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Abstract. As retrieval systems become more complex, learning to rank approa-
ches are being developed to automatically tune their parameters. Using online
learning to rank approaches, retrieval systems can learn directly from implicit
feedback, while they are running. In such an online setting, algorithms need to
both explore new solutions to obtain feedback for effective learning, and exploit
what has already been learned to produce results that are acceptable to users.
We formulate this challenge as an exploration-exploitation dilemma and present
the first online learning to rank algorithm that works with implicit feedback and
balances exploration and exploitation. We leverage existing learning to rank data
sets and recently developed click models to evaluate the proposed algorithm. Our
results show that finding a balance between exploration and exploitation can sub-
stantially improve online retrieval performance, bringing us one step closer to
making online learning to rank work in practice.

1 Introduction

Information retrieval (IR) systems are becoming increasingly complex. For example,
web search engines combine hundreds of ranking features that each capture a particular
aspect of a query, candidate documents, and the match between the two.In heavily used
search engines these combinations are carefully tuned to fit users’ needs.

For automatically tuning the parameters of such a system, machine learning algo-
rithms are invaluable [13]. Most methods employ supervised learning, i.e., algorithms
are trained on examples of relevant and non-relevant documents for particular queries.

While for some applications, such as web search, large amounts of data are available
for training, for many environments such data is not available. For example, when de-
ploying a search engine for a local library or company intranet, collecting large amounts
of training data required for supervised learning may not be feasible [19]. Even in envi-
ronments where training data is available, it may not capture typical information needs
and user preferences perfectly [15], and cannot anticipate future changes in user needs.

A promising direction for addressing this problem are online approaches for learn-
ing to rank [9, 25, 26]. These work in settings where no training data is available before
deployment. They learn directly from implicit feedback inferred from user interactions,
such as clicks, making it possible to adapt to users throughout the lifetime of the system.

However, collecting a broad enough set of implicit feedback to enable effective on-
line learning is difficult in practice. An online algorithm can observe feedback only on
the document lists it presents to the user. This feedback is strongly biased towards the
top results, because users are unlikely to examine lower ranked documents [20]. There-
fore, effective learning is possible only if the system experiments with new rankings.



Recent online learning to rank approaches address this problem through exploration,
for example by interleaving a document list produced by the current best solution with
that of a (randomly selected) exploratory solution [25, 26]. However, this purely ex-
ploratory behavior may harm the quality of the result list presented to the user. For
example, once the system has found a reasonably good solution, most exploratory doc-
ument lists will be worse than the current solution.

In this paper we frame this fundamental problem as an exploration—exploitation
dilemma. If the system presents only document lists that it expects will satisfy the user,
it cannot obtain feedback on other, potentially better, solutions. However, if it presents
document lists from which it can gain a lot of new information, it risks presenting bad
results to the user during learning. Therefore, to perform optimally, the system must
explore new solutions, while also maintaining satisfactory performance by exploiting
existing solutions. To make online learning to rank for IR work in a realistic setting, we
need to find ways to balance exploration and exploitation.

We present the first algorithm that balances exploration and exploitation in a setting
where only implicit feedback is available. Our approach augments a recently developed
purely exploratory algorithm that learns from implicit feedback [25] with a mechanism
for controlling the rate of exploration. We assess the resulting algorithm using a novel
evaluation framework that leverages standard learning to rank datasets and models of
users’ click behavior. Our experiments are the first to confirm that finding a proper
balance between exploration and exploitation can improve online performance. We also
find that surprisingly little exploration is needed for effective learning. These results
bring us one step closer to making online learning to rank work in practice.

2 Related Work

While our method is the first to balance exploration and exploitation in a setting where
only implicit feedback is available, a large body of research addresses related problems.

Most work in learning to rank has focused on supervised learning approaches that
learn from labeled training examples [13]. A limitation of these approaches is that they
cannot use the copious data that can be easily collected while users interact with the
search engine. Such implicit feedback directly captures information from the actual
users of the system [15]. In particular, preferences between documents [10] and be-
tween document lists [18] can be inferred and have been shown to contain sufficient
information for learning effective ranking functions [9].

To make learning from implicit feedback effective, online approaches need to ex-
plore. Methods based on active learning systematically select document pairs so as to
maximize the expected information gain [16, 24]. Two recently developed stochastic
methods use interleaved document lists to infer relative preferences between an ex-
ploratory and an exploitative ranking function [25, 26]. One algorithm compares a fixed
set of ranking functions and selects the best one [26]. The other algorithm, on which
our approach is based, uses relative feedback about two ranking functions for stochastic
gradient descent [25].

While recent online learning to rank methods provide ways to explore, they do not
address how to balance exploration and exploitation. Related research on ad placement
and result list diversification has investigated how to balance these factors, but assumes
explicit feedback and does not generalize over queries and documents [12, 17].



3 Method

In this section, we formalize the problem of online learning to rank for IR, describe a
baseline learning algorithm, and extend it to balance exploration and exploitation.

Problem formulation Our formulation of learning to rank for IR differs from most
other work in learning to rank in that we consider a continuous cycle of interactions
between users and the search engine. A natural fit for this problem are formalizations
from reinforcement learning (RL), a branch of machine learning in which an algorithm
learns by trying out actions (e.g., document lists) that generate rewards (e.g., an eval-
uation measure such as AP or NDCG) from its environment (e.g., users) [21]. Using
this formalization allows us to describe this problem in a principled way and to apply
concepts and solutions from this well-studied area.

Figure 1 shows the interaction cy-
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the quality of the presented document
list. This problem formulation directly
translates to an RL problem (cf., Fig-
ure 1, terminology in italics) in which
the retrieval system tries, based only
on implicit feedback, to maximize a hidden reward signal that corresponds to some
evaluation measure. We make the simplifying assumption that queries are independent,
i.e., queries are submitted by different users and there are no sessions. This renders the
problem a contextual bandit problem, a well-studied type of RL problem [1, 11].

Since our hypothesis is that balancing exploration and exploitation improves re-
trieval performance while learning, we need to measure this aspect of performance.
Previous work in learning to rank for IR has considered only final performance, i.e.,
performance on unseen data after training is completed [13], and, in the case of active
learning, learning speed in terms of the number of required training samples [24].

As is common in RL, we measure cumulative reward, i.e., the sum of rewards over
all queries addressed during learning [21]. Many definitions of cumulative reward are
possible, depending on the modeling assumptions. We assume an infinite horizon prob-
lem, a model that is appropriate for IR learning to rank problems that run indefinitely.
Such problems include a discount factor vy € [0,1) that weights immediate rewards
higher than future rewards. One way to interpret the discount factor is to suppose that
there is a 1 — ~ probability that the task will terminate at each timestep (e.g., users may
abandon the retrieval system). Rewards are thus weighted according to the probability
that the task will last long enough for them to occur. Then, cumulative reward is defined

as the discounted infinite sum of rewards r;: C = >, v" ;.

Fig.1. The IR problem modeled as a contextual
bandit problem, with IR terminology in black and
corresponding RL terminology in green and italics.

Baseline learning approach Our approach builds off a gradient-based policy search
algorithm called Dueling Bandit Gradient Descent (DBGD) [25]. This algorithm is par-
ticularly suitable for online learning to rank for IR because it generalizes over queries,



requires only relative evaluations of the quality of two document lists, and infers such
comparisons from implicit feedback [18].

This approach learns a ranking function consisting of a weight vector w for a linear
weighted combinations of feature vectors. Thus, to rank a set of documents D given a
query g, feature vectors X = {xXj,Xa,...,Xxp} that describe the relation between D
and ¢ are produced. Next, scores S for each document are produced using S = wX.
Finally, documents are ranked by their scores to generate a ranked document list [,,,.

Algorithm 1 summarizes this
approach. It takes as input a com-
parison method f(l,l5), that com-
pares two document lists, and three
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Algorithm 1 Baseline algorithm, based on [25].
Input: f(l1, lg), «, (5, wo
for query ¢: (t = 1..T) do
: Sample unit vector u; uniformly.

each timestep ¢, the algorithm ob- Wiy1 <= we +ouy  // update exploitative w
serves a query ¢; from which two else
. : Wit1 — Wi

document lists are produced: one oo .. Wear
exploitative, one exploratory. The
exploitative list is produced from the current exploitative weight vector w,, found to
perform best up to the current timestep ¢. The exploratory list is produced from an ex-
ploratory weight vector w;}, which is generated by moving w; in a random direction
u; by a step of size §. The exploitative and exploratory lists are then compared using
a function f(l1,l2). If the exploratory weight vector w; is judged to have produced
the better document ranking, the current exploitative weight vector w; is updated by
moving it towards w; by a step size a.

For the comparison method f (I, l2), several implementations have been suggested
[8, 18]. We chose a variant of the balanced interleave method as it is efficient, easy
to implement, and was found to be more reliable than the similar feam-draft method
both in [8] and in our own preliminary experiments. This method takes as input two
document lists and constructs an interleaved result list by randomly selecting a starting
list and then interleaving the two lists so that presentation bias between the two lists is
minimized. After observing user clicks on the result list, a preference between the lists
is inferred as follows. The rank of the lowest clicked document NV is identified. Then,
for each list the number of clicked documents within the top IV is counted. The list that
received more clicks in its top N is preferred. Ties are ignored.

Balancing exploration and exploitation Given an appropriate function for comparing
document lists, the baseline algorithm described above learns effectively from implicit
feedback. However, the algorithm always explores, i.e., it constructs the result list in a
way that minimizes bias between the exploratory and exploitative document lists, which
is assumed to produce the best feedback for learning. We now present a comparison
function f(I;,l5) that does allow balancing exploration and exploitation.

In contrast to previous work, we alter the balanced interleave function to interleave
documents probabilistically. Instead of randomizing only the starting position and then
interleaving documents deterministically, we randomly select the list to contribute the
document at each rank of the result list. In expectation, each list contributes documents
to each rank equally often.

" In [25], v denotes the exploitation step size. We use « to avoid confusion with the discount factor .



We employ a method for balancing exploration and exploitation that is inspired by
e-greedy, a commonly used exploration strategies in RL [22]. In e-greedy exploration,
the agent selects an action with probability € at each timestep. With probability 1 — ¢, it
selects the greedy action, i.e., the action with the highest currently estimated value.

Our probabilistic interleave al-
gorithm, which supplies the com- X

arison method required by DBGD, ~ mentlists
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Algorithm 2 f(l,l2) — k-greedy comparison of doc-

randomly picks one of the two re- i N =length(C);ci =ca=0
sult lists (biased by the exploration ~ 8: foriin (1.N) do
rate k). From the selected list, the 9: i Cl] € h[1: N] then

K X 10: c1 = c1 + 1/ count clicks on 11
highest-ranked document thatisnot  11.  if C[s] € iy[1 : N] then
yet in the combined result list is 12 2 = c2 + 1 // count clicks on l»

added at this rank. The result listis ~ 13: ma = [l : NJNI[L: N]|  //compensate for bias
displayed to the user and clicks C i;‘ Zj_: Jif[i ;1N] N NI

are observed. Then, for each clicked 6. return ¢; < s

document, a click is attributed to

that list if the document is in the top IV of the list, where NV is the lowest-ranked click.

The exploration rate k € [0.0, 0.5] controls the relative amount of exploration and
exploitation, similar to €. It determines the probability with which a list is selected to
contribute a document to the interleaved result list at each rank. When & = 0.5, an
equal number of documents are presented to the user in expectation. As k decreases,
more documents are contributed by the exploitative list, which is expected to improve
the quality of the result list but produce noisier feedback.

As k decreases, more documents from the exploitative list are presented, which in-
troduces bias for inferring feedback. The bias linearly increases the expected number
of clicks on the exploitative list and reduces the expected number of clicks on the ex-
ploratory list. We can partially compensate for this bias since E[ca] = Z—i x E[c1], where
E|c;] is the expected number of clicks within the top N of list /;, and n; is the number
of documents from /; that were displayed in the top IV of the interleaved result list. This
compensates for the expected number of clicks, but leaves some bias in the expected
number of times each document list is preferred. While perfectly compensating for bias
is possible, it would require making probabilistic updates based on the observed result.
This would introduce additional noise, creating a bias/variance trade-off. Preliminary
experiments show that the learning algorithm is less susceptible to increased bias than
to increased noise. Therefore we use this relatively simple, less noisy bias correction.

4 Experiments

Evaluating the ability of an algorithm to maximize cumulative performance in an online
IR setting poses unique experimental challenges. The most realistic experimental setup
—in a live setting with actual users — is risky because users may get frustrated with bad



search results. The typical TREC-like setup used in supervised learning to rank for IR
is not sufficient because information on user behavior is missing.

To address these challenges, we propose an evaluation setup that simulates user
interactions. This setup combines datasets with explicit relevance judgments that are
typically used for supervised learning to rank with recently developed click models.
Given a dataset with queries and explicit relevance judgments, interactions between the
retrieval system and the user are simulated (c.f., the box labeled “user/environment” in
Figure 1). Submitting a query is simulated by random sampling from the set of queries.
After the system has generated a result list for the query, feedback is generated using
a click model and the relevance judgments provided with the dataset. Note that the
explicit judgments from the dataset are not directly shown to the retrieval system but
rather used to simulate the user feedback and measure cumulative performance.

Click model Our click model is based on the Dependent Click Model (DCM) [6, 7],
a generalization of the cascade model [3]. The model posits that users traverse result
lists from top to bottom, examining each document as it is encountered. Based on this
examination, the user decides whether to click on the document or skip it. After each
clicked document the user decides whether or not to continue examining the document
list. Since the DCM has been shown to effectively predict users’ click behavior [7], we
believe it is a good model for generating implicit feedback.

When a user examines a document in the result list, they do not know the true rele-
vance label of the document. However, aspects of the document’s representation in the
result list (e.g., title) make it more likely that a document is clicked if it is relevant. Us-
ing this assumption, the ground truth relevance judgments provided in explicitly anno-
tated learning to rank datasets, and the process put forward by the DCM, we define the
following model parameters. Relevant documents are clicked with a probability p(c|R),
the probability of a click given that a document is relevant. Non-relevant documents can
attract (noisy) clicks, with probability p(c| NR). After clicking a document, the user may
be satisfied with the results and stop examination with probability p(s|R), the proba-
bility of stopping examination after clicking on a relevant document. The probability of
stopping after visiting a non-relevant document is denoted by p(s|NR).

To instantiate this click model we need to define click and stop probabilities. When
DCM is trained on large click logs, probabilities are estimated for individual query-
document pairs, while marginalizing over the position at which documents were pre-
sented in the training data. In our setting, learning these probabilities directly is not
possible, because no click log data is available. Therefore we instantiate the model
heuristically, making choices that allow us to study the behavior of our approach in
various settings. Setting these probabilities heuristically is reasonable because learning
outcomes for the gradient descent algorithm used in this paper are influenced mainly by
how much more likely users are to click on relevant and non-relevant documents. Thus,
this ratio is more important than the actual numbers used to instantiate the model.

Table 1 gives an overview of the click models used in our experiments. First, to
obtain an upper bound on the performance
that could be obtained if feedback was
deterministic, we define a perfect model,  model p(c|R) p(c|NR) p(s|R) p(s|NR)
where all relevant documents are clicked  perfect 10 00 00 0.0
and no non-relevant documents are clicked. ~ navigational 095 005 09 0.2
The two realistic models are based on typ- ~ ormational 05 04 05 01

Table 1. Overview of the click models used.




ical user behavior in web search [2, 6], because 8 of the 9 datasets we use implement
web search tasks (see below). In a navigational task, users look for a specific document
they know to exist in a collection, e.g., a company’s homepage. Typically, it is easy
to distinguish relevant and non-relevant documents and the probability of stopping ex-
amination after a relevant hit is high. Therefore, our navigational model is relatively
reliable, with a high difference between p(c|R) and p(c|NR). In an informational task,
users look for information about a topic, which can be distributed over several pages.
Here, users generally know less about what page(s) they are looking for and clicks tend
to be noisier. This behavior leads to the informational model, which is much noisier
than the navigational model.

Data We conducted our experiments using two standard collections for learning to
rank: letor 3.0 and letor 4.0 [14]. In total, these two collections comprise 9 datasets.
Each consists of queries for which features were extracted from a document collection,
together with relevance judgements for the considered query-document pairs.

The datasets were compiled from different sources: the 106 queries in OHSUMED
are based on a log of a search engine for scientific abstracts drawn from the MedLine
database. The remaining datasets are based on Web Track collections run between 2003
and 2008 at TREC. HP2003, HP2004, NP2003, NP2004, TD2003 and TD2004 imple-
ment homepage finding, named-page finding, and topic distillation tasks, using a crawl
of web pages within the .gov domain. These datasets contain between 50—150 queries
each, with about 1000 judged documents per query. MQ2007 and MQ2008 are based
on the 2007 and 2008 Million Query track at TREC and use the “.GOV2” collection.
These two datasets contain substantially more queries, 1700 and 800 respectively, but
much fewer judged documents per query.

The datasets based on the TREC Web track use binary relevance judgments, while
OHSUMED, MQ2007 and MQ2008 are judged on a 3-point scale from 0 (non-relevant)
to 2 (highly relevant). In all experiments we use binary relevance judgments. For the
three datasets that originally contain graded judgments, we treat all judgments greater
than zero as relevant. In preliminary experiments with graded relevance, we obtained
results nearly identical to those with the simpler binary judgments.?

Each dataset comes split up for machine learning experiments using 5-fold cross-
validation. We use the training sets for training during the learning cycle and for calcu-
lating cumulative performance, and the test sets for measuring final performance.

Runs In all experiments we initialize the starting weight vector wgy randomly, and use
the best performing parameter settings from [25]: 6 = 1 and « = 0.01. Our baseline
is Algorithm 1, based on [25], which corresponds to a purely exploratory setting of
k = 0.5 in our extended method. Against this baseline we compare exploit runs that
balance exploration and exploration by varying the exploration rate k between 0.4 and
0.1 as shown in Algorithm 2. All experiments are run for 1000 iterations.

Discounting Because our problem formulation assumes an infinite horizon, cumulative
performance is defined as an infinite sum of discounted rewards (cf. §3). Since exper-
iments are necessarily finite, we cannot compute this infinite sum exactly. However,
because the sum is discounted, rewards in the far future have little impact and cumula-
tive performance can be approximated with a sufficiently long finite experiment.

2 The reason appears to be that the learning algorithm works with very coarse feedback, so more
finely grained feedback has little influence on the reliability of inferred judgments.



In our experiments, we set the discount factor v = 0.995. This choice can be justi-
fied in two ways. First, it is typical of discount factors used when evaluating RL. meth-
ods [21]. Choosing a value close to 1 ensures that future rewards have significant weight
and thus the system must explore in order to perform well. Second, at this value of ~,
cumulative performance can be accurately estimated with the number of queries in our
datasets. Since rewards after 1000 iterations have a weight of 1% or less, our finite runs
are good approximations of true cumulative performance.

Evaluation measures We use cumulative NDCG on the result list presented to the user
to measure cumulative performance of the system. We define cumulative reward as the
discounted sum of NDCG that the retrieval system accrues throughout the length of the
experiment. Final performance is reported in terms of NDCG on the test set. Though
omited here due to lack of space, we also conducted experiments measuring cumulative
and final performance based on MAP and MRR and observed similar results.

For each dataset we repeat all runs 25 times and report results averaged over folds
and repetitions. We test for significant differences with the baseline runs (k = 0.5,
the first column of Table 3) using a two-sided student’s t-test. Runs that significantly
outperform the exploratory baseline are marked with 2 (p < 0.05) or 4 (p < 0.01).

5 Results and Discussion

The main goal of this paper is to show that balancing exploration and exploitation in
online learning to rank for IR can improve cumulative performance. However, such a
result is meaningful only if our baseline learning algorithm learns effectively in this
setting. Therefore, before turning to our main results, we assess our baseline algorithm.

Baseline learning approach Figure 2 shows example learning curves for the dataset
NP2003 at different settings of k and for all click models. Learning curves for all other
datasets are qualitatively similar, and we omit those due to space restrictions. The figure
shows final performance in terms of NDCG on the test sets after each learning step. We
see that final performance improves over time in all settings. As expected, learning
is faster when feedback is more reliable. For the idealized perfect click model, final
performance after 1000 iterations ranges between 0.777 and 0.785 for different settings
of k. For the noisy informational click model at the same settings, final performance
is between 0.412 and 0.546. Although final performance drops substantially as implicit
feedback becomes extremely noisy, we find that as long as there is a signal, i.e., relevant
documents are more likely to be clicked than non-relevant ones, performance improves
over time for all datasets.

We find an interaction effect between click model and exploration rate. When the
click model is reliable, there is no significant difference between the final performance
at different settings of k. However, in the informational click model, variance increases,
and there is a large difference between final performance at different settings of k. This
is a direct and expected consequence of the noise in inferred feedback. More surprising
is that final performance improves for smaller &, since we expected feedback to be the
most reliable for the fully exploratory setting £ = 0.5. Instead, it appears that, since
bias is only partially compensated for (cf., §3), the remaining bias at lower values of k
smoothes over some of the noise in the click model. At lower exploration rates, fewer



results from the exploratory list are pre-
sented and it becomes harder for the ex- P
ploratory list to win the comparison. Thus,
instead of noisier updates, the algorithm
makes fewer, more reliable updates that on i
average result in greater performance gains. & |
As a final sanity check, we calculate
standard evaluation measures that are typi-
cally used to evaluate supervised learning to
rank methods. Results for the perfect click
model and k£ = 0.5 after 1000 iterations are
listed in Table 2. Despite the limited infor-
mation available to the algorithm (relative
quality of the result list instead of explicit
relevance judgment per document), perfor-
mance is competitive with current super-
vised learning to rank algorithms [13]. Note
that we did not tune parameters of the algo- 5 o0 a0 oo o 1000
rithm for final performance, so further im- b
provements may be possible. Fig. 2. Final performance (with 5% confi-
dence intervals) over time for the dataset NP-
2003 for a) navigational, and b) informa-
tional click models and k € {0.1,0.2,0.5}
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Balancing exploration and exploitation We
now turn to our main research question: Can
balancing exploration and exploitation im-
prove online performance? Our results are Table 2. NDCG@10, Precision@10, and
shown in Table 3. Cumulative performance pAPp for the baseline algorithm.

for all exploif runs (k € [0.1,0.4]) is com-

pared to the purely exploratory baseline (k = NDCG@I0 P@I0 MAP
0.5). Best runs per row are highlighted in HP2003 0792  0.102 0.721
bold and significant differences are marked  HP2004 0.770  0.096 0.676
as described above. NP2003 0.761  0.090 0.649
Our focus is on comparing relative per- ~ NP2004 0787  0.093  0.659
formance per dataset. Starting with the per- TD2003 0.296  0.152° 0231
TD2004 0.298  0.236  0.206

fect click model, we see that for all datasets

the baseline is outperformed by all lower set- OHSUMED 0422 0488 0.437
. . MQ2007 0.375 0335 0410

tings of k. For k& < 0.4 all improvements MQ2008 0488 0238 0447
over the baseline are statistically significant.

The improvements range from 4.1% (OHSUMED) to 12.35% (NP2004).

We observe similar results for the navigational click model. For all datasets, there
are several lower settings of £ where performance improves over the baseline. For all but
one dataset (MQ2007), these improvements are statistically significant. Improvements
range from 0.54% (MQ2007) to 21.9% (NP2003).

The trend continues for the informational click model. Again, the purely exploratory
baseline is outperformed by more exploitative settings in all cases. For 7 out of 9 cases
the improvements are statistically significant. The improvement ranges up to 35.9% for
the dataset HP2004.

We find that for all click models and all datasets balancing exploration and exploita-
tion can significantly improve online performance over the purely exploratory baseline.




Comparing cumulative performance listed in Table 3 with final performance in Table 2,
we find that cumulative performance does not depend only on final performance. For
example, NDCG@ 10 and MAP for HP2003 are much higher than for OHSUMED, but
cumulative performance is very similar (precision scores are low for HP2003 because
there are few relevant documents in general, and are not a good indicator of the relative
quality of result rankings). We find that the main factors affecting cumulative perfor-
mance are the speed of learning and how effectively early learning gains are exploited.
This confirms that measuring final performance is not enough when evaluating online
learning to rank algorithms.

The best setting for exploration
rate k£ is 0.1 or 0.2 in all but two
cases. A setting of k& = 0.2 means 3 0.5 0.4 0.3 0.2. 0.1
that by injecting, on average, only ik model: perfect
two documents from an exploratory  “ppagos 11991 12571% 129994 130.55% 128504
list, the algorithm learns effectively HP2004 109.21 11157  118.54* 119.86* 116.46*

Table 3. Results. Cumulative NDCG for baseline
(k = 0.5) and exploit (k € [0.1,0.4]) runs.

. . NP2003 108.74 113.61% 117.44% 12046* 119.06*

and achieves good cumulative per- o5, 11533 110340 12447t 126200 123700
formance while learning. This means  7p2003 8200 8424  88.20* 89.36*  86.20*
TD2004 85.67 90.23* 91.00* 91.71* 88.98°

that surprisingly little exploration is
. OHSUMED 128.12 130.40* 131.16* 133.37* 131.93*
sufficient for good performance and  yp2007 96.02 97.48  98.54* 100.28* 98.324

that the ()rigina] a]gorithm (our base- MQ2008 90.97  92.99%  94.03* 95.59* 95.14*

line) explores too much. click model: navigational
While balancing exploration and HP2003 102.58 109.78* 118.84* 116.38* 117.52*
loitation i . formance | HF2004 89.61  97.08%  99.03* 103.36* 105.69*
cxplorfalion 1mproves pertorm NP2003 9032 100.94* 105.03* 108.15* 110.12*
for all datasets, the magnitude of  nP2004 99.14 10434* 110.16* 112.05* 116.00*
. . A A A A
these improvements differs substan-  7P2003 7093 7520 77.64*  77.54* 7570
. P . TD2004 78.83 80.17  82.40° 83.54* 8098
tially. For example, for the navi-  omsumep 12535 12692° 12737% 127.94* 12721
gational click model, the relative  M02007 9550 9499 9570  96.02  94.94

MQ2008 89.39  90.55 91.24%  92.36*  92.25*

improvement between baseline and : . _
best setting for NP2003 is 21.9%, _clickmodel: informational

. . . HP2003 59.53 6391 61.43 70.11%  71.19*
while for M Q2OQ7 the difference is .55, 4112 5288% 4854% 5588 55164
only 0.54%. This reflects a general  np2003 53.63 53.64 5760 5840  69.90

. . A
difference between datasets obtained ’}’L’; ;gg‘; gggz g;;i g‘l‘;; 2232 gg'gg
from the 2003 and 2004 TREC web 704 5849 6143 5975  62.88° 6337
tracks and the remaining datasets. ~ OHSUMED 12139 12326 12401° 126.76* 125.40*

MQ2007 9157 9200 9166 9079  90.19

The first contain 1000 candidate doc-
uments per query, but few relevant
documents. Therefore, it is relatively difficult to find a good ranking and minor changes
in weights can result in substantially worse result lists. Consequently, the differences be-
tween exploratory and exploitative document lists are large, leading to large improve-
ments when more documents from the exploitative list are selected. In contrast, the
datasets MQ2007, MQ2008, and OHSUMED contain fewer candidate documents but
many more relevant ones. Therefore, exploring does not hurt as much as in other set-
tings and differences between exploratory and exploitative settings tend to be smaller.
Note that in realistic settings it is likely that more candidate documents are considered,
so the effect of exploiting more is likely to be stronger.

The different instantiations of the click model also result in qualitative differences
in cumulative performance. Performance is higher with perfect feedback, and decreases

MQ2008 86.06 87.26 85.83 87.62 86.29




as feedback becomes noisier. Performance on some datasets is more strongly affected
by noisy feedback. For the HP, NP, and TD datasets, performance for the informational
model drops substantially. This may again be related to the large number of non-relevant
documents in these datasets. As finding a good ranking is harder, noise has a stronger
effect. Despite this drop in performance, balancing exploration and exploitation consis-
tently leads to better cumulative performance than the purely exploratory baseline.

6 Conclusion

In this paper, we formulated online learning to rank for IR as an RL problem, casting
the task as a contextual bandit problem in which only implicit feedback is available.
We argued that, in such problems, learning to rank algorithms must balance exploration
and exploitation in order to maximize cumulative performance. We proposed the first
algorithm to do so in an IR setting with only implicit feedback. This algorithm extends
a stochastic gradient descent algorithm with a mechanism for controlling the rate of ex-
ploration. Since assessing the performance of such algorithms poses unique challenges,
we introduced a evaluation framework based on simulated interaction that can measure
the cumulative performance of online methods.

The performance of our method was compared to a purely exploratory baseline, us-
ing three click models and nine datasets. We demonstrate that a proper balance between
exploration and exploitation can significantly and substantially improve cumulative per-
formance, which confirms our hypothesis. Surprisingly little exploration is needed for
good performance, and we analyzed how the reliability of user feedback and differences
between datasets affect the balance between exploration and exploitation.

Given this initial evidence of the benefit of balancing exploration and exploitation
in online IR, developing new algorithms for this problem is an important goal for future
research. In addition to the approach developed in this paper, approaches combining
active learning [4, 23] with exploration strategies from RL could be developed.

Our evaluation framework is based on existing learning to rank data collections and
a probabilistic model of how users examine result lists and decide whether to follow
a link to a document. An interesting future direction is to leverage click log data for
evaluation. The main challenge is to account for the fact that not all possible rankings
are contained in logs. Possible solutions could be based on click models estimated from
such data, like the one underlying the click model used in this paper [5, 7].

Like all simulations, our experiments are based on specific modeling assumptions.
In the future, experiments in real-life settings will be indispensable for verifying these
assumptions. Interesting questions include how a discount factor should be set for the
requirements of specific search environments. In preliminary experiments, we found
that our results do not depend on the infinite horizon model, as we obtained qualitatively
similar results in a finite horizon setting. Also, while our click model is based on specific
validated models, particular instantiations of this model had to be chosen heuristically.
Therefore, it would be useful to investigate what instantiations of the click model best
reflect the behavior of real users in such environments.
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