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Abstract In this paper we study the equations of nonlinear poroelasticity derived from mixture theory.
They describe the quasi-static mechanical behaviour of a fluid saturated porous medium. The nonlinearity
arises from the compressibility of the fluid and from the dependence of porosity and permeability on the
divergence of the displacement. We point some limitations of the model. In our approach we discretize the
quasi-static formulation in time and first consider the corresponding incremental problem. For this, we prove
existence of a solution using Brézis’ theory of pseudo-monotone operators. Generalizing Biot’s free energy to
the nonlinear setting we construct a Lyapunov functional, yielding global stability. This allows us to construct
bounds that are uniform with respect to the time step. In the case when dissipative interface effects between
the fluid and the solid are taken into account, we consider the continuous time case in the limit when the
time step tends to zero. This yields existence of a weak free energy solution.

Keywords quasi-static nonlinear poroelasticity · free energy · incremental problem · pseudo monotonicity ·
continuous time limit

1 Introduction

The elastic quasi-static deformation of a fluid saturated porous medium received much attention in the civil
engineering literature because of its relevance to many problems of practical interest. In the framework of
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consolidation in soil mechanics, these problems relate to the physical loading of soil layers or the effect of soil
subsidence due to groundwater withdrawal for drinking water supply or industrial and agricultural purposes.
Examples and underlying theories are given in the well-known works of Coussy [11], Lewis and Schrefler [17]
and Verruijt [37]. They build on the classical theory of Terzaghi [35] and the pioneering approach of Biot
[4],[36].

Recently, other examples of elastic deformation of porous media arise in the context of industrial and
biomedical applications, such as paper printing [6], bone regeneration [12], [10], blood flow [28], [7] and car
filters [19], [22].

In its simplest form, assuming both the fluid and the porous material (grains) to be incompressible and
assuming the porous medium to be homogeneous and linearly elastic with small strains, the mathematical
formulation reads (see Bear [1], Verruijt [37] or van Duijn et al [13]) :

div ∂tu + div
( K
ηf

(ρfg −∇p)
)

= q (1)

and

− div σ = F, (2)

where

σ = Ge(u)− αpI, (3)

with

GE = 2µE + λTr(E)I, for symmetric matrices E. (4)

In these equations, u [m] denotes skeleton displacement, K [m2] intrinsic permeability (a symmetric positive
definite rank−2 tensor), ηf [Pa s] fluid viscosity, p [Pa] fluid pressure and q [ 1/s ] sources/sinks. Further,
σ [Pa] is the total stress, F a given body force (generally linked to gravitational effects), G the symmetric,
positive-definite, rank-4 Gassmann tensor, e(u) the linearized strain tensor and α ∈ (0, 1] Biot’s effective
stress parameter. Finally, µ [Pa] and λ [Pa] are Lamé’s parameters. Using for G the specific form (4), i.e.
Hooke’s law, assumes that the skeleton is mechanically isotropic.

The linear quasi-static Biot system, as well as its dynamical analogue, was also derived by means of a
multiscale approach, where the starting point is the linear fluid-structure interaction at the pore level. We
refer to the monographs [31] and [20] for derivations using two-scale expansions and to [23] for a rigorous
mathematical derivation by means of homogenization. The derivations using multiscale analysis confirm
Biot’s models in the linear setting. Hence from different points of view system (1)-(4) is well accepted.

In the engineering literature one writes α = 1 − K/Kg, where K is the drained bulk modulus of the
porous skeleton and Kg the bulk modulus of the grains. Since it is assumed that Kg = +∞, we will set α = 1
in (3).

From a mathematical perspective, equations (1)-(4) were studied by Ženǐsek [39], who was one of the
first to demonstrate existence and uniqueness, and by Showalter [34]. More recent studies include [27] and
[19]. Later, Cao et al [8] considered a nonlinear extension of (1), by replacing the permeability tensor K by
the product Kk(div u). The function k(·) is a relative permeability depending on the volumetric strain div
u. From (1) we notice that the overall mixture of two incompressible phases is not incompressible itself.

Though system (1)-(4) is linear, its mathematical complexity lies in the fact that it is of quasi-static
nature. In particular (2)-(4) allow to control the size of the volumetric strain only through the size of the
data. Some authors circumvent this by introducing a time dependence in (2)-(4) as well. For instance Bociu
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et al [5] replace u in (3) by u+δ∂tu, (δ > 0), i.e. by introducing a viscoelastic effect. A different regularization
was proposed by Murad and Cushman [26] who replaced (3) and (4) by

σ = 2µe(u) + (λdiv u + λ∗div ∂tu− αp)I, (5)

with λ∗ > 0. This form arises in the non-equilibrium theory, where the fluid pressure and the solid pressure
differ by λ∗ div ∂tu.

In this paper we propose to study the quasi-static formulation in which we replace equation (1) by the
nonlinear fluid phase mass balance based on the mixture theory of Bedford and Drumheller [2], [3], see e.g.
Rutquist et al [30] and Lewis and Schrefler [17]:

n∂tρ+ ρdiv ∂tu + div j = Q, (6)

where j denotes the Darcy mass flux

j =
Kk(n)ρ

ηf
(ρg −∇p). (7)

Here n denotes porosity, ρ = ρf [kg/m3] fluid density, k relative permeability and Q [kg/m3 s] sources/sinks.
In equations (6)-(7), the porosity n is a given function of the volumetric strain: i.e.

n = n(div u). (8)

An explicit expression for (8) is derived from the Lagrangian solid mass balance equation. This is shown in
Section 2. Through (8), the relative permeability depends on div u.

Since n is the volume fraction of voids in the porous medium, it should satisfy the natural bounds

0 < n < 1. (9)

However, in Section 2 we show by means of a counter example that the porosity can attain negative - and
thus physically unrealistic - values. Therefore, the bounds in (9) are a major concern in the mathematical
model.

To close system (2)-(4), (6)-(7) we introduce a constitutive relation for the fluid density in terms of the
pressure. Assuming weak compressibility we write

ρ = ρ(p) = ρ0(1 + β(p− p0)). (10)

Further we propose an explicit expression for the relative permeability in terms of the porosity

k = k(n). (11)

In (10) ρ0 and p0 are reference values for, respectively, density and pressure and β [Pa−1] is the fluid
compressibility coefficient. The relative permeability in (11) satisfies{

k ∈ C1[0, 1],
k(0) > 0 and k′ > 0 in ([0, 1).

(12)

A well-known example is the Kozeny-Carman formula, see for instance [1],

k(n) = k0
n3

(1− n)2
(k0 > 0), (13)
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in a realistic porosity interval, bounded away from n = 0 and n = 1. Thus taking k such that (12) holds and

k(n) =



≥ k0
2

n3∗
(1− n∗)2

, for n ≤ n∗,

k0
n3

(1− n)2
, for 0 < n∗ < n < n∗ < 1,

≤ 2k0
(n∗)3

(1− n∗)2
, for n ≥ n∗,

(14)

for appropriately chosen 0 < n∗ < n∗ < 1, gives a relative permeability satisfying (13) in the interval [n∗, n
∗].

We notice that equation (6), coupled with (2)) and (4), is nonlinear due to the relation k = k(n) and
the products involving time derivatives. Assuming constant fluid phase density in the poroelastic mixture is
therefore an important simplification. This is studied in [8] and [5].

In studying system (2)-(4), (6)-(11) a crucial role is played by its free energy. The idea is to generalize
Biot’s free energy [4], which is quadratic in strain and fluid density, to the nonlinear poroelastic setting. This
free energy serves as a Lyapunov functional. This approach is linked to general entropy methods for PDEs.
For a detailed survey, covering various fields of applications we refer to [14] and to the recent book by Jüngel
[15]. An interesting application of the entropy method is discussed in [21], [9] and [24], where the authors
consider dynamic capillary pressure effects in two-phase porous media flow.

This paper is organized as follows. In Section 2 we present details of the model formulation. The starting
point is the mass balance for the fluid and the solid phase. The latter implies an explicit expression for (8).
Introducing a lower bound for the porosity we modify the fluid mass balance so that a Lyapunov functional
can be constructed for the modified system. This modification is such that the fluid equation reduces to its
original form in the physical range of the fluid density ρ and solid volumetric strain E . Section 2 is concluded
by a weak formulation of the modified system.

In Section 3 we consider, for the relaxation parameter λ∗ ≥ 0, the incremental version of the modified
system. Using Brézis’ theory of pseudo monotone operators, existence is demonstrated. Applying the Lya-
punov functional yields global (in time) estimates. Next, in Section 4, we use these estimates to solve the
time continuous problem when λ∗ > 0. In both Sections 3 and 4 we borrow ideas from Roubiček [29]. Finally,
in Section 5 we present a discussion and conclusions.

2 Problem formulation

In a number of steps we construct in this section the equations that serve as starting point for the analysis.
The general setting of the problem is as follows:

Let Ω ⊂ Rm (m=2,3) denote a smooth bounded domain, occupied by a linear elastic skeleton. The
skeleton material (grains) is assumed incompressible: i.e. the bulk modulus of the grains is infinitely large.
The voids in the porous structure are completely filled with a slightly compressible fluid, in the sense that
the fluid pressure p and density ρ are related by (10).

2.1 Balance equations

For given ξ ∈ Ω, let x(ξ, t) denote the location of a solid particle at time t > 0, that started at x(ξ, 0) = ξ,.
Then the skeleton velocity vs is given by vs = ∂tx|ξ.

Restricting themselves to small displacements u (within the elastic regime), Rutquist et al [30] and Lewis
and Schrefler [17] argue that in the mass balance equation for the fluid and solid, the material derivative
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D

Dt
= ∂t + vs · ∇ can be replaced by the partial derivative ∂t. This is made explicit by a scaling argument

in van Duijn et al [13]. The resulting Lagrangian form of the mass balances reads:

n∂tρ+ ρdiv vs + div j = Q (fluid phase) (15)

and

∂t(1− n) + (1− n)div vs = 0 (solid phase), (16)

where j is mass flux (7).
Within the same approximation one may write

div vs = ∂tdiv u.

Using this in (15) and (16) gives
n∂tρ+ ρ∂tdiv u + div j = Q (17)

and

∂t(1− n) + (1− n)div ∂tu = 0. (18)

Integrating (18) in time from t = 0, say, to t > 0, we have

1− n = (1− n0)e−div (u−U0) for t > 0.. (19)

Here U0 is the initial displacement and n0 the initial porosity. With n0 ∈ (0, 1) in Ω, expression (19) ensures

n < 1 in Ω for all t > 0. (20)

To avoid technical complications we restrict ourselves to n0 = constant in Ω.

For small displacements u−U0, expression (19) is approximated by

n = n0 + (1− n0)div (u−U0). (21)

Remark 1 Frequently, the linear form (21) is used for values of div u in a neighborhood of div U0 : i.e. in
practical circumstances (21) is applied when E∗ < div (u−U0) < E∗, where E∗ < 0 < E∗ are appropriately
chosen.

Throughout the paper we redefine
u := u−U0, (22)

where U0 ∈ H1
0 (Ω)m ∩H2(Ω)m is the initial displacement. Redefining accordingly

F := F + div (Ge(U0)), (23)

we obtain for the fluid pressure p and the skeleton displacement u the system:

n∂tρ+ ρ div ∂tu + div
(Kk(n)ρ

ηf
(ρg −∇p)

)
= Q, (24)

− div (Ge(u)− pI) = F, (25)

where

ρ = ρ(p) = ρ0(1 + β(p− p0)), (26)

n = n(div u) = 1− (1− n0)e−div u (27)

≈ n0 + (1− n0)div u (small strains). (28)
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Remark 2 Concerning the initial displacement U0 we note that only div U0, the initial volumetric strain, is
used. However, when discussing the free energy, one needs in addition that U0 is such that the corresponding
elastic energy is finite. For simplicity we suppose U0 ∈ H2(Ω)m.

In the next sections we will develop the mathematical theory for system (24)-(28).
The issue of negative porosity in (27) (or, for that matter, a porosity exceeding one in approximation

(28)), is discussed next.

2.2 Negative porosity

We consider a simplified version of the linear problem (1)-(4) and show that div u can attain values for
which the porosity from (27)-(28) becomes negative.

For simplicity we give the construction in R2.
Let Ω = (0, L)2 for some L > 0. We suppose, as in the rest of this paper, that div u|t=0 = 0. Further we

set F = 0 in (25). Using (4) in (25) gives

− div
(
2µe(u) + (λdiv u− αp)I

)
= 0 in Ω., (29)

Proceeding as in Verruijt [37], when he discusses the Mandel problem, we take the divergence of (29) to
obtain

∆
(
(2µ+ λ)div u− p

)
= 0 in Ω. (30)

Hence the function

H = (2µ+ λ)div u− p

is harmonic in Ω.
The idea is to prescribe boundary conditions for equations (24) and (25) so that H|∂Ω is given. For

instance, if we set along the four edges, see Figure 1,
{x1 = 0} : u2 = 0, σ11 = Σ1,0 and p = 0;

{x1 = L} : u2 = 0, σ11 = Σ1,L and p = 0;
{x2 = 0} : u1 = 0, σ22 = Σ2,0 and p = 0;

{x2 = L} : u1 = 0, σ22 = Σ2,L and p = 0,

(31)

and use

σ11 = 2µ
∂u1
∂x1

+ λdiv u− p,

we have

Σ1,0 = (2µ+ λ)
∂u1
∂x1

at {x1 = 0},

implying

H = Σ1,0 at {x1 = 0}.

Repeating this along the other edges gives

H|∂Ω = Σb,

where Σb denotes the given value of σ along the edges.
Then we have
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Fig. 1 Sketch of level set of porosity n at some t > 0. The region where n > 0 shrinks with increasing time and disappears
after a finite time Tp > 0.

Proposition 1 Let E = div u denote the volumetric stress and let n(E) be given by (27). Suppose there
exists a constant Σ > 0 such that Σb ≤ −Σ. Then for Σ sufficiently large, there exists a Tp = Tp(Σ) > 0
such that

n(E(x, t)) < 0 for t > Tp and x ∈ Ω. (32)

Proof Note that the sign of Σb implies compression of the medium. Restricting ourselves to the linear case
(1) in a homogeneous and isotropic porous medium in which sources/sinks and gravity are absent, we have

∂tdiv u− K

ηf
∆p = 0 in Ω, t > 0. (33)

Since
∆p = (2µ+ λ)∆(div u)

and

div u|∂Ω =
Σb

2µ+ λ
≤ − Σ

2µ+ λ
,

we have for E = div u the problem
∂tE =

(2µ+ λ)K

ηf
∆E in Ω, t > 0;

E|∂Ω ≤ −
Σ

2µ+ λ
for t > 0;

E|{t=0} = 0 in Ω.

(34)

By the strong maximum principle, E < E in Ω and for t > 0, where E is the solution of problem (34) with
E = −Σ/(2µ+ λ) on ∂Ω. Writing E as a Fourier series, one observes that

E(x, t)→ − Σ

2µ+ λ
as t→ +∞,



8 C.J. van Duijn, Andro Mikelić
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Fig. 2 Sketch of porosity cut-off n(E), with n0 = 0.5, E∗ = −0.5, E∗ = 0.5 and δ0 = 0.125.

uniformly in x ∈ Ω.
Thus if

(1− n0)eΣ/(2µ+λ) > 1,

or

Σ > (2µ+ λ) ln
1

1− n0
,

the result is immediate. �

This example shows that there is a problem with the model. A modification is needed to prevent the
porosity (27), or (28), to become negative. Of course one could argue that this is outside the scope of the
model or outside the range of practical applications, since linear elasticity and small strains are supposed.
However, since it is not clear how to ensure that indeed small displacements/strains are guaranteed, one
needs to impose a porosity modification to prevent negative values.

2.3 Modification of balance equations

In a number of steps we modify equation (24) so that it becomes well-posed in a mathematical sense and
reduces to its original form in the physical range of the unknowns.

First, to satisfy the natural bounds (9), we replace the porosity approximation (28) by a smooth increasing
function n : R→ R such that

n(E) =


lim
E→+∞

n(E) = 1,

n0 + (1− n0)E , for E∗ ≤ E ≤ E∗;
lim
E→−∞

n(E) = δ0 > 0.
(35)

Here E∗ and E∗ are practical values chosen such that −n0/(1 − n0) < E∗ < 0 < E∗ < 1 and δ0 = n(E∗)/2 ,
see Figure 2 for a sketch.
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This construction ensures that the modified porosity n(E) remains in the physical range (0, 1) and coin-
cides with the linear approximation in the interval (E∗, E∗). Realistic porosity measurements are always done
away from the bounds n = 0 and n = 1, see e.g. Bear [1].

We choose to study equation (24) with the fluid density as primary unknown. Hence we need to express
the pressure p in terms of ρ. Using (26) we have explicitly

p = p(ρ) := p0 +
ρ− ρ0
βρ0

. (36)

When considering (24), one clearly has in mind that ρ takes values near the reference ρ0. However the
mathematical nature of the equations does not guarantee this behaviour. Hence a second modification is
needed, now for ρ in the second and third term of the left-hand side of (24). Disregarding gravity, we replace
(24) by the modified fluid mass balance equation

n(E)∂tρ+ d(ρ)∂tE − div
(
k(E)D(ρ)K∇ρ

)
= Q, (37)

where n(E) is given by (35) and k(E) = k(n(E)). Further, d, D : R→ R are chosen such that

d(ρ) = ρ,

D(ρ) =
ρ

ηfβρ0
,

}
for |ρ− ρ0| ≤ ρ0 − ρ∗, (38)

where ρ∗ ∈ (0, ρ0) is a small constant. Outside this range we take for d and D extensions that suit the
mathematical analysis. We clarify this at a later point in this section.

Remark 3 The composite function k(E) = k(n(E)) satisfies: k ∈ C1(R) ∩ L∞(R) and k > k(δ0) > 0, k′ > 0
in R.

The balance of forces (25) is modified by adding the regularizing term λ∗∂tE , as in expression (5). This
gives

−div
(
Ge(u) + (λ∗∂tE − αp)I

)
= F, (39)

where we have λ∗ ≥ 0.
We consider system (37), (39) in the set

QT = {(x, t) : x ∈ Ω, 0 < t < T },

where T > 0 is arbitrarily chosen. To avoid technical complications we take ∂Ω ∈ C1 throughout the rest of
this paper.

As initial conditions we have

E|t=0 = 0 and ρ|t=0 = ρ0 in Ω, (40)

where ρ0 : Ω → (0,+∞) is taken near the reference value ρ0. Along the boundary we prescribe

u|∂Ω = 0, ∇ρ · ν|∂Ω = 0, for 0 < t ≤ T. (41)

where ν is the outward unit normal at ∂Ω.
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2.4 Lyapunov functional

In this section we derive an expression for the free energy which acts as a Lyapunov functional for system
(37), (39). This generalizes the free energy introduced originally by Biot [4].

Let {u, ρ} be a smooth solution of equations (37), (39) that satisfies conditions (40) and (41). Further,
let g : R→ R be a smooth, strictly increasing and globally Lipschitz function satisfying g(ρ0) = 0.

We first multiply equation (39) by ∂tu and integrate the result in Ω. This gives

1

2

d

dt

∫
Ω

Ge(u) : e(u) dx+ λ∗
∫
Ω

(∂tE)2 dx− d

dt

∫
Ω

F · u dx−
∫
Ω

p(ρ)∂tE dx = −
∫
Ω

∂tF · u dx. (42)

Next we multiply (37) by g(ρ) and integrate the result in Ω. This results in∫
Ω

n(E)g(ρ)∂tρ dx+

∫
Ω

d(ρ)g(ρ)∂tE dx−
∫
Ω

k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ dx =

∫
Ω

Qg(ρ) dx. (43)

With

G(ρ) =

∫ ρ

ρ0

g(z) dz, (44)

the first term in (43) can be written as∫
Ω

n(E)∂tG(ρ) dx = ∂t

∫
Ω

n(E)G(ρ) dx−
∫
Ω

n′(E)G(ρ)∂tE dx. (45)

Note that G is a nonnegative, convex function with G(ρ0) = 0.
We substitute (45) back into (43). Adding the resulting expression and (42) yields

d

dt

∫
Ω

(
1

2
Ge(u) : e(u) + n(E)G(ρ)− F · u

)
dx+ λ∗

∫
Ω

(∂tE)2 dx+

∫
Ω

k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ dx+∫
Ω

{
d(ρ)g(ρ)− n′(E)G(ρ)− p(ρ)

}
∂tE dx =

∫
Ω

Qg(ρ) dx−
∫
Ω

∂tF · u dx. (46)

Before considering the general nonlinear case described by this expression, we first show its implication for
the simplified linear setting. Then we use in (37) and (46)

n(E) = n0, d(ρ) = ρ0, k(E) = 1 and D =
1

ηfβ
.

For this choice, the term ∫
Ω

{
d(ρ)g(ρ)− n′(E)G(ρ)− p(ρ)

}
∂tE dx (47)

in expression (46) simplifies to ∫
Ω

{
ρ0g(ρ)− p(ρ)

}
∂tE dx. (48)

Since ∫
Ω

∂tE dx = 0,

expression (48) vanishes if g(ρ) is chosen such that

ρ0g(ρ)− p(ρ) = constant = −p0.
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This gives

g(ρ) =
ρ− ρ0
βρ20

and

G(ρ) =
(ρ− ρ0)2

2βρ20
.

Using these expressions in (46) yields

d

dt

∫
Ω

{1

2
Ge(u) : e(u) +

n0
βρ20

(ρ− ρ0)2 − F · u
}
dx+ λ∗

∫
Ω

(∂tE)2 dx+∫
Ω

1

ηfβ2ρ20
K∇ρ · ∇ρ dx =

∫
Ω

Qg(ρ) dx−
∫
Ω

∂tF · u dx. (49)

Hence

L(u, ρ) =

∫
Ω

(
1

2
Ge(u) : e(u) +

n0
2βρ20

(ρ− ρ0)2 − F · u
)
dx (50)

acts as a Lyapunov functional for the linear form of system (37), (39). The first term denotes the elastic
energy of the skeleton, the second term the compression energy of the fluid and the third term the work
done by the force F.

Expression (50) coincides with Biot’s original free energy expression from [4].
Next we return to the nonlinear case (46). As a first step we restrict ourselves to the physical range of

the porosity. Then integral (47) becomes∫
Ω

{
d(ρ)g(ρ)− (1− n0)G(ρ)− p(ρ)

}
∂tE dx. (51)

This integral vanishes if g(ρ) is chosen such that

d(ρ)g(ρ)− (1− n0)G(ρ)− p(ρ) = −p0 (52)

Differentiating the expression yields a first order equation for g. Thus for (51) to vanish, g should satisfy the
initial value problem d(ρ)g′(ρ) + (d′(ρ)− (1− n0))g =

1

ρ0β
, for ρ ∈ R;

g(ρ0) = 0.
(53)

We first consider this problem in the interval |ρ− ρ0| < ρ := ρ0 − ρ∗ where d(ρ) = ρ. Then (53) reduces toρg′ + n0g =
1

βρ0
,

g(ρ0) = 0.
(54)

Direct integration results in

g(ρ) =
1

βn0ρ0

(
1− (

ρ0
ρ

)n0
)
. (55)

A second integration yields

G(ρ) =

∫ ρ

ρ0

g(ξ) dξ =
1

βn0(1− n0)ρ0

(
(1− n0)ρ− ρn0

0 ρ1−n0 + n0ρ0

)
. (56)
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Fig. 3 Sketch of the free energy βG(ρ/ρ0). The linear case is in blue. The nonlinear case, see (56) and (59) with n0 = 1/3 and
ρ∗/ρ0 = 0.01, is in black.

When |ρ − ρ0| > ρ, the function d(ρ) has not yet been defined. We do this by first extending g(ρ) for
|ρ− ρ0| > ρ and then by solving d(ρ) from (52): i.e.

d(ρ) =
(1− n0)G(ρ) + p(ρ)− p0

g(ρ)
. (57)

Clearly, (55) cannot be used for ρ ≤ 0. Instead we extend (55) in a linear C1−manner for |ρ − ρ0| > ρ.
With ρ̃ = ρ0 + ρ = 2ρ0 − ρ∗, we set

g(ρ) =


1

βn0ρ0

{
1− (

ρ0
ρ∗

)n0 +
ρ− ρ∗
ρ∗

(
ρ0
ρ∗

)n0

}
for ρ < ρ∗,

1

βn0ρ0

{
1− (

ρ0
ρ̃

)n0 +
ρ− ρ̃
ρ̃

(
ρ0
ρ̃

)n0

}
for ρ > ρ̃,

(58)

yielding

G(ρ) =


G(ρ∗) +

ρ− ρ∗
βn0ρ0

(
1− (

ρ0
ρ∗

)n0 +
ρ− ρ∗

2ρ∗
(
ρ0
ρ∗

)n0

)
for ρ < ρ∗;

G(ρ̃) +
ρ− ρ̃
βn0ρ0

(
1− (

ρ0
ρ̃

)n0 +
ρ− ρ̃

2ρ̃
(
ρ0
ρ̃

)n0

)
for ρ > ρ̃.

(59)

Substituting expressions (58) and (59) in (57), yields the desired extension for d(ρ) when |ρ − ρ0| > ρ.
Thus

d(ρ) =

{
ρ for |ρ− ρ0| ≤ ρ,
(57) with g and G given by (58) and (59) for |ρ− ρ0| > ρ.

(60)

Hence the triple {g(ρ), G(ρ), d(ρ)} constructed above satisfies (52). For this choice the integral (51) drops
from expression (46).

So far we considered for the porosity the linear approximation n(E) = n0 + (1− n0)E . To deal with the
full cut-off (35) we introduce a second modification. Starting point is (47). This integral vanishes if

d(ρ)g(ρ)− n′(E)G(ρ) = p(ρ)− p0. (61)



Nonlinear Poroelasticity 13

Keeping g as in (55), (58) and G as in (56), (59), we now modify d(ρ), calling it D(ρ, E), such that

D(ρ, E) =
n′(E)

g(ρ)
G(ρ) +

p(ρ)− p0
g(ρ)

. (62)

Using (57) in this expression gives

D(ρ, E) = d(ρ) + (n′(E)− (1− n0))
G(ρ)

g(ρ)
. (63)

Clearly, for |ρ− ρ0| < ρ and E∗ < E < E∗, this expression reduces to

D(ρ, E) = ρ.

Finally we use in the Darcy mass flux term j from equation (37)

D(ρ) =
1

ηfρ0β

 ρ̃, for ρ > ρ̃;
ρ, for ρ∗ < ρ < ρ̃;
ρ∗, for ρ < ρ∗.

(64)

Thus in the end we consider the ”second” modified fluid mass balance equation

n(div u)∂tρ+D(ρ,div u) div ∂tu = div
(
k(n(div u))D(ρ)K∇ρ

)
+Q. (65)

System (39)-(65) serves as starting point of the analysis. The function D(ρ, E) in (65) generalizes the fluid
density. It is chosen so that

J(u, ρ) =
1

2

∫
Ω

Ge(u) : e(u) dx+

∫
Ω

n(div u)G(ρ) dx−
∫
Ω

F · u dx (66)

acts as a Lyapunov functional for the system. The function G : R → R satisfies G(ρ0) = 0, G(ρ) > 0 if
ρ 6= ρ0 and G is strictly convex, with quadratic behavior for large values of |ρ|. It is explicitly given by (56)
and (59).

2.5 Summary of equations and weak formulation

The problem describing the nonlinear poroelastic behavior of a fluid saturated porous medium is to find the
displacement u : QT → Rm and the fluid density ρ : QT → R satisfying

(i) the balance equations

n(E)∂tρ+D(ρ, E)∂tE = div
(
k(E)D(ρ)K∇ρ

)
+Q, (67)

− div
(
Ge(u) + λ∗∂tEI− p(ρ)I

)
= F, (68)

in QT = (0, T )×Ω and

(ii) the initial-boundary conditions (40)-(41).
The coefficients in equations (67)-(68) were introduced in this section. Specifically,

n(E) and k(E) satisfy (35) and Remark 3,
D(ρ, E), D(ρ) and p(ρ) are given by (62), (64) and (36),
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and λ∗ ≥ 0.

We recast this classical formulation in the following weak form.

Definition 1 We call a triple (u, E , ρ) ∈ L∞(0, T ;H1(Ω)m) × L∞(0, T ;H1
loc(Ω)) ×

(
L2(0, T ;H1(Ω))

∩L∞(0, T ;L2(Ω))
)
, ∂tE ∈ L2(QT ) ∩ L∞(0, T ;H1

loc(Ω)) a weak free energy solution if

(i)

−
∫ T

0

∫
Ω

ρn(E)∂tΦ dxdt−
∫
Ω

n0ρ
0(x)Φ(x, 0) dx+

∫ T

0

∫
Ω

∂tE
(
D(ρ, E)− ρn′(E)

)
Φ dxdt+∫ T

0

∫
Ω

k(E)D(ρ)K∇ρ · ∇Φ dxdt =

∫ T

0

∫
Ω

QΦ dxdt, ∀Φ ∈ H1(QT ), Φ|t=T = 0; (69)

(ii)
E = div u;

(iii) ∫
Ω

Ge(u) : e(ξ) dx+ λ∗∂t

∫
Ω

E div ξ dx−
∫
Ω

p(ρ)div ξ dx =∫
Ω

F · ξ dx, ∀ξ ∈ H1
0 (Ω)3 and for almost all t ∈ (0, T ]; (70)

(iv)
E|t=0 = 0 in Ω. (71)

(v) For every t1, t2 ∈ [0, T ], t1 < t2,∫
Ω

(
1

2
Ge(u(t2)) : e(u(t2)) + n(E)(t2))G(ρ(t2))− F(t2) · u(t2)

)
dx+∫ t2

t1

∫
Ω

(
λ∗(∂tE)2 + k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ−Qg(ρ) + ∂tF · u

)
dxdt ≤∫

Ω

(
1

2
Ge(u(t1)) : e(u(t1)) + n(E(t1))G(ρ(t1))− F(t1) · u(t1)

)
dx, (72)

where g(ρ) and G(ρ) are given, respectively, by (55), (58) and (56), (59).

Here ρ0 ∈ L2(Ω), Q ∈ C([0, T ];L2(Ω)) and F ∈ H1(0, T ;L2(Ω)m).

In Definition 1 we explicitly incorporate energy inequality (72). When dealing with classical solutions,
equations (67)-(68) imply the energy balance (see (46), (47) and (66))

∂tJ(u, ρ) +

∫
Ω

λ∗(∂tE)2 dx+

∫
Ω

k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ dx =

∫
Ω

Qg(ρ) dx−
∫
Ω

∂tF · u dx. (73)

However, in the weak formulation (69)-(70) we cannot use Φ = g(ρ) and ξ = ∂tu, due to lack of smoothness.
Therefore (v) has to be added explicitly. Hence we consider only those weak solutions satisfying additionally
(72). Therefore they are called weak free energy solutions.

In a number of steps we prove existence of weak solutions when λ∗ > 0. We achieve this by first considering
the incremental formulation. In this approximation, which is clearly relevant when treating the problem
numerically, we obtain existence results which hold for all λ∗ ≥ 0.
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3 Existence of a solution to the incremental problem

In this section we study the time discretized form of (67), (68).
In doing so we use the function g = g(ρ), defined by (55) and (58) as the primary unknown. This is allowed

since g : R → R is smooth and strictly increasing. The switch to g is done for mathematical convenience,
because it allows us to obtain Lyapunov functional estimates in a straightforward way. We start with some
definitions. Let

p(g) := p(ρ(g)) and D(g) := D(ρ(g))ρ′(g). (74)

Further, since

G(ρ(z)) =

∫ ρ(z)

ρ0

g(ξ) dξ =

∫ z

0

ζρ′(ζ) dζ, z ∈ R, (75)

let

G(g) :=

∫ g

0

ζρ′(ζ) dζ

and, from (62),

D(g, E) =
n′(E)

g
G(g) +

p(g)− p0
g

.

 (76)

Note that the first term in D(g, E) is bounded with respect to E and grows linearly in g for large |g|. The
second (pressure) term is bounded with respect to g since

p(g)− p0 = p(ρ(g))− p0 =
ρ(g)− ρ0
βρ0

.

Using these definitions in (67) and (68), we find in terms of g

n(E)∂tρ(g) +D(g, E)∂tE = div
(
k(E)D(g)K∇g

)
+Q, (77)

− div
(
Ge(u) + λ∗∂tEI− p(g)I

)
= F, (78)

in QT .

Next we turn to the time discretized form of equations (77) and (78).

Let τ ∈ (0, 1) denote the time discretization step and N ∈ N a large integer such that Nτ = T . At each
discrete time tj = jτ , with j = 0, 1, . . . , N , we set

Fj(x) = F(x, jτ), Qj(x) = Q(x, jτ), x ∈ Ω.

Let uj−1 and gj−1 denote, respectively, the displacement and transformed density at tj−1 for some j ∈
{1, 2, . . . , N}: i.e.

uj−1(x) = u(x, tj−1), gj−1(x) = g(x, tj−1), x ∈ Ω.
Then u and g at time tj are obtained as solutions of the incremental problem (writing U = uj−1, Ξ = gj−1

and V = H1
0 (Ω)m ×H1(Ω)) :

Problem (PD): Given (U, Ξ) ∈ V , find (u, g) ∈ V such that∫
Ω

n(div U)

τ
(ρ(g)− ρ(Ξ))ψ dx+

∫
Ω

Dτ (g,div u,div U) div
u−U

τ
ψ dx

+

∫
Ω

k(div u)D(g)K∇g · ∇ψ dx =

∫
Ω

Qjψ dx, ∀ψ ∈ H1(Ω); (79)∫
Ω

Ge(u) : e(ξ) dx+
λ∗

τ

∫
Ω

div (u−U) div ξ dx−
∫
Ω

p(g)div ξ dx =

∫
Ω

Fj · ξ dx, ∀ξ ∈ H1
0 (Ω)m. (80)
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The coefficient Dτ in equation (79) is given by

Dτ (g, div u, div U) =
n( div u)− n( div U)

div u− div U

G(g)

g
+
p(g)− p0

g
. (81)

This expression results from D(g, E) in (76), when the derivative n′(E) is replaced by the finite difference
n( div u)− n( div U)

div u− div U
. The specific choice of (81) appears convenient in the estimates concerning the time

discrete Lyapunov functional.

Using the weak topology of the space H1
0 (Ω)m ×H1(Ω), serious difficulties arise with the coefficients n,

Dτ and k depending on div u. To remedy this, we introduce a Friedrichs mollifier Υε, where ε is a small
positive parameter (see e.g. [29], page 203), and replace div u in the nonlinearities by the convolution div
u ? Υε = −u ? ∇Υε. Using this substitution one can treat nonlinear coefficients containing div u as lower
order terms in the equations. This allows us to use the theory of pseudo-monotone operators.

Applying this convolution, the regularized form of problem (PD) reads:

Problem (PD)ε: Given (U, Ξ) ∈ V , find (uε, gε) ∈ V such that, with Eε = −uε ?∇Υε,∫
Ω

n(div U)

τ
(ρ(gε)− ρ(Ξ))ψ dx+

∫
Ω

(
n(Eε)− n(div U)

τgε
G(gε) +

p(gε)− p0
τgε

)
div (uε −U)ψ dx

+

∫
Ω

k(Eε)D(gε)K∇gε · ∇ψ dx =

∫
Ω

Qjψ dx, ∀ψ ∈ H1(Ω), (82)∫
Ω

Ge(uε) : e(ξ) dx+
λ∗

τ

∫
Ω

div (uε −U) div ξ dx−
∫
Ω

p(gε)div ξ dx =

∫
Ω

Fj · ξ dx, ∀ξ ∈ H1
0 (Ω)m. (83)

We have the following existence result

Proposition 2 Let ε > 0 be a small positive constant. Under the assumptions of Definition 1, problem
(PD)ε admits at least one solution (uε, gε) ∈ V .

Proof We start by introducing a nonlinear operator A, defined on V and with values in its dual V ′. It results
from adding (82) and (83). We write the resulting relation, with (u, g) ∈ V , as

A(u, g) = b, (84)

where

〈A(u, g), (ξ, ψ)〉 :=
1

τ

∫
Ω

Ge(u) : e(ξ) dx+
λ∗

τ2

∫
Ω

div (u−U) div ξ dx

−
∫
Ω

p(g)

τ
div ξ dx+

∫
Ω

k(−u ?∇Υε)D(g)K∇g · ∇ψ dx+

∫
Ω

n(div U)

τ
(ρ(g)− ρ(Ξ))ψ dx+∫

Ω

(
n(−u ?∇Υε)− n(div U)

τg
G(g) +

p(g)− p0
τg

)
div (u−U)ψ dx, ∀(ξ, ψ) ∈ V. (85)

and

〈b, (ξ, ψ)〉 :=

∫
Ω

Fj · ξ dx+

∫
Ω

Qjψ dx, ∀(ξ, ψ) ∈ V. (86)

The idea is to show that A is a perturbed monotone operator: i.e. A is monotone in its principal part
containing derivatives of u and g. To be precise, we show that A is pseudomonotone and coercive. This
allows to apply Brézis’ theorem to (84) (see chapter 2 in monographs [18] and [29] or chapters 26 and 27 in
[38]) to conclude existence for problem (PD)ε.
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For the comfort of the reader we recall that an operator A : V → V ′ is pseudo-monotone if and only if
A is bounded and

{ur, gr}⇀ {u, g} weakly inV,
lim sup
r→+∞

〈A(ur, gr), (ur, gr)− (u, g)〉 ≤ 0,

}
⇒
∀(v, h) ∈ V,
〈A(u, g), (u, g)− (v, h)〉 ≤
lim inf
r→+∞

〈A(ur, gr), (ur, gr)− (v, h)〉,
(87)

The boundedness of A is immediate. To show (87) we follow Chapter 2 from [29] or Chapter 17 from [33]
and rewrite A in a form having a principal part containing partial derivatives of u (in e(u) and div u) and
∇g, and a lower order part containing u and g. Specifically, we introduce the operator B : V × V → V ′ by

〈B
(
(w, `), (u, g)

)
, (ξ, ψ)〉 =

1

τ

∫
Ω

Ge(u) : e(ξ) dx+
λ∗

τ2

∫
Ω

div (u−U) div ξ dx−∫
Ω

p(`)

τ
div ξ dx+

∫
Ω

(
n(−w ?∇Υε)− n(div U)

τ`
G(`) +

p(`)− p0
τ`

)
div (u−U)ψ dx

+

∫
Ω

n(div U)

τ
(ρ(`)− ρ(Ξ))ψ dx+

∫
Ω

k(−w ?∇Υε)D(`)K∇g · ∇ψ dx, ∀(ξ, ψ) ∈ V. (88)

We observe that B
(
(u, g), (u, g)

)
= A(u, g). The introduction of B is useful because it reflects the mono-

tonicity of the principal part of A(u, g). This is a direct consequence of

〈B
(
(w, `), (u1, g1)

)
− B

(
(w, `), (u2, g2)

)
, (u1, g1)− (u2, g2)〉 ≥ 0, (89)

with equality if and only if u1 = u2 and g1 = g2. Inequality (89) is checked by a short computation in (88).
To show (87) we consider a sequence {ur, gr} ⊂ V such that

(ur, gr) ⇀ (u, g) weakly in V and lim sup
r→+∞

〈A(ur, gr), (ur, gr)− (u, g)〉 ≤ 0. (90)

As in [29] we set (uδ, gδ) = (1 − δ)(u, g) + δ(v, h), where δ ∈ [0, 1] and (v, h) ∈ V . Using the monotonicity
from (89), we obtain

δ〈A(ur, gr), (u, g)− (v, h)〉 ≥ −〈A(ur, gr), (ur, gr)− (u, g)〉+
〈B
(
(ur, gr), (uδ, gδ)

)
, (ur, gr)− (u, g)〉+ δ〈B

(
(ur, gr), (uδ, gδ)

)
, (u, g)− (v, h)〉. (91)

The sequence (ur, gr) is bounded in V and there exists a subsequence which strongly converges in L5(Ω)m

and (a.e.) in Ω, to (u, g). Hence it suffices to pass to the limit along this subsequence. In (91) the terms
containing the operator B are fixed with respect to the gradients. Hence

lim
r→+∞

〈B
(
(ur, gr), (uδ, gδ)

)
, (ur, gr)− (u, g)〉 = 0, (92)

and

lim
r→+∞

〈B
(
(ur, gr), (v, h)

)
, (ξ, ψ)〉 = 〈B

(
(u, g), (v, h)

)
, (ξ, ψ)〉, (93)

for any (ξ, ψ) ∈ V . With these results, we are in a position to pass to the limit r → +∞ in inequality (91).
It yields

δ lim inf
r→+∞

〈A(ur, gr), (u, g)− (v, h)〉 ≥ − lim sup
r→+∞

〈A(ur, gr), (ur, gr)− (u, g)〉+

δ〈B
(
(u, g), (uδ, gδ)

)
, (u, g)− (v, h)〉. (94)
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By the pseudo monotonicity hypothesis (90), inequality (94) implies

lim inf
r→+∞

〈A(ur, gr), (u, g)− (v, h)〉 ≥ 〈B
(
(u, g), (u, g)

)
, (u, g)− (v, h)〉 = 〈A(u, g), (u, g)− (v, h)〉, ∀(v, h) ∈ V.

(95)

We use this inequality to conclude

lim inf
r→+∞

〈A(ur, gr), (ur, gr)− (v, h)〉 ≥ lim inf
r→+∞

〈A(ur, gr), (ur, gr)− (u, g)〉+ lim inf
r→+∞

〈A(ur, gr), (u, g)− (v, h)〉 =

lim inf
r→+∞

〈B
(
(ur, gr), (u, g)

)
, (ur, gr)− (u, g)〉︸ ︷︷ ︸

=0 by (92)

+ lim inf
r→+∞

〈B
(
(ur, gr), (ur, gr)

)
− B

(
(ur, gr), (u, g)

)
, (ur, gr)− (u, g)〉︸ ︷︷ ︸

≥0 by (89)

+ lim inf
r→+∞

〈A(ur, gr), (u, g)− (v, h)〉 ≥ lim inf
r→+∞

〈A(ur, gr), (u, g)− (v, h)〉 ≥ 〈A(u, g), (u, g)− (v, h)〉, ∀{v, h} ∈ V.

This completes the proof of the pseudo monotonicity.

It remains to prove coercivity. We evaluate directly the term

〈A(u, g), (u−U, g)〉.

Taking ξ = u−U and ψ = g in (85), the cross terms involving the product p(g) div (u−U) cancel and the
term p0 div (u−U)/τ drops out after integration. What remains is

〈A(u, g), (u−U, g)〉 =
1

τ

∫
Ω

Ge(u) : e(u−U) dx+
λ∗

τ2

∫
Ω

div (u−U)2 dx+

∫
Ω

n(div U)

τ
(ρ(g)− ρ(Ξ))g dx+∫

Ω

n(−u ?∇Υε)− n(div U)

τ
G(g) dx+

∫
Ω

Kk(−u ?∇Υε)D(g)|∇g|2 dx. (96)

The third and fourth term in the right-hand side need special attention.
Since ρ = ρ(g) is a C1 monotonically increasing function, we have the elementary inequality

x(ρ(x)− ρ(y)) ≥
∫ x

y

ζρ′(ζ) dζ, ∀x, y ∈ R. (97)

Using this inequality and the expression for G (see (76)) in these terms gives

n(div U)(ρ(g)− ρ(Ξ))g + (n(−u ?∇Υε)− n(div U))

∫ g

0

ζρ′(ζ) dζ ≥

n(−u ?∇Υε)
∫ g

0

ζρ′(ζ) dζ − n(div U)

∫ Ξ

0

ζρ′(ζ) dζ. (98)

Applying Korn’s inequality, see Theorem 1.33 in [29], and inserting inequality (98) in equality (96) yields

〈A(u, g), (u−U, g)〉 ≥ C1

τ
||u||2H1

0 (Ω)m + C2||∇g||2L2(Ω)m −
C3

τ
+
C4

τ

∫
Ω

(

∫ g

0

ζρ′(ζ) dζ) dx︸ ︷︷ ︸
≈Cg2 for large |g|

, (99)

where Ci, i = 1, . . . , 4 are positive constants. This proves the coercivity.

Having established pseudo monotonicity and coercivity of the operator A, we are in position to apply
Brézis’ theorem. This concludes the assertion of the proposition.
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Theorem 1 Problem (PD) admits at least one solution (u, g) ∈ V .

Proof For each ε > 0, let (uε, gε) be a solution of problem (PDε) as obtained in Proposition 2. From the
coercivity part of the proof of Proposition 2 and equation (84), it follows that

||uε||H1
0 (Ω)m + ||gε||H1(Ω) ≤ C, (100)

where C is independent of ε. Estimate (100) yields weak compactness in H1. However this is not enough
to prove that −uε ? ∇Υε converges strongly in L2 and (a.e.) on Ω as ε → 0. The remedy is to consider
the momentum equation (83), which gives us improved regularity through the elasticity term. Since p(gε) is
bounded in H1(Ω), uniformly with respect to ε, we conclude that

||uε||H2(Ω)m ≤ C, (101)

where C does not depend on ε. Using estimates (100)-(101), there is a subsequence (uε, gε), denoted by the
same subscript, and a pair (u, g) ∈ (H1

0 (Ω)m ∩H2(Ω)m)×H1(Ω) such that

uε → u strongly in H1
0 (Ω)m, (102)

div uε → div u strongly in L2(Ω) and (a.e) on Ω, (103)

gε ⇀ g weakly in H1(Ω), (104)

gε → g strongly in L2(Ω) and (a.e) on Ω, (105)

as ε → 0. The convergence properties allow to pass to the limit in system (82)-(83). Hence the pair (u, g)
satisfies the equations of problem (PD), which proves the theorem.

To complete the study of the incremental problem, we need to estimate the behavior of solutions after
at least O(1/τ) times steps. Here we use the discrete version of Lyapunov functional (66).

In problem (PD), where the discrete time step τ enters as parameter, one find after one step (u1, g1)
from the initial values (div u, ρ)|t=0 = (0, ρ0). The idea is to repeat this procedure for an arbitrary number
of steps. If M ∈ N, M ≤ N = T/τ , then (uM , gM ) denotes the time discretized approximation of the original
quasi-static equation, at t = tM = Mτ .

The corresponding Lyapunov functional at t = tM reads

JM =

∫
Ω

(
1

2
Ge(uM ) : e(uM )− FM · uM + n(div uM )G(gM )

)
dx. (106)

It satisfies

Theorem 2 For each M ∈ N, M ≤ N = T/τ, we have

JM + τ

M∑
j=1

∫
Ω

(
λ∗
(div (uj − uj−1)

τ

)2
+

Fj − Fj−1

τ
· uj−1 + k(div uj)D(gj)K∇gj · ∇gj −Qjgj

)
dx ≤ J0.

(107)

Here

J0 = n0

∫
Ω

G(g0) dx, g0 = g(ρ0).
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Proof At time t = tj , with j = 1, . . . , N, the equations in problem (PD) read∫
Ω

Ge(uj) : e(ξ) dx+
λ∗

τ

∫
Ω

div (uj − uj−1) div ξ dx−
∫
Ω

p(gj)div ξ dx =

∫
Ω

Fj · ξ dx, ∀ξ ∈ H1
0 (Ω)m, (108)∫

Ω

(
n(div uj−1)

τ
(ρ(gj)− ρ(gj−1)) +

n(div uj)− n(div uj−1)

τgj
G(gj)

)
ψ dx

+

∫
Ω

p(gj)− p0
τgj

div (uj − uj−1)ψ dx+

∫
Ω

k(div uj)D(gj)K∇gj · ∇ψ dx =

∫
Ω

Qjψ dx, ∀ψ ∈ H1(Ω).

(109)

Note that in equation (109) we have used explicitly the form of Dτ from (81). Next, we take ξ = (uj−uj−1)/τ
in (108) and ψ = gj in (109). The resulting two equalities are added and summed-up with respect to j up
from j = 1 to j = M . Using the observations

(i) cross terms containing pressure cancel;
(ii)

M∑
j=1

Ge(uj) : e(uj − uj−1) ≥ 1

2

(
Ge(uM ) : e(uM )− Ge(u0) : e(u0)

)
;

(iii)

M∑
j=1

(
n(div uj−1)gj(ρ(gj)− ρ(gj−1)) + (n(div uj)− n(div uj−1))G(gj)

)
≥ n(div uM )G(gM )− n(div u0)G(g0),

where (97) is used;
(iv)

M∑
j=1

Fj · (uj − uj−1) = FM · uM − F0 · u0 −
M−1∑
j=0

(Fj+1 − Fj) · uj ,

one finds inequality (107). The reduced expression for J0 results from u|t=0 = 0.

Having established existence for the discrete problem (PD) in Theorem 1 and a Lyapunov estimate in
Theorem 2, we are now in a position to obtain estimates that are uniform in the time step τ .

Proposition 3 There exists a constant C > 0 such that

||uM ||2H1(Ω)m + ||gM ||2L2(Ω) ≤ C, (110)

and

τ

M∑
j=1

∫
Ω

(
λ∗
(div (uj − uj−1)

τ

)2
+ |∇gj |2

)
dx ≤ C, (111)

for all M and τ such that 1 ≤M ≤ N = T/τ , with τ sufficiently small.
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Proof Combining expression (106) for JM and inequality (107) yields for any 1 ≤M ≤ N

1

2

∫
Ω

Ge(uM ) : e(uM ) dx+

∫
Ω

n(div uM )G(gM ) dx ≤
∫
Ω

FM · uM dx+ J0 + τ

M∑
j=1

Qjgj dx+

τ

M∑
j=1

∫
Ω

Fj − Fj−1

τ
· uj−1 dx ≤ δ

2
||uM ||2L2(Ω)m +

1

2δ
||FM ||2L2(Ω)m + J0 +

τ

2

M∑
j=1

||gj ||2L2(Ω)+

τ

2

M∑
j=1

||uj−1||2L2(Ω)m +
τ

2

M∑
j=1

||Qj ||2L2(Ω) +
τ

2

M∑
j=1

||F
j − Fj−1

τ
||2L2(Ω)m .

By the assumptions on Q and F, the last two terms are uniformly bounded with respect to τ and M . We
estimate the left-hand side from below by applying Korn’s inequality to the first term and the quadratic
growth of G to the second term. Then for δ and τ sufficiently small, we obtain for the combination

Uj = ||uj ||2H1(Ω)m + ||gj ||2L2(Ω), j = 0, . . . ,M,

the inequality

UM ≤ C1 + C2τ

M−1∑
j=0

Uj ,

where C1 and C2 do not dependent on τ and M . Next we apply the discrete Gronwall inequality1, see
footnote, to find

UM ≤ C1e
C2(M−1)τ < C1e

C2T for all 1 ≤M ≤ N.

The second estimate follows directly from Theorem 2.

However, to pass to the limit τ → 0 in the nonlinearities, one needs more information on the behavior of
the ratios { div (uj − uj−1)/τ} and {(gj − gj−1)/τ}. In fact, we must establish relative compactness of the
sequences {div uj} and {gj}.

We start with a local H1-estimate for Ej = div uj .

Lemma 1 Let ϕ ∈ C∞0 (Ω) and τ > 0 sufficiently small. Then there exists a constant C = C(ϕ) such that

τ

N∑
j=1

||ϕEj ||2H1(Ω) +
λ∗

2µ+ λ
max

1≤M≤N
||ϕEM ||2H1(Ω) ≤ C. (112)

Proof Let

Lj = (2µ+ λ)Ej − p(gj) + λ∗
div (uj − uj−1)

τ
, j = 1, . . .M. (113)

Inequality (110) implies

τ

M∑
j=1

(
||uj ||2H1(Ω)m + ||gj ||2L2(Ω)

)
≤ τMC ≤ TC.

1 Discrete version of Gronwall’s lemma: Let {Un} and {wn} be nonnegative sequences satisfying Un ≤ A +
∑M−1

j=0 Ujwj .

Then for all n, Un ≤ A exp{
∑M−1

j=0 wj}.
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Combined with (111) this gives for Lj

τ

M∑
j=1

||Lj ||2L2(Ω) ≤ C. (114)

As in the counterexample for negative porosity, we take the divergence of the time discrete momentum
equation. This yields

−∆Lj = div Fj in Ω. (115)

In general, however, there are no boundary conditions for Lj available. Here we must rely on local estimates
to obtain (112). Let us first write the equation for ϕLj ∈ H2(Ω) ∩H1

0 (Ω):

∆(ϕLj) = −ϕdiv Fj + 2∇ϕ · ∇Lj + Lj∆ϕ.

Its weak form reads∫
Ω

∇(ϕLj)∇ζ dx =

∫
Ω

div Fjϕζ dx+

∫
Ω

Lj(2∇ϕ · ∇ζ + ζ∆ϕ) dx, ∀ζ ∈ H1
0 (Ω). (116)

Taking ζ = ϕLj results in∫
Ω

|∇(ϕLj)|2 dx = −
∫
Ω

Fj · ∇(ϕLj)ϕ dx−
∫
Ω

Fj · ∇ϕϕLj dx+

∫
Ω

(Lj)2ϕ∆ϕ dx−
∫
Ω

2Lj∇ϕ · ∇(ϕLj) dx.

With C = C(ϕ) denoting a generic constant depending on ϕ, we have

||ϕLj ||2H1(Ω) ≤ C
(
||Fj ||2L2(Ω) + ||Lj ||2L2(Ω)

)
, (117)

for 1 ≤ j ≤M ≤ N. Combing this inequality with (114) gives

τ

M∑
j=1

||ϕLj ||2H1(Ω) ≤ C(τ

M∑
j=1

||Fj ||2L2(Ω)m + 1) ≤ C. (118)

Next we multiply expression (113) by τϕ and write it as

τ(2µ+ λ)ϕEj + λ∗ϕ(Ej − Ej−1) = τLjϕ+ τp(gj)ϕ ∈ H1(Ω).

Taking the H1-inner product of this expression with ϕEj gives

(2µ+ λ)τ ||ϕEj ||2H1(Ω) + λ∗(ϕ(Ej − Ej−1), ϕEj)H1(Ω) = τ(ϕ(Lj + p(gj)), ϕEj)H1(Ω)

or

(2µ+ λ)
τ

2
||ϕEj ||2H1(Ω) + λ∗(ϕ(Ej − Ej−1), ϕEj)H1(Ω) ≤

τ

2(2µ+ λ)
||ϕ(Lj + p(gj))||2H1(Ω). (119)

Using the identity
M∑
j=1

aj(aj − aj−1) =
(aM )2

2
− (a0)2

2
+

1

2

M∑
j=1

(aj − aj−1)2,

when summing-up (119) gives

τ

M∑
j=1

||ϕEj ||2H1(Ω) +
λ∗

2µ+ λ
||ϕEM ||2H1(Ω) ≤ +

τ

(2µ+ λ)2

M∑
j=1

||ϕ(Lj + p(gj))||2H1(Ω).

Combining this inequality with (111) and (118), results in the estimate of the lemma.
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We conclude this section with an estimate for (ρ(gj) − ρ(gj−1))/τ . However, since in equations (67) or
(69) the (discrete) time derivative is multiplied by n(E), we look for an estimate for

N j = n(Ej)ρ(gj). (120)

With the results of Proposition 3 and Lemma 1, the space-time compactness of N will imply the same
property of g.

We summarize our findings in the next proposition

Proposition 4 For given τ > 0 and j = 1, . . . , N,, let (uτ (tj), gτ (tj)) ∈ V denote a solution of problem
(PD). Then we have

max
1≤j≤N

(
||uτ (tj)||H1(Ω)m + ||gτ (tj)||L2(Ω)

)
≤ C, (121)

τ

N∑
j=1

∫
Ω

(
λ∗
(div (uτ (tj)− uτ (tj−1))

τ

)2
+ |∇gτ (tj)|2

)
dx ≤ C, (122)

τ

N∑
j=1

||ϕ div uτ (tj)||2H1(Ω) + λ∗ max
1≤j≤N

||ϕdiv uτ (tj)||2H1(Ω) ≤ C(ϕ), (123)

τ

N∑
j=1

(
||N

j −N j−1

τ
||2H−2(Ω) + ||ϕN j ||2H1(Ω)

)
≤ C(ϕ), (124)

where

N j = n(div uτ (tj))ρ(gτ (tj))

and where ϕ ∈ C∞0 (Ω).

Proof We only need to prove estimate (124). Rewriting equation (79) we have∫
Ω

N j −N j−1

τ
ψ dx =

∫
Ω

n(Ej−1)(ρ(gj)− ρ(gj−1))

τ
ψ dx+

∫
Ω

(n(Ej)− n(Ej−1))ρ(gj)

τ
ψdx =∫

Ω

n(Ej)− n(Ej−1)

τ

(
ρ(gj)−G(gj)

)
ψdx−

∫
Ω

(Ej − Ej−1)(p(gj)− p0)

τgj
ψ dx+

∫
Ω

Qjψ dx

−
∫
Ω

k(Ej)D(gj)K∇gj∇ψ dx, for ψ ∈ H2
0 (Ω).

Recalling that for m ≤ 3, H2(Ω) ⊂ L∞(Ω), we have

||N
j −N j−1

τ
||2H−2(Ω) ≤ C

(
||E

j − Ej−1)

τ
||2L2(Ω)||g

j ||2L2(Ω) + ||Qj ||2L2(Ω) + ||∇gj ||2L2(Ω)m

)
and the full estimate reads

τ

N∑
j=1

||N
j −N j−1

τ
||2H−2(Ω) ≤

C
(

max
1≤j≤N

||gj ||2L2(Ω)τ

N∑
j=1

||E
j − Ej−1)

τ
||2L2(Ω) + 1 + τ

N∑
j=1

||∇gj ||2L2(Ω)m

)
≤ C (125)
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The local estimate for the space derivatives is given by

τ

N∑
j=1

||∇(ϕN j)||2L3/2(Ω) ≤ C
(

( max
1≤j≤N

||∇(ϕEj)||2L2(Ω))τ

N∑
j=1

||gj ||2L6(Ω) + C + τ

N∑
j=1

||∇gj ||2L2(Ω)m

)
≤ C. (126)

This results in estimate (124).

4 Existence for continuous time problem with λ∗ > 0

In Proposition 4, where the time step τ enters as a parameter, one finds {(uτ (tj), gτ (tj))}j=1,...,N from the
”initial value” div u(0) = 0 and g(0) = g0. Here N = O(1/τ) and g0 = g(ρ0). This procedure yields a time
discretized approximation of the original quasi-static equations.

In this section we investigate the limit τ ↘ 0. Here a crucial role is played by the parameter λ∗, which
is needed to control the behaviour in time of E = div u.

Using the discrete solution (uτ (tj), gτ (tj)), we construct two approximations that hold for all 0 ≤ t ≤ T.
The first is the piecewise constant approximation

(uτ (t), gτ (t)) = (uτ (tj), gτ (tj)) for jτ ≤ t < (j + 1)τ. (127)

The second is the Rothe interpolant, which is the piecewise linear time-continuous approximation

(ũτ (t), g̃τ (t)) =
(
j + 1− t

τ

)
(uτ (tj), gτ (tj)) +

( t
τ
− j
)
(uτ (tj+1), gτ (tj+1)),

for jτ ≤ t ≤ (j + 1)τ. (128)

In (127) and (128) the index j runs from j = 0 to j = N − 1.
Applying Proposition 4, yields for both approximations, with \ ∈ {−,∼ },

max
0≤t≤T

(
||u\τ (t)||2H1(Ω)m + ||g\τ (t)||2L2(Ω)

)
dt ≤ C, (129)∫ T

0

∫
Ω

|∇g\τ (t)|2 dxdt ≤ C, (130)∫ T

0

||ϕ E\τ (t)||2H1(Ω) dt ≤ C, (131)

λ∗ max
0≤t≤T

||ϕE\τ (t)||2H1(Ω) ≤ C, (132)∫ T

0

||ϕN \
τ (t)||2W 1,3/2(Ω)

)
≤ C, (133)

where E\τ = div u\τ , N τ = n(Eτ )ρ(gτ ) and Ñτ (t) = (j + 1− t/τ)N j + (t/τ − j)N j+1 .
Further we have

∂tÑτ =
N j+1 −N j

τ
and ∂tẼτ =

Ej+1 − Ej

τ
,

for tj ≤ t ≤ tj+1 and j = 0, . . . , N − 1.

Hence, by (122) ∫ T

0

∫
Ω

λ∗|∂tẼτ (t)|2 dxdt ≤ C (134)
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and ∫ T

0

||∂tÑτ (t)||2H−2(Ω) dt ≤ C. (135)

In what follows we rely heavily on the material and theory collected in [[29], chapters 7 and 8]. Since the
piecewise constant approximation (uτ (t), gτ (t)) is discontinuous in time, its time derivative is only a measure.
To deal with this we introduce the space M(0, T ;L2(Ω)) of regular Borel measures in [0, T ] with values in
L2(Ω), which is the dual space of C([0, T ];L2(Ω)). With δ(tj) denoting the Dirac measure concentrated in
tj , we have

||∂tEτ ||M(0,T ;L2(Ω)) = ||
N∑
j=1

(Ej − Ej−1)δ(tj)||M(0,T ;L2(Ω))

= τ

N∑
j=1

||E
j − Ej−1

τ
||L2(Ω) = ||∂tẼτ ||L1(0,T ;L2(Ω)) ≤

√
T ||∂tẼτ ||L2(0,T ;L2(Ω)) ≤ C. (136)

Analogously

||∂tN τ ||M(0,T ;H−2(Ω)) ≤ C, (137)

where M(0, T ;H−2(Ω)) is the dual space of C([0, T ];H2
0 (Ω)).

For the convergence of the time continuous approximation (128) we use estimates (129)-(135) and the
well-known weak and weak∗ compactness theorems. The result is that there exists a quadruple {ũ, g̃, Ẽ , Ñ }
such that along a subsequence τ ↘ 0 we have

ũτ → ũ weak∗ in L∞(0, T ;H1
0 (Ω)m), (138)

g̃τ ⇀ g̃ weakly in L2(0, T ;H1(Ω)), (139)

Ẽτ ⇀ Ẽ weakly in L2(0, T ;H1(ω)), (140)

∂tẼτ ⇀ ∂tẼ weakly in L2(0, T ;L2(Ω)), (141)

Ñτ ⇀ Ñ weakly in L2(0, T ;W 1,3/2(ω)), (142)

∂tÑτ ⇀ ∂tÑ weakly in L2(0, T ;H−2(Ω)). (143)

Concerning the convergence of (uτ , gτ ), we use estimates (129)-(133), now combined with (136)-(137). More-
over, applying [([29]), Corollary 7.9], we use that the spaces

W 1,2,M(0, T ;H1(ω), L2(ω)) = {z ∈ L2(0, T ;H1(ω)) | dz
dt
∈M(0, T ;L2(ω))}

and W 1,2,M(0, T ;W 1,3/2(ω), H−2(ω)) are compactly embedded in L2(0, T ;L2(ω)), for any smooth bounded
subset ω of Ω. The result is that there exists (u, g, , E ,N ) such that along a subsequence τ ↘ 0 one has
the same convergence as in (138)-(140) and (142). The convergence in (141) and (143) is now replaced by
weak−∗ convergence in M(0, T ;L2(Ω)) for ∂tEτ and in M(0, T ;H−2(Ω)) for ∂tN τ .

Furthermore, the estimates allow us to conclude

Eτ → E strongly in L2((0, T )× ω) and (a.e) on (0, T )× ω, (144)

N τ → N strongly in L2((0, T )× ω) and (a.e) on (0, T )× ω. (145)
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As a consequence

ρ(gτ ) =
N τ

n(Eτ )
→ N

n(E)
(146)

and

gτ = ρ−1
( N τ

n(Eτ )

)
→ ρ−1

( N
n(E)

)
= g. (147)

strongly in L2((0, T )× ω) and a.e. on (0, T )× ω. This in turn implies{
ρ(gτ )→ ρ(g) strongly in L2((0, T )× ω) and (a.e) on (0, T )× ω;
D(gτ )→ D(g) strongly in L2((0, T )× ω) and (a.e) on (0, T )× ω. (148)

Inherited from Eτ= div uτ , the convergence properties imply

E = div u a.e. in (0, T )×Ω. (149)

As in [[29], pages 224-226] one shows that ũ = u and g̃ = g. Then (149) implies that E = Ẽ . Alternatively,
this follows from estimate (134) which gives∫ T

0

||Eτ (t)− Ẽτ (t)||2L2(Ω) dt =
τ3

2

N−1∑
j=1

||Ej − Ej+1||2L2(Ω) = Cτ2||∂tẼτ ||2L2(0,T ;L2(Ω)) = Cτ2. (150)

Similarly, ∫ T

0

||N τ (t)− Ñτ (t)||2H−2(Ω) dt = Cτ2, (151)

which yields N = Ñ .
From this point on we denote the limit, as τ ↘ 0, by the quadruple (u, g, E ,N ), where

E = div u and N = n(E)ρ(g).

We are now in a position to prove the main existence result for a weak solution of the time continuous case.

Theorem 3 Let λ∗ > 0. Then there exists at least one weak free energy solution (u, E , ρ) satisfying
Definition 1.

Proof In the proof we use approximations (127) and (128), and their convergence properties.
Let τ > 0, sufficiently small, and let t ∈ (τ, T ). Then tj ≤ t < tj+1 for some j ∈ {1, . . . , N − 1} and

uτ (t) = uj and gτ (t) = gj .
We first consider the momentum balance equation (80).

The starting point is problem (PD). Using equation (108) we have for any ξ ∈ H1
0 (Ω)m∫

Ω

Ge(uτ ) : e(ξ) dx =

∫
Ω

Ge(uj) : e(ξ) dx = −λ
∗

τ

∫
Ω

(Ej − Ej−1) div ξ dx =∫
Ω

p(gj)div ξ dx+

∫
Ω

Fj · ξ dx = −λ∗
∫
Ω

∂tẼτ (t− τ) div ξ dx+

∫
Ω

p(gτ )div ξ dx+

∫
Ω

Fτ · ξ dx. (152)
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Here we introduced

Fτ (t) = F(tj) = Fj for tj ≤ t < tj+1 and j = 0, . . . , N − 1.

Multiplying equation (152) by α ∈ C∞0 (0, T ) and integrating the result over (τ, T ), yields∫ T

τ

{
∫
Ω

Ge(uτ ) : e(ξ) dx}α(t) dt+ λ∗
∫ T

τ

{
∫
Ω

∂tẼτ (t− τ) div ξ dx}α(t) dt+∫ T

τ

{
∫
Ω

p(gτ )div ξ dx}α(t) dt =

∫ T

τ

{
∫
Ω

Fτ · ξ dx}α(t) dt. (153)

Next we send τ ↘ 0 along the appropriate subsequence to have convergence of the terms containing u, E
and F. What remains is the pressure term. We recall that p(g) is the composite function (p ◦ ρ)(g), where
p(ρ) is given by (36)and ρ(g) is defined through (53) and (55). Since gτ → g strongly in L2((0, T )× ω), see
(147), we have similarly

p(gτ ) = (p ◦ ρ)(gτ )→ (p ◦ ρ)(g) = (p ◦ ρ)(g) = p(g)

strongly in L2((0, T )× ω) and a.e. in (0, T )× ω.

This concludes the first part of the proof.

Next we tackle the mass balance equation (69).
We first put equation (77) in the form

∂tN − ∂tn(E)ρ(g) +D(g, E)∂tE − div
(
k(E)D(g)K∇g

)
= Q

and apply the discretization of problem (PD). Similarly to (153) this gives for any ψ ∈ C∞0 (Ω) and α ∈
C∞[0, T ]∫ T

τ

∫
Ω

(
∂tÑτ (t− τ)− ∂tν̃τ (t− τ)

(
ρ(gτ )− G(gτ )

gτ

)
+ ∂tẼτ (t− τ)

p(gτ )− p0
gτ

)
ψ(x)α(t) dxdt+∫ T

τ

∫
Ω

k(Eτ )D(gτ )K∇gτ · ∇ψ(x)α(t) dxdt =

∫ T

τ

∫
Ω

Qτψ(x)α(t) dxdt, (154)

where

ν̃τ (t) =
(
j + 1− t

τ

)
n(Ej) +

( t
τ
− j
)
n(Ej+1),

and

Qτ (t) = Q(tj) = Qj

for jτ ≤ t < (j + 1)τ. (155)

The boundedness of n′ implies
||∂tν̃τ ||L2((0,T )×Ω) ≤ C (156)

and inherited from (131)
||ν̃τ ||L2(0,T ;H1(ω) ≤ C. (157)

Hence

∂tν̃τ ⇀ ∂tn(E) weakly in L2((0, T )×Ω) (158)
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and

ν̃τ → n(E) strongly in L2((0, T )× ω) and a.e. in (0, T )× ω. (159)

We are now in position to pass to the limit τ ↘ 0 in (154) and obtain∫ T

0

〈∂t(n(E)ρ(g)), ψ〉H−2(Ω),H2
0 (Ω)α(t) dt−

∫ T

0

∫
Ω

(
∂tn(E)

(
ρ(g)− G(g)

g

)
+ ∂tE

p(g)− p0
g

)
ψ(x)α(t) dxdt+∫ T

0

∫
Ω

k(E)D(g)K∇g · ∇ψ(x)α(t) dxdt =

∫ T

0

∫
Ω

Qψ(x)α(t) dxdt, (160)

or

∂t

(
n(E)ρ(g)

)
− ∂tn(E)ρ(g) +D(ρ, E)∂tE − div

(
k(E)D(g)K∇g

)
= Q in D′((0, T )×Ω), (161)

It remains to check the initial and boundary conditions and the energy inequality (72).
First we notice that (140)-(141) imply

Ẽτ ⇀ E weakly in W 1,2,2(0, T ;H1(ω), L2(ω)), (162)

where W 1,2,2(0, T ;H1(ω), L2(ω)) = {z ∈ L2(0, T ;H1(ω)) | ∂tz ∈ L2(0, T ;L2(ω))}. In this space the trace in
time E → E(0) is a weakly continuous map from W 1,2,2(0, T ;H1(ω), L2(ω)) to L2(ω). Hence

Ẽτ (0) ⇀ E(0) weakly in L2(ω), (163)

where E(0) = div u0 = 0.
Next, using (142), (143) and (145), we conclude that

Ñτ (0) ⇀ N (0) weakly in H−2(ω), (164)

which justifies the initial condition for N . Since N = n(E)ρ(g), we have simultaneously the initial conditions
for the density ρ and for g.

We still miss the flux boundary condition for the mass balance equation (67). The starting point is again
equation (154), now with ψ ∈ H1(Ω) and α(T ) = 0. Since∫ T

τ

∫
Ω

∂tÑτ (x, t− τ)ψ(x)α(t) dxdt = −
∫ T

τ

∫
Ω

Ñτ (x, t− τ)ψ(x)
d

dt
α(t) dxdt−∫

Ω

Ñτ (x, 0)ψ(x)α(τ) dx→ −
∫ T

0

∫
Ω

Ñ (x, t)ψ(x)
d

dt
α(t) dxdt− α(0)

∫
Ω

n(0)ρ0(x)ψ(x) dx

and since the strong convergence (144)-(145), together with the weak convergence (140) and (142), implies
the same for Ω, we may pass to the limit τ ↘ 0 and conclude that

−
∫ T

0

∫
Ω

ρ(g)n(E)∂tΦ(x, t) dxdt−
∫
Ω

n(0)ρ0(x)Φ(x, 0) dx+

∫ T

0

∫
Ω

∂tE
(
D(ρ(g), E)−

ρ(g)n′(E)

)
Φ(x, t) dxdt+

∫ T

0

∫
Ω

k(E)D(g)K∇g · ∇xΦ(x, t) dxdt

=

∫ T

0

∫
Ω

QΦ(x, t) dxdt, ∀Φ ∈ H1(Ω × (0, T )), with Φ|t=T = 0.

Inequality (72) is a direct consequence of Theorem 2 and the weak lower semi-continuity of the gradient
terms in L2(QT ).
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5 Discussion and conclusion

In this paper we study a model that describes the quasi-static mechanical behaviour of a fluid saturated
porous medium. In it simplest (linear) form it is described by equations (1)-(4), where (1) results from the
fluid phase mass balance in the case that the fluid is incompressible.

We follow Rutquist et al [30] and Lewis and Schrefler [17] and propose a fluid mass balance that is based
on the mixture theory of Bedford and Drumheller [2], [3]. This yields equation (6) and the resulting nonlinear
system is given by (2)-(4) and (6). Note that the time derivative of the fluid density ρ appears in (6), since
the fluid is assumed weakly compressible, see expression (10). Models where the fluid density is constant (see
[5] and [8]) do not contain this source term. Moreover the porosity n and the deformation of the medium are
related through (8). An expression for this relation is derived from the solid phase mass balance. It is given
by (19) or, when the deformation is small, by approximation (21).

It is shown by means of a counterexample that the porosity may admit non-physical, i.e. negative,
values. This is made precise in Proposition 1. To obtain a well-posed mathematical problem the porosity is
modified according to cut-off (35). This cut-off is chosen such that it reduces to the correct expression in
the physical range. Outside this range it remains positive. Likewise a cut-off for the density is introduced
through expressions (60) and (64).

The momentum balance equation (2)-(4) is modified as well. Following Murad and Cushman [26] we add
the term

λ∗div ∂tu (λ∗ ≥ 0) (165)

to the expression for the total stress. This result in expression (5). Murad and Cushman give a thermody-
namically based derivation of the equation in which (165) appears as the difference between the fluid and
solid pressures. Having λ∗ > 0, (165) acts as a time regularization of the volumetric stress for our quasi-static
problem.

An important role in the analysis of the equations is played by the free energy of the system. This
free energy acts as a Lyapunov functional. It is given by (66), which generalizes Biot’s original expression
developed for the linear case [4]. In the case that the deformation and fluid density are in the physical range,
the free energy simplifies to, see also (56),

J(u, ρ) =

∫
Ω

(
1

2
Ge(u) : e(u)− F · u +

n(div u)

β0n0(1− n0)ρ0

(
(1− n0)ρ− ρn0

0 ρ1−n0 + n0ρ0
))

dx. (166)

We introduce a weak formulation and prove existence of a solution in a number of steps. Discretizing in
time, we first consider the incremental equations. Using Brézis’ fundamental theorem for pseudo monotone
operators, see for instance Lions [18] and Roubiček [29], we obtain existence for the corresponding incremental
problem. The result holds for any λ∗ ≥ 0. Moreover, using the free energy, estimates that are global in
time are derived. These (stability) estimates are crucial when considering the time continuous, quasi-static,
formulation for which we prove existence at the expense of having λ∗ > 0. The free energy implies global
stability of the solution.

We note that only in the proof of the local H1(Ω)− estimates for div u, we use the fact that the Gassmann
tensor has the specific form of Hooke’s law (4). In the incremental problem we could have replaced G by a
general rank-4, symmetric, positive-definite Gassmann tensor.

Some particular cases of system (24)-(25) were studied before. An interesting example is the consolidation
with an irrotational composite flow rate, when the system reduces to a scalar pseudo-parabolic PDE. For
details see [16].
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We notice also that the model studied in this paper was extensively used by Schrefler et al, see [32] and
[17] and references therein. It is broadly accepted in the computational poromechanics community. A review
of different numerical methods and software is given in [30] and [25].
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