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The use of sparsity in the field of Computer Vision can perhaps best be
motivated by two main principles, computational efficiency and model sim-
plicity. Selecting as few variables or features as possible will hopefully yield
both a cheap and accurate model of the problem at hand.

Sparsity is typically obtained by regularizing the goodness of fit with the
cardinality, (denoted card(·) or || · ||0) of the variables. However, as this typ-
ically leads to non-convex optimization problems with high computational
demands, the standard approach is to replace and relax these regularizers
with convex surrogates for cardinality. The most popular such surrogate
function is unquestionably the l1-norm. The use of which is regularly justi-
fied by saying that the l1-norm makes up the convex envelope of the cardinal-
ity function. However, as it was pointed out in [1], this is an argument that
must be used with care. Correctly stated, we have that the l1-norm is only
the convex envelope of || · ||0 on the bounded domain, {x ∈Rd | ||x||∞ ≤ 1},
the l∞-norm unit ball.

It was argued in [1] that in certain instances it might be reasonable to not
only expect that each individual entry of the entering variables be bounded,
but to have bounds on their Euclidean norm as well. This led to the proposal
of the k-support norm, a norm that was shown to provide the tightest convex
relaxation of cardinality on the Euclidean-norm unit ball. It was also shown
that this norm leads to improved learning guarantees as well as better algo-
rithmic stability. However, as [1] did not address computational complexity
issues, the proposed algorithm, employing an exhaustive search method, has
proven painfully slow for even modest sized problems.

The authors of [2] presented an improved algorithm for computing the
solution of k-support norm regularized optimization problems. They pro-
posed the use of binary search as a replacement for certain subproblems in
the original algorithm of [1]. Despite reporting significant speed-ups over
[1], this method was still exhaustive in nature and could for larger problems
and/or certain parameter choices still prove to be quite inefficient.

In this paper we attempt to make progress towards shedding further light
on a number of different aspects of the k-support norm. In our opinion, there
are three main contributions made here. Firstly, we present a slightly differ-
ent derivation of the k-support norm with a stronger emphasis on the concept
of convex envelopes. By doing so we hope to provide a different perspec-
tive to previous work and also make the connection to the rank operator on
matrices perhaps more obvious. The k-support norm || · ||sp

k was defined in
[1] as the gauge function with its unit ball coinciding with the convex hull
of C(2)k .

C(2)k =
{

x ∈ Rd ∣∣ ||x||0 ≤ k, ||x||2 ≤ 1
}
, (1)

In this paper we present an alternate way of deriving this convex en-
velope by finding the Fenchel biconjugate of the indicator function of C(2)k .
We obtain

f ∗(y) = sup
x

yT x−χC(2)
k
(x) = sup

||x||0≤k
||x||2≤1

yT x =

√√√√ k

∑
i=1

(|y|↓i )2 = ||y||(2)k , (2)

where || · ||(p)
k : Rn 7→ R is the vector k-norm, defined as the lp-norm of the

k largest component values, in magnitude, of any vector in Rd , also known
as a symmetric gauge norm. Then its biconjugate becomes

f ∗∗(x) = sup
y

xT y−||y||(2)k = χ||x||(2)∗k ≤1
(x). (3)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Secondly, we show that there is an equivalence between cardinality, the
rank operator and the nuclear norm and k-support norm on domains shared
between the elements of vectors and singular values of matrices. With a
similar argument to that of above, obtaining convex envelopes of rank on
different domains can then be attempted. On the domain of the Frobenius
norm unit ball we have the following result.

The convex envelope of the indicator function χD(F)
k

of the set D(F)
k =

{X ∈ Rm×n
∣∣ rank(X)≤ k, ||X ||F ≤ 1}, becomes f ∗∗(X) = χ||X ||sp

∗k
. Where

||X ||sp
∗k denotes a spectral k-support norm. Let σ denote the vector of min(m,n)

singular values of X , then the spectral k-support norm is given by ||X ||sp
∗k =

||σ ||sp
k . An interesting intuitive verification of this result might be reached

with the following observation. On the domain of the matrix operator norm
unit ball the convex envelope of rank is given by the nuclear norm, the l1-
norm of the singular values. Similarly, on the domain of the matrix Frobe-
nius norm unit ball the convex envelope of rank is given by the spectral
k-support norm, the k-support norm of the singular values. These relation-
ships and more are summarised in table 1.

Concept: cardinality
Elements: vectors, x ∈ Rd

Domain: ||x||∞ ≤ 1 ||x||2 ≤ 1
Convex

Surrogate: ||x||1 ||x||sp
k

Concept: rank
Elements: matrices, X ∈ Rm×n

Domain: ||X ||= ||σ ||∞ ≤ 1 ||X ||F = ||σ ||2 ≤ 1
Convex

Surrogate: ||X ||∗ = ||σ ||1 ||X ||sp
∗k = ||σ ||

sp
k

Table 1: Summary of the convex surrogates and different domains discussed
in this paper.

Our final contribution is a proposed algorithm for solving optimization
problems involving the k-support norm. We show how any dichotomic di-
vide and conquer method can be used to find minimizers to a wide class of
problems. This proposed algorithm is empirically proven to be orders of
magnitude faster than the existing state-of-the-art approaches.
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