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Abstract: This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using 

3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time interval type 2 fuzzy logic control system 

applications. The results are also compared against NT (Nie-Tan) method that is one of the fastest and simplest defuzzification 

methods. Because the DC (direct current) servo-motor is one of the most used motors in different industrial applications and the 

model of the motor is nonlinear, this motor was selected for validating the implementation in real time hardware. This DC motor is a 

perfect option for studying the real time performance of KM algorithms in order to show up its limits and possibilities for real-time 

control system applications. These methodologies are implemented in National Instruments LabVIEW FPGA (field programmable 

gate array) module hardware which is one of the most used platforms in the industry. The results show that the E-KM (enhanced KM) 

algorithm and the NT method present good results for implementing real-time control applications in real time hardware. Although 

fuzzy logic type 2 is a good option for working with nonlinear and noise from the sensors, the defuzzification method has to react in 

a short period of time in order to allow good control response. Hence, a complete study of defuzzification is needed for improving the 

real time implementations of fuzzy type 2.  
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1 .Introduction

 

Different research works present three KM 

(Karnik-Mendel) algorithms for the IT2FLS (interval 

type 2 fuzzy logic systems): the non-iterative [1] and 

the iterative [2] types that provide the same numerical 

results; the main difference is the improved total 

iteration count of the iterative type compared with the 

non-iterative one. Actually, both types are 

outperformed by the enhanced KM algorithm [3] 

which needs several initial conditions and lets the 

system converge faster than the other ones. These 

defuzzification methods get the generalized centroid 

of an IT2FLS. 

Different applications require opportune decisions; 

those decisions which require the noise immunity that 

the IT2FLS can provide [4]. The KM algorithms are 
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very intensive and sometimes they are not 

appropriated for real-time applications. When they are 

dealing with a big amount of data, a late response 

appears generating an incorrect decision which cannot 

be acceptable in real-time hardware systems.  

The hardware implementation of IT2FLS offers 

good results but the software implementation is not 

good enough as it was shown in Ref. [5]. A hardware 

implementation is considered in this work for proving 

the KM algorithms in real-time applications. 

For this purpose, a DC (direct current) servo-motor 

is analyzed. The IT2FLS is implemented in hardware 

by FPGA (field programmable gate array) based on 

LabVIEW and each method was implemented and 

tested independently. Two hardware considerations 

were taken: the first one is the swiftness and the 

second one is the final resource utilization. Every 

algorithm was compared using these two hardware 

conditions; also this paper shows a complete chart that 
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presents the complexity of every algorithm according 

to the discrete discourse universe points. 

This paper defines a new procedure of establishing 

the hardware implementation based on LabVIEW 

FPGA for KM algorithms. According to the results 

presented, various KM algorithms are not appropriated 

for real-time control applications. Finally, expert must 

take into account the ratio between speed and area. 

2. Interval Type 2 Fuzzy Logic Systems 

The IT2FLS topology is the same as the T1FLS (type 

1 fuzzy logic systems). It provides the fuzzification, the 

inference and the defuzzification stages. 

The IT2FLS fuzzification maps the crisp values xj 

into several membership values according to its 

membership degree. This means that a crisp value 

could belong to more than one IT2FS (interval type 2 

fuzzy sets); those two membership degrees form a 

FOU (footprint of uncertainty). Each membership 

obtained after defuzzification process is related using 

fuzzy logic operations as conjunction (AND) and 

disjunction (OR). The fuzzy conjunction allows expert 

relating all the implied premises (input sets) and the 

fuzzy disjunction allows expert aggregating all these 

implied values in order to obtain a specific consequent 

(output set). With all these relations, a rule set is built. 

The rule set represents the IT2FLS conventional 

configuration.  

Fig. 1 shows a complete picture of the IT2FLS 

which can be used in hardware implementations. Each 

block can be an independent hardware entity. The 

inferred set is calculated and stored in a memory 

location. 

3. The KM Algorithms 

In previous works [1-3, 6], the KM algorithms 

includes several modifications in order to decrement 

the impact of the large number of iterations required 

to generate a single centroid. This method is 

computationally exhaustive, different research works 

proposed some initial conditions and modifications 

based on the seminal algorithm. These modifications 

have the purpose of decreasing the search space for 

both the left and the right centroids. 

Assume that the output discourse universe Y is a set 

of all the possible crisp outputs that can be obtained 

from a defuzzification method, i.e. y ∈ Y. Now, let B 

be a consequent set defined along Y. The key of 

finding each approximated centroid is to find a switch 

point where the ES (embedded set) will change from 

one outer membership function to another; specifically, 

the LMF (lower membership function) or )(~ yB  and  
 

 
Fig. 1  IT2FLS with four defuzzification methods: the non-iterative, iterative and enhanced KM algorithms, and the NT 

(Nie-Tan) method. 
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Fig. 2  The general centroid search in the KM algorithms. 

There is not centroid search for this algorithm; all the 

centroids are computed. This method is known as the 

NI-KM (non-iterative Karnik-Mendel) algorithm. 
 

the UMF (upper membership function) or )(~ yB , which 

comprises the FOU. Fig. 2 provides a graphical 

description of the KM algorithm, in general. 

3.1 Non-Iterative Version 

The NI-KM algorithm [1] creates all the embedded 

sets θL and θR as possible from 1 to N. For finding the 

left and right centroids, the expert must calculate the 

following formulas: 
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where,            rRc   

).max( rrc   

This non-iterative version creates a vector of left 

centroids Θl and a vector of right centroids Θr; from 

the left centroid vector, the far left centroid (the 

minimum) is selected while from the right centroid 

(maximum) vector, the far right centroid is selected. 

Fig. 3 shows the non-iterative version. 

Eqs. (1) and (2) can be rewritten as two summations in 

the numerator and the denominator as follow: 
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where,           rRc   

).max( rrc   

3.2 Iterative Version 

This iterative version [2, 7, 8] searches for the left 

and right centroids starting from a convenient initial 

embedded set θi. After the initial centroid, the 

following centroid search of θi for the left and right 

centroids helps the algorithm to converge to the final 

centroid faster than the non-iterative version. Fig. 4 

shows the iterative KM algorithm.  

For the KM algorithm, the procedure to find the left 

and right centroid ci and cr is the following: 

(1) Sort all the discourse universe values yi in 

ascending order, where i = 1, 2 , … , N , such y1 ≤ y2 

≤ … ≤ yN. Associate each yi with its corresponding 

)(~
iB y  and )(~

iB y . 
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Fig. 3 The NI-KM algorithm performs all the centroid 

calculation.  

 
Fig. 4  The I-KM (iterative KM )algorithm. This algorithm 

is optimized for starting the centroid search from almost 

the half of discourse universe. 
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(3) Find the switch point k, such 1 ≤ k ≤ N - 1 and 

yk ≤ yk+1, 

(4) Establish 
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For the right centroid: 
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(5) If y’ = y. If true, then stop and assign cl= y or cr 

= y, correspondingly, else continue. 

(6) Assign y = y, y go to step 3. 

In both versions, the generalized centroid is 

calculated simply by averaging both cl and cr 

centroids:  
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3.3 Enhanced KM Algorithm 

To improve the KM algorithm calculations, the 

E-KM (enhanced KM) algorithm [3] does not start 

only at the initial embedded set; it also starts from a 

convenient switch point (Fig. 5). 

The algorithm to find the left centroid ci is the 

following: 

(1) Sort all the discourse universe values xi in 

ascending order, where i = 1, 2 , … , N, such y1 ≤ y2 
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Fig. 5  The E-KM algorithm. This algorithm is doubly 

optimized for starting the centroid search eight percent 

around N/2 of discourse universe. That is why some 

literature uses the values 1.7 and 2.4 to start the centroid 

search. 
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(6) Assign y = y
’
, a = a

’
, b = b

’
, k = k

’
 and go to step 3. 

Each preliminary definition of kl = N /2.4 and kr = 

N/1.7 suggests that the initial centroids can be found 

±8% around the middle of the set support, i.e., kl =  

(N/2) - 0.08N and kr = (N/2) + 0.08N. These values 

were obtained experimentally [3]. This initial search 

reduces the search of the final centroid. 

3.4 Nie-Tan Method 

Although the NT method is not a KM algorithm 

derivation, this is used in the iterative-version KM 

algorithms to find the initial switching point. This 

method is discussed in this work because of its 

simplicity. The simplicity of the algorithm is based on 

the average between the LMF and UMF as it is shown 

in Fig. 6.  

The NT method [9, 10, 11] is the simplest and 

fastest defuzzification method for IT2FLS.  

It searches the middle MF θi between UMF and 

LMF. Its centroid is the approximated generalized 

centroid: 
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Fig.6   The NT method. 

 

This method is one of the fastest methods because it 

requires only a division by 2 (1-position right shift 

register) and only a single centroid calculation. 

Following section explains a hardware overview in 

FPGA in which the KM algorithms and the NT 

method were implemented. 

4. DC Servo-Motor 

This paper presents a hardware study between 

several defuzzification methods for IT2FLS. For doing 

this, the DC Servo-Motor application is proposed. The 

following section provides some theories about the DC 

servo-motor plant which is controlled by the IT2FLS. 

The DC servo-motor model is well defined by 

conventional differential equations according to the 

Fig. 7. This model contains the complete description 

of the servomotor. Normally, in the control of DC 

servo-motor appears noise from the sensors, so a 

controller that could get rid of the noise effect is able 

to improve the whole performance of the system. The 

following figure shows the basic topology of the DC 

motor model.  

The equations that describe the DC motor 

performance are presented below: 
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t
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d
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Fig. 7  DC servo-motor model. 
 

where, 

T: motor torque; 

Ke: torque constant;  

Kf: voltage constant;  

i: armature current; 

ea: generated voltage; 

wm: angular velocity; 

J: inertia; 

b: damping ratio; 

L: armature inductance; 

R: armature resistance; 

V: input voltage. 

4.1 Laplace Transform Model 

Rearranging Eqs. (11)-(14) : 
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Our principal goal is to control the DC servo-motor 

speed by changing the input voltage V, so the Eqs. (15) 

and (16) can be transformed in terms of voltage V and 

angular speed wm. 

)()(
d

d
)( tw

K

b
tw

tK

J
ti mm       (17) 

Replacing Eq. (17) in Eq. (16) we get, 
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Before applying Laplace transform is necessary to 

represent the last equation in terms of deviation 

variables, 
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where,  

)0()()( mmm wtwtW   
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And wm(0) and V(0) are the initial conditions. 

Applying the Laplace transform we get, 
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Rearranging Eq.(20) we obtain the transfer function 

that represents the servomotor plant in terms of 

Laplace transform as follows: 
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4.2 State-Space Ttransfer Function 

From Eq. (18), it can be defined the state-space 

model introducing the next variables, 
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Finally, the state-space equations are, 
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And the DC motor model constants are, 
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D = 0                 (33) 

4.3 Servo-Motor Control System 

The servo-motor control system for the 

defuzzification method performance comparison is 

shown in Fig. 8, where the IT2FLS performs the 

position control using the position error θ and the 

change of the position θ; also, the servomotor plant 

can be represented by Eq. (21) or Eqs. (30) and (33). 

Fig. 9presents some details about the IT2FLS and its 

rules; nine rules are performed relating the 

antecedents to infer the consequences. 

5. The Hardware Complexity 

A real-time application can be managed by a 

computational device but the device selection will 

depend on the latency of that digital system that will 

manage it. A real-time application requires fast 

digital systems (with low latency) because its 

real-time characteristic will be defined by its WCET 

(worst case execution time). 

The centroid calculation had been considered as a 

problem in T1FLS, for real-time applications 

because of its large latency. Although several 

applications were solved without problems with the 

centroid calculation in T1FLS, the use of this in the 

KM algorithms are very common and intensive and 

therefore the IT2FLS are hugely more complex than 

the T1FLS. The search of each centroid for each 

embedded set is globally several times more complex 

compared with the T1FLS. 

This is one of the reasons why the IT2FLS are not 

used as the T1FLS today, and its robustness capability 

is not approached. The IT2FLS are often implemented 

in hardware such as RT-MCU (real-time microcontroller 

units), or DSP (digital signal processors) [12] and 

FPGA [13], because the rest of the hardware (computers 

with sequential program execution) becomes impractical 

and not feasible for real-time applications. These 

digital systems are often more expensive, especially 

the FPGA, and commonly this economic reason limits 

the application implementation in most cases. 

Some of the high-end FPGA hardware elements 

that can be found in real-time applications are: 

 high-speed dedicated multiplications; 

 high-speed dedicated memory; 

 DSP blocks; 

 real-parallelism; 

 partial reconfiguration. 

Full-customizable multiplications are available in 

the FPGAs as a solution for improving the timing

performance. Xilinx is the main FPGA brand that is 

used widely in several applications along the world. 

Some Xilinx FPGA families provide faster 

multiplication blocks and additional high performance 

resources (like DSP blocks and RT processors in the 

same land) in their higher end devices. Some 

high-speed RAM (random access memory) blocks are 

available for storing data, for instance. 

These resources help the expert to design high speed 

and low cost T1FLS and IT2FLS in hardware among 

the software approaches, because a sequential program is 

executed in a fixed computing architecture [5]. If the 

specific application deserves the use of IT2FLS, then 

the expert must take into account how to select the 

appropriated defuzzification method that will be used 

for its real-time application. 
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Fig. 8  The servo-motor control system. 
 

 

Fig. 9  The fuzzy sets and the rule set for the servo-motor 

application. 

6. Methodology 

The hardware defuzzification method comparisons 

are performed implementing all the KM algorithms, 

the NT method in FPGA hardware; National 

Instruments Reconfigurable I/O (compact RIO or 

cRIO) device is used and LabVIEW FPGA module to 

program every defuzzification stage enunciated in this 

paper and all the IT2FLS architecture. The cRIO 

device used is the NI-9014 with analog I/O 

capabilities, the C-series NI-9263 and the NI-9201 

modules. 

For this reason, the expert may also know some 

hardware details about the KM algorithms that will 

use. 

For hardware comparison, the DC servo-motor 

application is proposed as a study case where the rotor 

position θ is tracked when a signal generator is 

introduced and a noise generator is used to disturb the 

IT2FLS performance, according to Fig. 8. Although 

the servo case is relatively slow, all these defuzzification 

methods can be analyzed and compared. Several 

studies have been implemented in FPGA hardware for 

T1FLS [14] and IT2FLS [15]. However, no 

comparisons have been presented, in hardware terms, 

where the most important defuzzification methods are 

applied for solving the same problem. 

The DC servo-motor application, as can be seen in 

Figs. 8 and 10, is an electronic control training module 

dedicated for the cRIO device where the user can test 

control performance easily. The servomotor moves the 

rotor position from 0° to 180° according to the REF 

analog signal; the REF signal is used in the cRIO as 

an input to determine the reference that the controller 

will follow. The FDBCK (feedback) signal is another 



Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms 

  

9 

analog signal used in the cRIO as an input also; the 

difference is that this signal is used to know where the 

current rotor position is. 

The control system described in Fig. 8 is 

implemented using the LabVIEW FPGA module, 

where several diagram blocks are used for the data 

acquisition (input nodes), the noise generator summed 

to the reference signal (signal generator), the data 

driving to the servo (output node), and finally the 

IT2FLS. The error is computed as the difference 

between the desired values, such the REF (reference) 

signal, i.e., the reference and the current position value 

FDBCK, as can be seen in Figs. 8 and 10. 

The cRIO analog output is used to drive the desired 

voltage to the servo-motor and this way determine the 

new position of the rotor. This signal is applied in the 

MOT (motor) signal as can be seen in the training 

module of the Fig. 10.  

Details about the servo-motor control training 

module are not known, although their general 

equations are defined (From Eqs.(20) to (29)). This is 

not important for the fuzzy controller, because the 

IT2FLS must determine its control law without 

knowing the exact system dynamics. 

For comparison purposes, the noisy reference signal 

REF is used so that the IT2FLS can follow it, the 

fuzzification and inference processes are previously 

tuned and are the same for the four cases. Four signal 

shapes were tested with the four methods: the NI-KM 

algorithm, the I-KM algorithm, the E-KM algorithm 

and the NT method, as can be seen in Fig. 11. 

7. Results and Discussions 

7.1 Reference Tracking 

The final response of the control system using all 

the defuzzification methods mentioned is shown in 

Fig. 11. Four signal shapes were used to the IT2FLS 

tracking. 

The NI-KM algorithm is the worst case and its 

latency makes the decision to take late decisions. The 

best results were obtained with the E-KM algorithm 

and the NT method. This behavior is similar in each 

case. 

7.2 The Hardware Performance 

The following paragraphs are dedicated to describe 

the hardware complexity between every 

defuzzification method described in previous sections. 

NI-cRIO devices are used in conjunction with NI 

LabVIEW FPGA module. 

The following section provides a timing and area 

performance analysis where each KM algorithm is 

analyzed and compared. Also, the NT method is 

included. 

7.2.1 Complexity and Arithmetic-related 

Assume that each algorithm requires two memories 

with N locations and each centroid (either left or right) 

are computed in parallel. Each element is a byte (8-bit 

width). Every memory can be distributed in the FPGA 

by LUT (look-up tables). 

The following chart provides a comparison between 

all the KM algorithms and the NT method. 

According to Eqs.(1-9), the total iteration count can 

be  obtained  as an  approximation if  a counter is 

included in the most inner loop of the algorithm and 

by observation of the block diagram. In this case, N = 

256, where N is the number of points the discourse 

universe is divided into. So, the non-iterative KM may 
 

 
Fig. 10  The control of a servo-motor training module and 

the cRIO with C-series modules. 
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Fig. 11  All the KM algorithms and NT method tracking performance comparison in presence of noise. Four signal shapes 

were used to be tracked by the IT2FLS using each algorithm. The total time for each experimental test is 25.5 seconds. 
 

last 2N
2 
+ 4N = 2(256)

2 
+ 4(256) = 132.096 iterations 

for a single defuzzification without taking into 

account the iterations required for the T2 fuzzification 

and T2 inference processes, as can be seen in Table 1. 

For instance, the E-KM requires from 1 up to 

0.1764N
2 

+ 2.1N = 0.1764(256)
2 

+ 2.1(256) = 12.098 

iterations to find the final left or right centroid. Due to 

each left or right centroid calculation is processes in 

parallel; it can be seen as a single loop. The iterative 

version, which can be compared with the non-iterative 

version and may last the same time to execute with the 

difference of the early termination condition, 

converges slower than the E-KM. 

The NT method also finishes before, because its 

implementation requires only a single centroid 

calculation and only a single embedded set in the set 

FOU. Although the NT method seems to be the fastest, 

the E-KM may find the final centroid in the first 

iteration, which very significant compared with the 

NT algorithm. 

Table 1 summarizes the complexity of each 

defuzzification method, which was obtained 

experimentally. 

7.2.2 Resource Usage 

The cRIO device provides several limited resources 

like multiplications, memories, amongst others which 

provide very high performance and the expert may use 

to build more complex structures like divisions or 

square roots. LabVIEW FPGA module is a GUI 

(graphical user interface) which provides several basic 

tools that can be used to implement high-throughput 

operations in a RIO device, controls that let the user 

modify the input data to the digital system and 

indicators that let the user show the output data from 

the digital system, related to a virtual instrument that 

works as the programming unit. 
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In functional block terms (LabVIEW FPGA 

module), the KM algorithms and the NT method were 

designed, implemented are compared according to the 

structures used for being implemented. 

After the module compilation, LabVIEW FPGA 

provides the FPGA resulting resource utilization. As 

can be seen in the last chart (Table 2), the resource 

usage can be useful for comparison purposes. This 

way, can be seen that the E-KM is the most expensive, 

but this is the fastest defuzzification method, but the 

NT method is the cheapest method because requires 

only one division and one multiplication for 

calculating the final centroid. Because this method 

does not search for several embedded sets, the final 

centroid is a single value and that is why requires of a 

single centroid calculation unit. The E-KM and the 

I-KM require 3 centroid calculation units while the 

non-iterative version requires 2. 

7.2.3 Timing and Area Resource Usage 

Also, the final timing and resources of each 

method is presented using the LabVIEW Tick Count 

block. And the resource utilization is obtained from 

the Build Specifications in LabVIEW FPGA module. 

The best timing performance is reached by the 

E-KM algorithm and the second best one is the NT, 

although the E-KM also presents the worst resource 

utilization. Now observe that the non-iterative KM 

algorithm presents the worst case, achieving about 20 

FLIPS (fuzzy logic inferences per second), which is 

not practical for the IT2FLS applied in real-time 

questions. Also, the NT method presents the best 

resource utilization. The software VI timing 

performance depends on the operating system tick 

time, which is generally 55 milliseconds per tick, so 

for the NI-KM the total ticks are 1.537, then 1.537 × 

55ms = 84.535ms, as can be seen in Table 3. 

LabVIEW FPGA module is used as reference for 

testing hardware and performing comparisons. This 

module creates a whole computing architecture that 

generates great amount of slices for any design. Its 

advantage stands on the fact of the ease of hardware 

validation due to its graphical interface, characteristic 

of the virtual instruments in LabVIEW. 

The final resource utilization may vary if the system 

is implemented directly in a Xilinx FPGA and without 

using the LabVIEW FPGA module. 
 

Table 1  Number of iterations per defuzzification method. 

Element/method NI-KM I-KM E-KM NT 

ES calculation N N N/A N 

ES centroid calculation N + 3 N + 3 N + 1 N + 3 

Total iteration count 2N2 + 4N [N/2，2N2 + 4N] [1,0.1764N2 + 2.1N] 2N + 3 

 

Table 2  Number of hardware elements used for each defuzzification method. 

Structure/method NI-KM I-KM E-KM NT 

Multiplications 1 1 6 1 

Divisions 1 2 5 1 

Sums/subtracts 3 4 17 5 

Centroid calculation units 2 3 3 1 

MUX (Comparator/multiplexers) 5 9 9 1 

 

Table 3  Timing performance and resource utilization per defuzzification method. 

Resource/methods NI-KM I-KM E-KM NT 

Latency (hardware) in milliseconds 49.48 0.8875 0.1756 0.27 

Latency (software) in milliseconds 84.535 1.87 1.43 1.32 

Slices 1,461 2,415 2,593 915 

Registers 1,454 2,087 2,828 959 

LUT 2,185 3,759 3,965 1,305 
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8. Conclusions 

The E-KM algorithm and the NT Method are the 

best choices for implementing real-time control 

applications in hardware. The NI-KM is not practical 

due to its poor response. Then, depending on the 

expert requirements, the expert must choose between 

speed and resources, so the E-KM algorithm provides 

the best speed although not the best resource usage. 

The NT method is fast and simple in the 

number of resource for real-time control applications. 

In the specific case of DC motors is an excellent 

option to use a the E-KM in the defuzzification stage, 

so it could be very useful to implement it in different 

industrial applications like  CNC (computer 

numerical control) machines that run in real time. 
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