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Abstract
Many real-world problems, such as network packet routing
and the coordination of autonomous vehicles, are naturally
modelled as cooperative multi-agent systems. There is a great
need for new reinforcement learning methods that can ef-
ficiently learn decentralised policies for such systems. To
this end, we propose a new multi-agent actor-critic method
called counterfactual multi-agent (COMA) policy gradients.
COMA uses a centralised critic to estimate the Q-function
and decentralised actors to optimise the agents’ policies. In
addition, to address the challenges of multi-agent credit as-
signment, it uses a counterfactual baseline that marginalises
out a single agent’s action, while keeping the other agents’
actions fixed. COMA also uses a critic representation that al-
lows the counterfactual baseline to be computed efficiently in
a single forward pass. We evaluate COMA in the testbed of
StarCraft unit micromanagement, using a decentralised vari-
ant with significant partial observability. COMA significantly
improves average performance over other multi-agent actor-
critic methods in this setting, and the best performing agents
are competitive with state-of-the-art centralised controllers
that get access to the full state.

1 Introduction
Many complex reinforcement learning (RL) problems such
as the coordination of autonomous vehicles (Cao et al.
2013), network packet delivery (Ye, Zhang, and Yang 2015),
and distributed logistics (Ying and Dayong 2005) are nat-
urally modelled as cooperative multi-agent systems. How-
ever, RL methods designed for single agents typically fare
poorly on such tasks, since the joint action space of the
agents grows exponentially with the number of agents.

To cope with such complexity, it is often necessary to re-
sort to decentralised policies, in which each agent selects its
own action conditioned only on its local action-observation
history. Furthermore, partial observability and communica-
tion constraints during execution may necessitate the use of
decentralised policies even when the joint action space is not
prohibitively large.

Hence, there is a great need for new RL methods that
can efficiently learn decentralised policies. In some settings,
the learning itself may also need to be decentralised. How-
ever, in many cases, learning can take place in a simulator
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or a laboratory in which extra state information is avail-
able and agents can communicate freely. This centralised
training of decentralised policies is a standard paradigm for
multi-agent planning (Oliehoek, Spaan, and Vlassis 2008;
Kraemer and Banerjee 2016) and has recently been picked
up by the deep RL community (Foerster et al. 2016; Jorge,
Kågebäck, and Gustavsson 2016). However, the question of
how best to exploit the opportunity for centralised learning
remains open.

Another crucial challenge is multi-agent credit assign-
ment (Chang, Ho, and Kaelbling 2003): in cooperative set-
tings, joint actions typically generate only global rewards,
making it difficult for each agent to deduce its own con-
tribution to the team’s success. Sometimes it is possible to
design individual reward functions for each agent. However,
these rewards are not generally available in cooperative set-
tings and often fail to encourage individual agents to sacri-
fice for the greater good. This often substantially impedes
multi-agent learning in challenging tasks, even with rela-
tively small numbers of agents.

In this paper, we propose a new multi-agent RL method
called counterfactual multi-agent (COMA) policy gradients,
in order to address these issues. COMA takes an actor-critic
(Konda and Tsitsiklis 2000) approach, in which the actor,
i.e., the policy, is trained by following a gradient estimated
by a critic. COMA is based on three main ideas.

First, COMA uses a centralised critic. The critic is only
used during learning, while only the actor is needed during
execution. Since learning is centralised, we can therefore use
a centralised critic that conditions on the joint action and all
available state information, while each agent’s policy condi-
tions only on its own action-observation history.

Second, COMA uses a counterfactual baseline. The idea
is inspired by difference rewards (Wolpert and Tumer 2002;
Tumer and Agogino 2007), in which each agent learns from
a shaped reward that compares the global reward to the re-
ward received when that agent’s action is replaced with a
default action. While difference rewards are a powerful way
to perform multi-agent credit assignment, they require ac-
cess to a simulator or estimated reward function, and in gen-
eral it is unclear how to choose the default action. COMA
addresses this by using the centralised critic to compute an
agent-specific advantage function that compares the esti-
mated return for the current joint action to a counterfactual



baseline that marginalises out a single agent’s action, while
keeping the other agents’ actions fixed. This is similar to cal-
culating an aristocrat utility (Wolpert and Tumer 2002), but
avoids the problem of a recursive interdependence between
the policy and utility function because the expected contri-
bution of the counterfactual baseline to the policy gradient
is zero. Hence, instead of relying on extra simulations, ap-
proximations, or assumptions regarding appropriate default
actions, COMA computes a separate baseline for each agent
that relies on the centralised critic to reason about counter-
factuals in which only that agent’s action changes.

Third, COMA uses a critic representation that allows the
counterfactual baseline to be computed efficiently. In a sin-
gle forward pass, it computes the Q-values for all the differ-
ent actions of a given agent, conditioned on the actions of all
the other agents. Because a single centralised critic is used
for all agents, all Q-values for all agents can be computed in
a single batched forward pass.

We evaluate COMA in the testbed of StarCraft unit mi-
cromanagement1, which has recently emerged as a challeng-
ing RL benchmark task with high stochasticity, a large state-
action space, and delayed rewards. Previous works (Usunier
et al. 2016; Peng et al. 2017) have made use of a centralised
control policy that conditions on the entire state and can use
powerful macro-actions, using StarCraft’s built-in planner,
that combine movement and attack actions. To produce a
meaningfully decentralised benchmark that proves challeng-
ing for scenarios with even relatively few agents, we propose
a variant that massively reduces each agent’s field-of-view
and removes access to these macro-actions.

Our empirical results on this new benchmark show that
COMA can significantly improve performance over other
multi-agent actor-critic methods, as well as ablated versions
of COMA itself. In addition, COMA’s best agents are com-
petitive with state-of-the-art centralised controllers that are
given access to full state information and macro-actions.

2 Related Work
Although multi-agent RL has been applied in a variety of
settings (Busoniu, Babuska, and De Schutter 2008; Yang and
Gu 2004), it has often been restricted to tabular methods
and simple environments. One exception is recent work in
deep multi-agent RL, which can scale to high dimensional
input and action spaces. Tampuu et al. (2015) use a com-
bination of DQN with independent Q-learning (Tan 1993;
Shoham and Leyton-Brown 2009) to learn how to play two-
player pong. More recently the same method has been used
by Leibo et al. (2017) to study the emergence of collabora-
tion and defection in sequential social dilemmas.

Also related is work on the emergence of communication
between agents, learned by gradient descent (Das et al. 2017;
Mordatch and Abbeel 2017; Lazaridou, Peysakhovich, and
Baroni 2016; Foerster et al. 2016; Sukhbaatar, Fergus, and
others 2016). In this line of work, passing gradients between
agents during training and sharing parameters are two com-
mon ways to take advantage of centralised training. How-

1StarCraft and its expansion StarCraft: Brood War are trade-
marks of Blizzard EntertainmentTM.

ever, these methods do not allow for extra state information
to be used during learning and do not address the multi-agent
credit assignment problem.

Gupta, Egorov, and Kochenderfer (2017) investigate
actor-critic methods for decentralised execution with cen-
tralised training. However, in their methods both the actors
and the critic condition on local, per-agent, observations and
actions, and multi-agent credit assignment is addressed only
with hand-crafted local rewards.

Most previous applications of RL to StarCraft microman-
agement use a centralised controller, with access to the full
state, and control of all units, although the architecture of
the controllers exploits the multi-agent nature of the prob-
lem. Usunier et al. (2016) use a greedy MDP, which at each
timestep sequentially chooses actions for agents given all
previous actions, in combination with zero-order optimisa-
tion, while Peng et al. (2017) use an actor-critic method that
relies on RNNs to exchange information between the agents.

The closest to our problem setting is that of Foerster et
al. (2017), who also use a multi-agent representation and de-
centralised policies. However, they focus on stabilising ex-
perience replay while using DQN and do not make full use
of the centralised training regime. As they do not report on
absolute win-rates we do not compare performance directly.
However, Usunier et al. (2016) address similar scenarios
to our experiments and implement a DQN baseline in a
fully observable setting. In Section 6 we therefore report our
competitive performance against these state-of-the-art base-
lines, while maintaining decentralised control. Omidshafiei
et al. (2017) also address the stability of experience replay in
multi-agent settings, but assume a fully decentralised train-
ing regime.

(Lowe et al. 2017) concurrently propose a multi-agent
policy-gradient algorithm using centralised critics. Their ap-
proach does not address multi-agent credit assignment. Un-
like our work, it learns a separate centralised critic for each
agent and is applied to competitive environments with con-
tinuous action spaces.

Our work builds directly off of the idea of difference
rewards (Wolpert and Tumer 2002). The relationship of
COMA to this line of work is discussed in Section 4.

3 Background
We consider a fully cooperative multi-agent task that can
be described as a stochastic game G, defined by a tuple
G = 〈S,U, P, r, Z,O, n, γ〉, in which n agents identified
by a ∈ A ≡ {1, ..., n} choose sequential actions. The en-
vironment has a true state s ∈ S. At each time step, each
agent simultaneously chooses an action ua ∈ U , forming
a joint action u ∈ U ≡ Un which induces a transition in
the environment according to the state transition function
P (s′|s,u) : S ×U × S → [0, 1]. The agents all share the
same reward function r(s,u) : S ×U → R and γ ∈ [0, 1)
is a discount factor.

We consider a partially observable setting, in which
agents draw observations z ∈ Z according to the obser-
vation function O(s, a) : S × A → Z. Each agent has an
action-observation history τa ∈ T ≡ (Z ×U)∗, on which it



conditions a stochastic policy πa(ua|τa) : T × U → [0, 1].
We denote joint quantities over agents in bold, and joint
quantities over agents other than a given agent a with the
superscript −a.

The discounted return is Rt =
∑∞
l=0 γ

lrt+l. The agents’
joint policy induces a value function, i.e., an expectation
over Rt, V π(st) = Est+1:∞,ut:∞ [Rt|st], and an action-
value function Qπ(st,ut) = Est+1:∞,ut+1:∞ [Rt|st,ut].
The advantage function is given by Aπ(st,ut) =
Qπ(st,ut)− V π(st).

Following previous work (Oliehoek, Spaan, and Vlassis
2008; Kraemer and Banerjee 2016; Foerster et al. 2016;
Jorge, Kågebäck, and Gustavsson 2016), our problem setting
allows centralised training but requires decentralised execu-
tion. This is a natural paradigm for a large set of multi-agent
problems where training is carried out using a simulator with
additional state information, but the agents must rely on lo-
cal action-observation histories during execution. To condi-
tion on this full history, a deep RL agent may make use of a
recurrent neural network (Hausknecht and Stone 2015), typ-
ically with a gated model such as LSTM (Hochreiter and
Schmidhuber 1997) or GRU (Cho et al. 2014).

In Section 4, we develop a new multi-agent policy gra-
dient method for tackling this setting. In the remainder of
this section, we provide some background on single-agent
policy gradient methods (Sutton et al. 1999). Such methods
optimise a single agent’s policy, parameterised by θπ , by
performing gradient ascent on an estimate of the expected
discounted total reward J = Eπ [R0]. Perhaps the simplest
form of policy gradient is REINFORCE (Williams 1992), in
which the gradient is:

g = Es0:∞,u0:∞

[
T∑
t=0

Rt∇θπ log π(ut|st)

]
. (1)

In actor-critic approaches (Sutton et al. 1999; Konda and
Tsitsiklis 2000; Schulman et al. 2015), the actor, i.e., the
policy, is trained by following a gradient that depends on
a critic, which usually estimates a value function. In par-
ticular, Rt is replaced by any expression equivalent to
Q(st, ut) − b(st), where b(st) is a baseline designed to re-
duce variance (Weaver and Tao 2001). A common choice is
b(st) = V (st), in which case Rt is replaced by A(st, ut).
Another option is to replace Rt with the temporal difference
(TD) error rt + γV (st+1)− V (s), which is an unbiased es-
timate of A(st, ut). In practice, the gradient must be esti-
mated from trajectories sampled from the environment, and
the (action-)value functions must be estimated with function
approximators. Consequently, the bias and variance of the
gradient estimate depends strongly on the exact choice of
estimator (Konda and Tsitsiklis 2000).

In this paper, we train critics f c(·, θc) on-policy to es-
timate either Q or V , using a variant of TD(λ) (Sutton
1988) adapted for use with deep neural networks. TD(λ)
uses a mixture of n-step returns G(n)

t =
∑n
l=1 γ

l−1rt+l +
γnf c(·t+n, θc). In particular, the critic parameters θc are up-
dated by minibatch gradient descent to minimise the follow-
ing loss:

Lt(θc) = (y(λ) − f c(·t, θc))2, (2)

where y(λ) = (1 − λ)
∑∞
n=1 λ

n−1G
(n)
t , and the n-step

returns G(n)
t are calculated with bootstrapped values esti-

mated by a target network (Mnih et al. 2015) with parame-
ters copied periodically from θc.

4 Methods
In this section, we describe approaches for extending policy
gradients to our multi-agent setting.

Independent Actor-Critic
The simplest way to apply policy gradients to multiple
agents is to have each agent learn independently, with its
own actor and critic, from its own action-observation his-
tory. This is essentially the idea behind independent Q-
learning (Tan 1993), which is perhaps the most popular
multi-agent learning algorithm, but with actor-critic in place
of Q-learning. Hence, we call this approach independent
actor-critic (IAC).

In our implementation of IAC, we speed learning by shar-
ing parameters among the agents, i.e., we learn only one ac-
tor and one critic, which are used by all agents. The agents
can still behave differently because they receive different ob-
servations, including an agent-specific ID, and thus evolve
different hidden states. Learning remains independent in the
sense that each agent’s critic estimates only a local value
function, i.e., one that conditions on ua, not u. Though we
are not aware of previous applications of this specific algo-
rithm, we do not consider it a significant contribution but
instead merely a baseline algorithm.

We consider two variants of IAC. In the first, each agent’s
critic estimates V (τa) and follows a gradient based on
the TD error, as described in Section 3. In the second,
each agent’s critic estimates Q(τa, ua) and follows a gra-
dient based on the advantage: A(τa, ua) = Q(τa, ua) −
V (τa), where V (τa) =

∑
ua π(u

a|τa)Q(τa, ua). Indepen-
dent learning is straightforward, but the lack of information
sharing at training time makes it difficult to learn coordi-
nated strategies that depend on interactions between multi-
ple agents, or for an individual agent to estimate the contri-
bution of its actions to the team’s reward.

Counterfactual Multi-Agent Policy Gradients
The difficulties discussed above arise because, beyond pa-
rameter sharing, IAC fails to exploit the fact that learning
is centralised in our setting. In this section, we propose
counterfactual multi-agent (COMA) policy gradients, which
overcome this limitation. Three main ideas underly COMA:
1) centralisation of the critic, 2) use of a counterfactual base-
line, and 3) use of a critic representation that allows efficient
evaluation of the baseline. The remainder of this section de-
scribes these ideas.

First, COMA uses a centralised critic. Note that in IAC,
each actor π(ua|τa) and each critic Q(τa, ua) or V (τa)
conditions only on the agent’s own action-observation his-
tory τa. However, the critic is used only during learning and
only the actor is needed during execution. Since learning is
centralised, we can therefore use a centralised critic that con-
ditions on the true global state s, if it is available, or the joint



action-observation histories τ otherwise. Each actor condi-
tions on its own action-observation histories τa, with param-
eter sharing, as in IAC. Figure 1a illustrates this setup.

A naive way to use this centralised critic would be for
each actor to follow a gradient based on the TD error esti-
mated from this critic:

g = ∇θπ log π(u|τat ) (r + γV (st+1)− V (st)) . (3)

However, such an approach fails to address a key credit
assignment problem. Because the TD error considers only
global rewards, the gradient computed for each actor does
not explicitly reason about how that particular agent’s ac-
tions contribute to that global reward. Since the other agents
may be exploring, the gradient for that agent becomes very
noisy, particularly when there are many agents.

Therefore, COMA uses a counterfactual baseline. The
idea is inspired by difference rewards (Wolpert and Tumer
2002), in which each agent learns from a shaped reward
Da = r(s,u) − r(s, (u−a, ca)) that compares the global
reward to the reward received when the action of agent a is
replaced with a default action ca. Any action by agent a that
improves Da also improves the true global reward r(s,u),
because r(s, (u−a, ca)) does not depend on agent a’s ac-
tions.

Difference rewards are a powerful way to perform multi-
agent credit assignment. However, they typically require
access to a simulator in order to estimate r(s, (u−a, ca)).
When a simulator is already being used for learning, dif-
ference rewards increase the number of simulations that
must be conducted, since each agent’s difference reward
requires a separate counterfactual simulation. Proper and
Tumer (2012) and Colby, Curran, and Tumer (2015) pro-
pose estimating difference rewards using function approxi-
mation rather than a simulator. However, this still requires a
user-specified default action ca that can be difficult to choose
in many applications. In an actor-critic architecture, this ap-
proach would also introduce an additional source of approx-
imation error.

A key insight underlying COMA is that a centralised critic
can be used to implement difference rewards in a way that
avoids these problems. COMA learns a centralised critic,
Q(s,u) that estimates Q-values for the joint action u con-
ditioned on the central state s. For each agent a we can then
compute an advantage function that compares the Q-value
for the current action ua to a counterfactual baseline that
marginalises out ua, while keeping the other agents’ actions
u−a fixed:

Aa(s,u) = Q(s,u)−
∑
u′a

πa(u′a|τa)Q(s, (u−a, u′a)).

(4)
Hence, Aa(s, ua) computes a separate baseline for each
agent that uses the centralised critic to reason about counter-
factuals in which only a’s action changes, learned directly
from agents’ experiences instead of relying on extra simula-
tions, a reward model, or a user-designed default action.

This advantage has the same form as the aristocrat util-
ity (Wolpert and Tumer 2002). However, optimising for an

aristocrat utility using value-based methods creates a self-
consistency problem because the policy and utility function
depend recursively on each other. As a result, prior work
focused on difference evaluations using default states and
actions. COMA is different because the counterfactual base-
line’s expected contribution to the gradient, as with other
policy gradient baselines, is zero. Thus, while the baseline
does depend on the policy, its expectation does not. Conse-
quently, COMA can use this form of the advantage without
creating a self-consistency problem.

While COMA’s advantage function replaces potential ex-
tra simulations with evaluations of the critic, those evalu-
ations may themselves be expensive if the critic is a deep
neural network. Furthermore, in a typical representation, the
number of output nodes of such a network would equal |U |n,
the size of the joint action space, making it impractical to
train. To address both these issues, COMA uses a critic rep-
resentation that allows for efficient evaluation of the base-
line. In particular, the actions of the other agents, u−at , are
part of the input to the network, which outputs a Q-value
for each of agent a’s actions, as shown in Figure 1c. Conse-
quently, the counterfactual advantage can be calculated effi-
ciently by a single forward pass of the actor and critic, for
each agent. Furthermore, the number of outputs is only |U |
instead of (|U |n). While the network has a large input space
that scales linearly in the number of agents and actions, deep
neural networks can generalise well across such spaces.

In this paper, we focus on settings with discrete actions.
However, COMA can be easily extended to continuous ac-
tions spaces by estimating the expectation in (4) with Monte
Carlo samples or using functional forms that render it ana-
lytical, e.g., Gaussian policies and critic.

The following lemma establishes the convergence of
COMA to a locally optimal policy. The proof follows di-
rectly from the convergence of single-agent actor-critic al-
gorithms (Sutton et al. 1999; Konda and Tsitsiklis 2000),
and is subject to the same assumptions.
Lemma 1. For an actor-critic algorithm with a compatible
TD(1) critic following a COMA policy gradient

gk = Eπ

[∑
a

∇θk log πa(ua|τa)Aa(s,u)

]
(5)

at each iteration k,
lim inf

k
||∇J || = 0 w.p. 1. (6)

Proof. The COMA gradient is given by

g = Eπ

[∑
a

∇θ log πa(ua|τa)Aa(s,u)

]
, (7)

Aa(s,u) = Q(s,u)− b(s,u−a), (8)
where θ are the parameters of all actor policies, e.g. θ =
{θ1, . . . , θ|A|}, and b(s,u−a) is the counterfactual baseline
defined in equation 4.

First consider the expected contribution of the this base-
line b(s,u−a):

gb = −Eπ

[∑
a

∇θ log πa(ua|τa)b(s,u−a)

]
, (9)
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Figure 1: In (a), information flow between the decentralised actors, the environment and the centralised critic in COMA; red
arrows and components are only required during centralised learning. In (b) and (c), architectures of the actor and critic.

where the expectation Eπ is with respect to the state-action
distribution induced by the joint policy π. Now let dπ(s) be
the discounted ergodic state distribution as defined by Sutton
et al. (1999):

gb = −
∑
s

dπ(s)
∑
a

∑
u−a

π(u−a|τ−a) ·∑
ua

πa(ua|τa)∇θ log πa(ua|τa)b(s,u−a) (10)

= −
∑
s

dπ(s)
∑
a

∑
u−a

π(u−a|τ−a) ·∑
ua

∇θπa(ua|τa)b(s,u−a) (11)

= −
∑
s

dπ(s)
∑
a

∑
u−a

π(u−a|τ−a)b(s,u−a)∇θ1

= 0. (12)

Clearly, the per-agent baseline, although it reduces variance,
does not change the expected gradient, and therefore does
not affect the convergence of COMA.

The remainder of the expected policy gradient is given by:

g = Eπ

[∑
a

∇θ log πa(ua|τa)Q(s,u)

]
(13)

= Eπ

[
∇θ log

∏
a

πa(ua|τa)Q(s,u)

]
. (14)

Writing the joint policy as a product of the independent ac-
tors:

π(u|s) =
∏
a

πa(ua|τa), (15)

yields the standard single-agent actor-critic policy gradient:

g = Eπ [∇θ logπ(u|s)Q(s,u)] . (16)

Konda and Tsitsiklis (2000) prove that an actor-critic fol-
lowing this gradient converges to a local maximum of the
expected return Jπ , given that:

1. the policy π is differentiable,

2. the update timescales for Q and π are sufficiently slow,
and that π is updated sufficiently slower than Q, and

3. Q uses a representation compatible with π,

amongst several further assumptions. The parameterisation
of the policy (i.e., the single-agent joint-action learner is de-
composed into independent actors) is immaterial to conver-
gence, as long as it remains differentiable. Note however
that COMA’s centralised critic is essential for this proof to
hold.

5 Experimental Setup
In this section, we describe the StarCraft problem to which
we apply COMA, as well as details of the state features,
network architectures, training regimes, and ablations.

Decentralised StarCraft Micromanagement. StarCraft
is a rich environment with stochastic dynamics that cannot
be easily emulated. Many simpler multi-agent settings, such
as Predator-Prey (Tan 1993) or Packet World (Weyns, Helle-
boogh, and Holvoet 2005), by contrast, have full simulators
with controlled randomness that can be freely set to any state
in order to perfectly replay experiences. This makes it pos-
sible, though computationally expensive, to compute differ-
ence rewards via extra simulations. In StarCraft, as in the
real world, this is not possible.

In this paper, we focus on the problem of microman-
agement in StarCraft, which refers to the low-level con-
trol of individual units’ positioning and attack commands
as they fight enemies. This task is naturally represented as
a multi-agent system, where each StarCraft unit is replaced
by a decentralised controller. We consider several scenarios
with symmetric teams formed of: 3 marines (3m), 5 marines
(5m), 5 wraiths (5w), or 2 dragoons with 3 zealots (2d 3z).
The enemy team is controlled by the StarCraft AI, which
uses reasonable but suboptimal hand-crafted heuristics.

We allow the agents to choose from a set of discrete
actions: move[direction], attack[enemy id],
stop, and noop. In the StarCraft game, when a unit selects
an attack action, it first moves into attack range before
firing, using the game’s built-in pathfinding to choose a



route. These powerful attack-move macro-actions make the
control problem considerably easier.

To create a more challenging benchmark that is mean-
ingfully decentralised, we impose a restricted field of view
on the agents, equal to the firing range of ranged units’
weapons, shown in Figure 2. This departure from the stan-
dard setup for centralised StarCraft control has three effects.

x

Figure 2: Starting position with example local field of view
for the 2d 3z map.

First, it introduces significant partial observability. Sec-
ond, it means units can only attack when they are in range
of enemies, removing access to the StarCraft macro-actions.
Third, agents cannot distinguish between enemies who are
dead and those who are out of range and so can issue in-
valid attack commands at such enemies, which results in no
action being taken. This substantially increases the average
size of the action space, which in turn increases the difficulty
of both exploration and control.

Under these difficult conditions, scenarios with even rela-
tively small numbers of units become much harder to solve.
As seen in Table 1, we compare against a simple hand-coded
heuristic that instructs the agents to run forwards into range
and then focus their fire, attacking each enemy in turn until
it dies. This heuristic achieves a 98% win rate on 5m with
a full field of view, but only 66% in our setting. To perform
well in this task, the agents must learn to cooperate by posi-
tioning properly and focussing their fire, while remembering
which enemy and ally units are alive or out of view.

All agents receive the same global reward at each time
step, equal to the sum of damage inflicted on the opponent
units minus half the damage taken. Killing an opponent gen-
erates a reward of 10 points, and winning the game generates
a reward equal to the team’s remaining total health plus 200.
This damage-based reward signal is comparable to that used
by Usunier et al. (2016). Unlike (Peng et al. 2017), our ap-
proach does not require estimating local rewards.

State Features. The actor and critic receive different in-
put features, corresponding to local observations and global
state, respectively. Both include features for allies and ene-
mies. Units can be either allies or enemies, while agents are
the decentralised controllers that command ally units.

The local observations for every agent are drawn only
from a circular subset of the map centred on the unit it
controls and include for each unit within this field of view:
distance, relative x, relative y, unit type

and shield.2 All features are normalised by their maxi-
mum values. We do not include any information about the
units’ current target.

The global state representation consists of similar fea-
tures, but for all units on the map regardless of fields of
view. Absolute distance is not included, and x-y locations
are given relative to the centre of the map rather than to
a particular agent. The global state also includes health
points and cooldown for all agents. The representa-
tion fed to the centralised Q-function critic is the concate-
nation of the global state representation with the local ob-
servation of the agent whose actions are being evaluated.
Our centralised critic that estimates V (s), and is therefore
agent-agnostic, receives the global state concatenated with
all agents’ observations. The observations contain no new
information but include the egocentric distances relative to
that agent.

Architecture & Training. The actor consists of 128-bit
gated recurrent units (GRUs) (Cho et al. 2014) that use
fully connected layers both to process the input and to pro-
duce the output values from the hidden state, hat . The IAC
critics use extra output heads appended to the last layer of
the actor network. Action probabilities are produced from
the final layer, z, via a bounded softmax distribution that
lower-bounds the probability of any given action by ε/|U |:
P (u) = (1 − ε)softmax(z)u + ε/|U |). We anneal ε lin-
early from 0.5 to 0.02 across 750 training episodes. The cen-
tralised critic is a feedforward network with multiple ReLU
layers combined with fully connected layers. Hyperparame-
ters were coarsely tuned on the 5m scenario and then used
for all other maps. We found that the most sensitive param-
eter was TD(λ), but settled on λ = 0.8, which worked best
for both COMA and our baselines. Our implementation uses
TorchCraft (Synnaeve et al. 2016) and Torch 7 (Collobert,
Kavukcuoglu, and Farabet 2011). Pseudocode and further
details on the training procedure are in the supplementary
material.

We experimented with critic architectures that are fac-
tored at the agent level and further exploit internal parameter
sharing. However, we found that the bottleneck for scalabil-
ity was not the centralisation of the critic, but rather the dif-
ficulty of multi-agent exploration. Hence, we defer further
investigation of factored COMA critics to future work.

Ablations. We perform ablation experiments to validate
three key elements of COMA. First, we test the importance
of centralising the critic by comparing against two IAC vari-
ants, IAC-Q and IAC-V . These critics take the same decen-
tralised input as the actor, and share parameters with the ac-
tor network up to the final layer. IAC-Q then outputs |U |
Q-values, one for each action, while IAC-V outputs a sin-
gle state-value. Note that we still share parameters between
agents, using the egocentric observations and ID’s as part of
the input to allow different behaviours to emerge. The coop-
erative reward function is still shared by all agents.

2After firing, a unit’s cooldown is reset, and it must drop
before firing again. Shields absorb damage until they break, after
which units start losing health. Dragoons and zealots have shields
but marines do not.
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Figure 3: Win rates for COMA and competing algorithms on four different scenarios. COMA outperforms all baseline methods.
Centralised critics also clearly outperform their decentralised counterparts. The legend at the top applies across all plots.

Second, we test the significance of learning Q instead of
V . The method central-V still uses a central state for the
critic, but learns V (s), and uses the TD error to estimate the
advantage for policy gradient updates.

Third, we test the utility of our counterfactual baseline.
The method central-QV learns both Q and V simultane-
ously and estimates the advantage as Q − V , replacing
COMA’s counterfactual baseline with V . All methods use
the same architecture and training scheme for the actors, and
all critics are trained with TD(λ).

6 Results
Figure 3 shows average win rates as a function of episode for
each method and each StarCraft scenario. For each method,
we conducted 35 independent trials and froze learning ev-
ery 100 training episodes to evaluate the learned policies
across 200 episodes per method, plotting the average across
episodes and trials. Also shown is one standard deviation in
performance.

The results show that COMA is superior to the IAC base-
lines in all scenarios. Interestingly, the IAC methods also
eventually learn reasonable policies in 5m, although they
need substantially more episodes to do so. This may seem
counterintuitive since in the IAC methods, the actor and

critic networks share parameters in their early layers (see
Section 5), which could be expected to speed learning. How-
ever, these results suggest that the improved accuracy of pol-
icy evaluation made possible by conditioning on the global
state outweighs the overhead of training a separate network.

Furthermore, COMA strictly dominates central-QV , both
in training speed and in final performance across all settings.
This is a strong indicator that our counterfactual baseline is
crucial when using a central Q-critic to train decentralised
policies.

Learning a state-value function has the obvious advantage
of not conditioning on the joint action. Still, we find that
COMA outperforms the central-V baseline in final perfor-
mance. Furthermore, COMA typically achieves good poli-
cies faster, which is expected as COMA provides a shaped
training signal. Training is also more stable than central-V ,
which is a consequence of the COMA gradient tending to
zero as the policy becomes greedy. Overall, COMA is the
best performing and most consistent method.

Usunier et al. (2016) report the performance of their best
agents trained with their state-of-the-art centralised con-
troller labelled GMEZO (greedy-MDP with episodic zero-
order optimisation), and for a centralised DQN controller,
both given a full field of view and access to attack-move
macro-actions. These results are compared in Table 1 against



Local Field of View (FoV) Full FoV, Central Control

map heur. IAC-V IAC-Q cnt-V cnt-QV COMA heur. DQN GMEZOmean best

3m 35 47 (3) 56 (6) 83 (3) 83 (5) 87 (3) 98 74 - -
5m 66 63 (2) 58 (3) 67 (5) 71 (9) 81 (5) 95 98 99 100
5w 70 18 (5) 57 (5) 65 (3) 76 (1) 82 (3) 98 82 70 743

2d 3z 63 27 (9) 19 (21) 36 (6) 39 (5) 47 (5) 65 68 61 90

Table 1: Mean win percentage averaged across final 1000 evaluation episodes for the different maps, for all methods and the
hand-coded heuristic in the decentralised setting with a limited field of view. The highest mean performances are in bold,
while the values in parentheses denote the 95% confidence interval, for example 87(3) = 87 ± 3. Also shown, maximum
win percentages for COMA (decentralised), in comparison to the heuristic and published results (evaluated in the centralised
setting).

the best agents trained with COMA for each map. Clearly,
in most settings these agents achieve performance compara-
ble to the best published win rates despite being restricted to
decentralised policies and local fields of view.

7 Conclusions & Future Work
This paper presented COMA policy gradients, a method
that uses a centralised critic in order to estimate a coun-
terfactual advantage for decentralised policies in mutli-
agent RL. COMA addresses the challenges of multi-agent
credit assignment by using a counterfactual baseline that
marginalises out a single agent’s action, while keeping
the other agents’ actions fixed. Our results in a decen-
tralised StarCraft unit micromanagement benchmark show
that COMA significantly improves final performance and
training speed over other multi-agent actor-critic methods
and remains competitive with state-of-the-art centralised
controllers under best-performance reporting. Future work
will extend COMA to tackle scenarios with large numbers
of agents, where centralised critics are more difficult to train
and exploration is harder to coordinate. We also aim to de-
velop more sample-efficient variants that are practical for
real-world applications such as self-driving cars.
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