ::= true | emp | E 7→E | Σ ∗Σ | · · ·
H := Π ∧Σ

Intuitively, in a symbolic heap Π ∧Σ, the first conjunct Π contains only expres-
sions describing the relations among program, primed and footprint variables
given by the stack whereas Σ describes the allocated heap. The predicate E 7→F
is true when the cell E is allocated, its value is F , and nothing else is allocated.
Σ1 ∗Σ2 holds when the heap can be split into components, one of which makes
Σ1 true and the other of which makes Σ2 true. See [22]. We assume that primed
variables in each symbolic heap H are existentially quantified.
7 Our requirement of a complete lattice and monotonicity can be weakened if we

include a widening operator.

7

The use of · · · is to allow for various other predicates, such as for list segments
and for trees. In this sense, the present section is setting down a parameterized
analysis which can be instantiated, e.g., by [3, 5, 16]. More importantly, we are
emphasizing that our footprint analysis algorithm (in the next section) is not
tied to any of these particular analyses.

We define a “separation logic-based shape analysis” to consist of the follow-
ing.

1. An instance (S, {S[E]}E , rearr, filter, exec, abs) of the generic analysis from
Section 3.

2. The shape analysis should use separation logic, in the style of [9]. This means
that the underlying set S of the abstract domain consists of sets of symbolic
heaps, and that for each expression E, all the symbolic heaps in the subset
S[E] of S are of the form Π ∧ (E 7→F) ∗Σ. We say that cell E is exposed by
the pointsto relation.

3. A sound theorem prover ` for proving entailments between symbolic heaps.
4. For each symbolic heap Π ∧Σ in S and fresh footprint variable x, the new

symbolic heap Π∧(E 7→x)∗Σ is in S[E], or it can be shown to be inconsistent
by the given theorem prover.

5. None of rearr, filter, exec and abs introduces new footprint variables into
given symbolic heaps.

6. Writing G for the set of symbolic heaps in S containing only footprint vari-
ables, abs maps elements of G to G. Moreover, for all Π0 with footprint
variables only, if Π ∧Σ is in G, then Π0 ∧Π ∧Σ is in G, unless it is proved
to be inconsistent by the theorem prover.

5 Footprint Analysis

Now suppose we are given a separation logic-based shape analysis as specified
in the last section. Recall that S is the set of symbolic heaps and G is the set of
symbolic heaps whose only free variables are footprint variables. Our footprint
analysis is an instance of the generic analysis in Section 3, where the abstract
domain of our algorithm is the topped powerset

P>(S ×G).

A pair (H,F) in S×G represents the current heap H and the computed footprint
F at the current program point. Note that the footprint can contain footprint
variables only. The algorithm relies on this requirement to ensure that the com-
puted footprint is a property of the initial states, rather than the states at the
current program point.

We specify our algorithm by defining the data required by the generic anal-
ysis, which we call newRearr, newFilter, newExec, newAbs in order to avoid confu-
sion with the abstract transfer functions of the given underlying shape analysis,
which the footprint analysis will be defined in terms of.

8

First, we give the definition of newRearr, in terms of the rearrangement rearr
of the given shape analysis:

newRearr(E) : S ×G → P>(S[E]×G)
newRearr(E)(H,F) def= let H = rearr(E)(H)

in if ¬ (H = >) then {(H ′, F) | H ′ ∈ H}
else if ¬ (H ` E = x0 for some footprint var x0) then >

else if (F ∗ x0 7→x1 ` false for some fresh x1)
then >
else {(H ∗ E 7→x1, F ∗ x0 7→x1)}

This subroutine takes two symbolic heaps, H for the overapproximation of the
reachable states and F for the footprint, and exposes a specified cell E from H.
Intuitively, it first calls the rearrangement step of the underlying shape analy-
sis to prove that a dereferenced cell E is allocated. In case this first attempt
fails, the subroutine adds the missing cell to the footprint and the current sym-
bolic heap. This is the point at which the underlying shape analysis would have
stopped, reporting a fault. Note that before adding the pointsto relation to F ,
the subroutine checks whether E can be rewritten in terms of a footprint vari-
able x0. This ensures that the computed footprint is independent of the values
of variables whose value changes (program variables) or is determined during
execution (primed variables).

Next, we define the subroutine newFilter:

newFilter(b) : S ×G ⇀ S ×G

newFilter(b)(H,F) def= if (filter(b)(H) is not defined) then undefined
else let H ′ = filter(b)(H)

in if ¬ (H ` b⇔b for some b with footprint vars only)
then (H ′, F)
else (H ′, b ∧ F)

This subroutine tries to rewrite b in terms of footprint variables only. If it suc-
ceeds, the rewriting gives an additional precondition b that will make the test
b hold: the computation can then pass through the filter, and the result of the
rewriting is conjoined to the footprint. On the other hand, if the rewriting fails,
the analyzer keeps the given footprint F .

Finally, the subroutine newExec is defined by the execution of exec for the
first component H for shape invariants.

newExec(a[E])(H,F)def=(exec(a[E])(H), F) newExec(a)(H,F)def=(exec(a)(H), F)

And newAbs is defined by applying abstraction to both the shape and footprint:

newAbs(H,F) def= (abs(H), abs(F))

5.1 Hoare Triple Generation

We show how the footprint analysis algorithm can be used to generate true Hoare
triples. First there is a pre-processing step which generates an initial symbolic

9

heap that saves the initial values of program variables into footprint variables.
Then, after running footprint analysis, we run a post-processing step which takes
the output of our algorithm and, for each computed precondition, it runs the
underlying shape analysis to compute the appropriate postcondition.

Let x1, . . . , xn be program variables that appear in a given program c. Write
[[−]]f for our algorithm, and [[−]]s for the given shape analysis. Formally, the
Hoare triple generation for a program c works as follows:

let Π0
def= (x1=x1 ∧ ... ∧ xn=xn) and F def= [[c]]f ({(Π0 ∧ emp, emp)})

in if (F=>) then report the possibility of a catastrophic fault
else

{
{F ′}c{

∨
H′∈H H ′} | (H,F) ∈ F ∧ F ′=ren(Π0∧F) ∧ H=[[c]]s({F ′}) ∧ H6=>

}
.

Here ren(Π0 ∧ F) renames all the footprint variables by primed variables.
If the underlying shape analysis is sound with respect to a concrete semantics

of a programming language then we automatically get true Hoare triples. How-
ever, it would be easy to generate some true Hoare triples, if we were content
to generate precondition false. What our algorithm is aiming at is to generate
preconditions that cover as many “safe states” as possible, ones which ensure
that the program will not commit a memory fault. There can be, of course, no
perfect such algorithm for computability reasons. In our case, though, it is well
to mention two possible sources of inaccuracy.

First, because the analysis applies abstraction to the footprint (the even-
tual precondition), this can lead us outside of the safe states (it is essentially
weakening a precondition). We have found that it very often leads to safe pre-
conditions in our experimental results. An intuitive reason for this is that the
safety of typical list programs is often insensitive to the abstraction present in
shape analyses. But, because this “often” is not “always”, as we will see in the
next section, the Hoare triple generation just described filters out these unsafe
pre-states by calling the (assumed to be sound) underlying shape analysis.

Second, our algorithm does not perform as much case analysis on the struc-
ture of heap as is theoretically possible, and this leads to incompleteness (where
fewer safe states are described than might otherwise be). We have made this
choice for efficiency reasons. We believe that our experimental results in the
next section show that this is not an unrealistic engineering decision. But we
also discuss an example (append.c) where the resulting incompleteness arises.

Finally, we point out that from true Hoare triples computed by our analysis,
one can easily construct a relational overapproximation of the transition relation
of a program. Suppose that our analysis generated a set

{
{Pi}c{Qi}

}
i∈I

of true
Hoare triples for a given program c. Then, by [6], there is a state transformer r
(i.e., relation from States to States ∪ {wrong}) with the following three proper-
ties: (1) the transformer r satisfies triple {Pi}r{Qi} for all i ∈ I; (2) it satisfies
the locality conditions in separation logic8; and (3) the transformer overapprox-
imates all the other state transformers satisfying (1) and (2) (i.e., it is bigger
than those state transformers according to the subset ordering.) Indeed, [6] gives
8 The locality conditions are safety monotonicity and frame property in [28].

10

an explicit definition of the transformer r.9 This transformer overapproximates
the relational meaning of program c, since all the triples {Pi}c{Qi} hold for c
and the meaning of c satisfies the locality conditions.

6 Experimental Results

Our experimental results are for an implementation of our analysis developed
using the CIL infrastructure [19]. We used two abstract domains for the experi-
ments, one based on the simple list domain in [9] and the other with the domain
of [2] which uses a higher-order variant of the list segment predicate to describe
composite structures.

List program examples. Table 1 shows the results of applying the footprint anal-
ysis to a set of list programs taken from the literature.10 The Disjuncts column
reports the number of disjuncts of the computed preconditions. Amongst all the
computed preconditions, some can be unsafe and there can be redundancy in
that one can imply another. The Unsafe Pre column indicates the preconditions
filtered out when we re-execute the analysis. In the Discovered Precondition
column we have dropped the redundant cases and used implication to obtain
a compact representation that could be displayed in the table. For the same
precondition, the table shows different disjuncts on different lines. For all tests
except one (merge.c, discussed below) our analysis produced a precondition from
which the program can run safely, without generating a memory fault, obtaining
a true Hoare triple. We comment on a few representative examples.

delete-doublestar uses the usual C trick of double indirection to avoid
unnecessary checking for the first element, when deleting an element from a list.

void delete-doublestar(nodeT **listP, elementT value)

{

nodeT *currP, *prevP;

prevP=NULL;

for (currP=*listP; currP!=NULL; prevP=currP, currP=currP->next) {

if (currP->element==value) { /* Found it. */

if (prevP==NULL) *listP=currP->next;

else prevP->next=currP->next;

free(currP);

} } }

9 Formally, r ⊆ States× (States ∪ {wrong}) is defined by:

(s, h)[r]wrong ⇐⇒ ∀i ∈ I. (s, h) 6∈ [[Pi ∗ true]]
(s, h)[r](s′, h′) ⇐⇒ ∀i ∈ I. ∀h0, h1. (s, h0) ∈ [[Pi]] ∧ h0 • h1 = h

=⇒ ∃h′
0. (s′, h′

0) ∈ [[Qi]] ∧ h′
0 • h1 = h′.

where [[Pi]], [[Qi]] are the usual meaning of assertions and • is a partial heap-combining
operator in separation logic.

10 In some cases the reported memory consumption was exactly the same for different
programs; this happens because the memory chunks allocated by OCAML’s runtime
system are too coarse to observe small differences between example programs.

11

The first disjunct of the discovered precondition is

listP|->x_ * ls(x_,x1_) * x1_|->x2_

This shows the cells that are accessed when the element being searched for
happens to be in the list. Note that it does not record list items which might
follow the value: they are not accessed.11 A postcondition for this precondition
has just a list segment running to x2 :

listP|->x_ * ls(x_,x2_)

The other precondition

listP|->x_ * ls(x_,NULL)

corresponds to when the element being searched for is not in the list.
The algorithm fails to discover a circular list in the precondition

listP|->x_ * ls(x_,x_)

The program infinite loops on this input, but does not commit a memory safety
violation. This is an example of incompleteness in our algorithm.12

Further issues can be seen by contrasting append.c and append-dispose.c.
The former is the typical algorithm for appending two lists x and y. The com-
puted precondition is

ls(x_,NULL)

Again, notice that nothing reachable from y is included, as the appended list is
not traversed by the algorithm: it just swings a pointer from the end of the first
list. However, when we post-compose appending with code to delete all elements
in the acyclic list rooted at x, which is what append-dispose.c does, then the
footprint requires an acyclic list from y as well

x|->x_ * ls(x_,NULL) * y|->y_ * ls(y_,NULL)

The only program for which we failed to find a safe precondition was merge.c,
the usual program to merge two sorted lists: instead, footprint analysis returned
all unsafe disjuncts (which were pruned at re-execution time). The reason is that
our analysis essentially assumes that the safety of the program is insensitive to
the abstraction performed in the analysis, and this is false for merge.c.

11 This point could be relevant to interprocedural analysis, where [23, 10] pass a use-
ful but coarse overapproximation of the footprint to a procedure, consisting of all
abstract nodes reachable from certain roots.

12 Note that the problem here does not have to do with circular lists per se, as our algo-
rithm succeeds in finding preconditions for algorithms for circular linked lists (e.g.,
traverse-circ.c); rather, it has to do with incompleteness arising from avoidance
of case analysis mentioned in Section 5.1.

12

Program Time (s) Memory
of
Disjuncts

Unsafe
Pre

Discovered Precondition

append.c 0.03501 0.74Mb 4 0 ls(x,NULL)

append-dispose.c 0.09966 0.74Mb 17 0 ls(x,NULL)*ls(y,NULL)

copy.c 0.03076 0.74Mb 4 0 ls(c,NULL)

create.c 0.01370 0.49Mb 1 0 emp

delete-doublestar.c 0.04521 0.49Mb 10 0
listP7→x *ls(x ,x1)*x1 7→element:value,
listP7→x *ls(x ,NULL)

delete-all.c 0.01357 0.49Mb 4 0 ls(c,NULL)

delete-all-circular.c 0.01564 0.49Mb 3 0 c7→c *ls(c ,c)

delete-lseg.c 0.63947 1.23Mb 48 0

z6=NULL∧ls(c,z)*ls(z,NULL),
z6=w∧ls(c,z)*ls(z,w)*w7→NULL,
z6=w∧w 6=NULL∧ls(c,z)*ls(z,w)*w7→w ,
z6=c∧c7→NULL,
z6=c∧z6=c ∧c7→c *ls(c ,NULL),
c=NULL∧emp

find.c 0.05659 0.74Mb 12 0

ls(c,b)*b7→NULL,
b 6=NULL∧ls(c,b)*b7→b ,
b6=c∧b6=c ∧c7→c *lseg(c ,NULL),
b6=c∧c7→NULL,
c=NULL∧emp

insert.c 0.17049 0.74Mb 10 0

e16=NULL∧e26=NULL∧c 6=d ∧c7→c *ls(c ,d)*d7→dta:e3,
e16=NULL∧e26=NULL∧c 6=NULL∧c7→c *ls(c ,NULL),
e16=NULL∧c7→NULL,
e16=NULL∧e2=NULL∧c7→c *c 7→-,
e1=NULL∧c7→-,
c=NULL∧emp

merge.c 0.56092 1.47Mb 30 30 —

reverse.c 0.01965 0.74Mb 4 0 ls(c,NULL)

traverse-circ.c 0.01322 0.49Mb 3 0 c7→c *ls(c ,c)

Table 1. Experimental results for list programs.

IEEE 1394 firewire driver routines. We then changed the abstract domain in
our implementation, swapping the simple list domain for the domain from [2].
Table 2 reports experimental results on several routines from a firewire driver for
Windows.13 We emphasize that the ability of that domain to analyze the driver
code is not a contribution of the present paper: it was already shown in [2] when
preconditions were generated by environment code or supplied manually. Here,
we are just using that domain with our footprint analysis algorithm.

The procedure t1394Diag PnpRemoveDevice, for which our analysis timed
out, has five while loops, two of which are nested, and multiple nested condition-
als. At the time of writing, our analysis does not implement several optimizations

13 After dropping redundant disjunct and simplify by implication, the precondition for
device drivers remain still considerably large. Therefore, for space limitation, in this
table, we do not report the discovered preconditions.

13

Program Time (s) Memory
of
Disjuncts

Unsafe
Pre

t1394Diag-CancelIrp.c 0.08928 1.23Mb 11 2

t1394Diag-CancelIrpFix.c 0.20461 1.23Mb 10 0

t1394Diag PnpRemoveDevice T/O — — —

t1394-BusResetRoutine.c 0.14924 1.23Mb 4 0

t1394-GetAddressData.c 0.08692 1.23Mb 9 2

t1394-GetAddressDataFix.c 0.08906 1.23Mb 3 0

t1394-IsochDetachCompletionRoutine.c 1.76640 2.70Mb 39 0

t1394-SetAddressData.c 0.06614 1.23Mb 9 1

t1394-SetAddressDataFix.c 0.12242 1.23Mb 9 0

Table 2. Experimental results from firewire device driver routines.

for scalability. For example, we have not yet implemented the acceleration tech-
niques based on widening from [5].

For five (out of nine) of these routines our analysis found only sound precondi-
tions from which it is ensured the program will run safely. For three of these rou-
tines (t1394Diag CancelIrp, t1394 GetAddressData, t1394 SetAddressData)
for which it was known to have memory errors (see [2] for details), our analysis
found two kinds of preconditions:

– Safe preconditions that exclude the errors. The analyzer generated true
Hoare triples for these preconditions.

– Unsafe preconditions that lead to (in this case) known memory errors. For
these analyzed routines the memory errors occur when they are given empty
lists. All of these unsafe empty-list cases are included in the discovered pre-
conditions. But, they are the only reasons for the preconditions to be unsafe;
if we semantically rule out these empty-list cases from these preconditions
by altering them manually, the preconditions cover only safe states as can
be confirmed by re-execution.

The errors were fixed in t1394Diag CancelIrpFix, t1394 GetAddressDataFix
and t1394 SetAddressDataFix, such that the routines run safely even for the
empty-list cases. The analysis correctly discovered this fact, by computing safe
preconditions that include empty-list cases (in addition to all the other cases in
the safe preconditions for the original routines).

7 Conclusion

We have presented a shape analysis that is able to discover preconditions, and
we have presented initial experimental results. We are not aware of another
published shape analysis that discovers preconditions (which is why we have not
compared our analysis or experimental results to other work in shape analysis).

We have used two abstract domains in our experiments, one for simple linked
lists and another for composite structures [9, 2], but others could be used as

14

well as long as they possess the basic separation logic structure that drives
our analysis. Several other abstract domains based on separation logic formulae
have been described [3, 5, 16, 12], and we expected that other shape domains that
have appeared (e.g., [25, 15, 13, 4, 18, 1]) could be modified to have the requisite
structure. This would not require using separation logic formulae literally, but
rather needs the abstract domain to reflect the the partial commutative monoid
of heap composition used in its semantics (as was done in [26, 17]).

One of the basic ideas used in our analysis, that of abstracting preconditions
as well as postconditions, could conceivably be replayed for other abstract do-
mains than our shape domains. It would require more work to investigate for any
given domain. We emphasize, though, that this general idea is not a significant
contribution of the present paper, and we make no claims about application to
other sorts of domain (e.g., numerical domains). Rather, the main contribution
is the way that the footprint idea is used to design a particular family of shape
analyses that discover preconditions, and the demonstration that some of the
resulting analyses can possess a non-trivial degree of precision.

Footprint analysis has potential benefits for speeding up and improving the
accuracy of interprocedural and concurrency shape analyses, and for encapsu-
lation. With the footprint analysis one might analyze several procedures inde-
pendently, and then use the results as (partial) summaries to avoid (certain)
recomputations in an (even whole program) interprocedural analysis [23, 10]. A
thread-modular concurrency analysis has recently been defined [11]. The logic
upon which it is based [20] requires preconditions for concurrent processes, but
in [11] this issue is skirted by assigning the empty heap as a precondition to each
concurrent process: the ideas here might be used to extend that analysis. We
add that there are numerous technical problems to be overcome for this poten-
tial to be realized, such as the right treatment of cutpoints [23] together with
footprints.

A further off possible application is when the calling context (“main” pro-
gram) is not even available, or very large (e.g., an operating system): one might
try to use footprint analysis to analyze code fragments that would otherwise
require a whole-program analysis. Our experiments give initial indications on
such an idea, but more work is needed to evaluate its ultimate viability. Con-
versely, there is the persistent problem of analyzing programs that themselves
call other unknown or as yet unwritten procedures. It would be conceivable to
use footprint analysis to treat the unknown procedures as “black holes”, where
one starts footprint analysis again after a black hole to discover a precondition
for the code that comes after; this would then function as a postcondition for
the procedure call itself.

We do not mean to imply that the use of footprint analyses in these areas
is in any way straightforward, and only hope that this work might help to spur
further developments towards obtaining truly modular shape analyses.

Acknowledgments. We are grateful to Byron Cook, Noam Rinetzky and Mooly
Sagiv for discussions on the ideas in this paper. This research was supported by
EPSRC.

15

References

1. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. In
6th VMCAI, pages 164–180, 2005.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang.
Shape analysis of composite data structures. To appear in CAV’07.

3. J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. In 18th CAV, pages 386–400, 2006.

4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract tree regular
model checking of complex dynamic data structures. In 13th SAS, pages 52–70,
2006.

5. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In 13th SAS, pages 182–
203, 2006.

6. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic.
To appear in LICS’07, 2007.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pp238-252, 1977.

8. P. Cousot and R. Cousot. Modular static program analysis. In 11th CC, pages
159–178, 2002.

9. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In 12th TACAS, pages 287–302, 2006.

10. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. In 13th SAS, pages 240–260, 2006.

11. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
To appear in PLDI 2007.

12. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion
synthesis. To appear in PLDI 2007.

13. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
32nd POPL, pages 310–323, 2005.

14. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interpro-
cedural shape analysis. Tech. Rep. 1505, Comp. Sci. Dept., Univ. of Wisconsin,
2004.

15. Tal Lev-Ami, Neil Immerman, and Mooly Sagiv. Abstraction for shape analysis
with fast and precise transfomers. In 18th CAV, pages 547–561. 2006.

16. S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in Separation
Logic for imperative list-processing programs. In 3rd SPACE Workshop, 2006.

17. R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape analysis
by graph decomposition. In 13th TACAS, 2007.

18. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In 6th VMCAI, pages 181–198, 2005.

19. G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:intermediate language and
tools for analysis and transformation of C programs. In 11th CC, pages 213–228,
2002.

20. P. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 2007. To appear, preliminary version appeared in CONCUR’04.

21. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In 15th CSL, pp1–19, 2001.

16

22. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp 55-74, 2002.

23. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In 32nd POPL, pp296–309, 2005.

24. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS, 20(1):1–50, 1998.

25. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3valued logic.
ACM TOPLAS, 24(3):217–298, 2002.

26. Élodie-Jane Sims. An abstract domain for separation logic formulae. In Pro-
ceedings of the 1st International Workshop on Emerging Applications of Abstract
Interpretation (EAAI06), pages 133–148, 2006.

27. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties
specified via evolution logic. In 12th ESOP, pages 204–222, 2003.

28. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In 5th FOSSACS,
LNCS 2303, 2002.

17

