
Journal of Control Science and Engineering 1 (2013) 1-12

Hardware Type 2 Fuzzy Logic Position

Controller Based on Karnik-Mendel Algorithms

Pedro Ponce-Cruz, Arturo Molina and Arturo Tellez-Velazquez

Tecnologico de Monterrey, Distrito Federal 07240, Mexico

Abstract: This paper presents an analysis of the KM (Karnik-Mendel) algorithms performance under real time implementation using

3 types: the non-iterative, the iterative and the enhanced, and their feasibility for real-time interval type 2 fuzzy logic control system

applications. The results are also compared against NT (Nie-Tan) method that is one of the fastest and simplest defuzzification

methods. Because the DC (direct current) servo-motor is one of the most used motors in different industrial applications and the

model of the motor is nonlinear, this motor was selected for validating the implementation in real time hardware. This DC motor is a

perfect option for studying the real time performance of KM algorithms in order to show up its limits and possibilities for real-time

control system applications. These methodologies are implemented in National Instruments LabVIEW FPGA (field programmable

gate array) module hardware which is one of the most used platforms in the industry. The results show that the E-KM (enhanced KM)

algorithm and the NT method present good results for implementing real-time control applications in real time hardware. Although

fuzzy logic type 2 is a good option for working with nonlinear and noise from the sensors, the defuzzification method has to react in

a short period of time in order to allow good control response. Hence, a complete study of defuzzification is needed for improving the

real time implementations of fuzzy type 2.

Key words: Fuzzy logic type 2, KM algorithms, NT method, defuzzification, type-reduction, DC servo-motor control.

1 .Introduction


Different research works present three KM

(Karnik-Mendel) algorithms for the IT2FLS (interval

type 2 fuzzy logic systems): the non-iterative [1] and

the iterative [2] types that provide the same numerical

results; the main difference is the improved total

iteration count of the iterative type compared with the

non-iterative one. Actually, both types are

outperformed by the enhanced KM algorithm [3]

which needs several initial conditions and lets the

system converge faster than the other ones. These

defuzzification methods get the generalized centroid

of an IT2FLS.

Different applications require opportune decisions;

those decisions which require the noise immunity that

the IT2FLS can provide [4]. The KM algorithms are

Corresponding author: Pedro Ponce-Cruz, Dr., research

fields: robotics, control systems, instrumentation and artificial

intelligence. E-mail: pedro.ponce@itesm.mx.

very intensive and sometimes they are not

appropriated for real-time applications. When they are

dealing with a big amount of data, a late response

appears generating an incorrect decision which cannot

be acceptable in real-time hardware systems.

The hardware implementation of IT2FLS offers

good results but the software implementation is not

good enough as it was shown in Ref. [5]. A hardware

implementation is considered in this work for proving

the KM algorithms in real-time applications.

For this purpose, a DC (direct current) servo-motor

is analyzed. The IT2FLS is implemented in hardware

by FPGA (field programmable gate array) based on

LabVIEW and each method was implemented and

tested independently. Two hardware considerations

were taken: the first one is the swiftness and the

second one is the final resource utilization. Every

algorithm was compared using these two hardware

conditions; also this paper shows a complete chart that

D
DAVID PUBLISHING

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

2

presents the complexity of every algorithm according

to the discrete discourse universe points.

This paper defines a new procedure of establishing

the hardware implementation based on LabVIEW

FPGA for KM algorithms. According to the results

presented, various KM algorithms are not appropriated

for real-time control applications. Finally, expert must

take into account the ratio between speed and area.

2. Interval Type 2 Fuzzy Logic Systems

The IT2FLS topology is the same as the T1FLS (type

1 fuzzy logic systems). It provides the fuzzification, the

inference and the defuzzification stages.

The IT2FLS fuzzification maps the crisp values xj

into several membership values according to its

membership degree. This means that a crisp value

could belong to more than one IT2FS (interval type 2

fuzzy sets); those two membership degrees form a

FOU (footprint of uncertainty). Each membership

obtained after defuzzification process is related using

fuzzy logic operations as conjunction (AND) and

disjunction (OR). The fuzzy conjunction allows expert

relating all the implied premises (input sets) and the

fuzzy disjunction allows expert aggregating all these

implied values in order to obtain a specific consequent

(output set). With all these relations, a rule set is built.

The rule set represents the IT2FLS conventional

configuration.

Fig. 1 shows a complete picture of the IT2FLS

which can be used in hardware implementations. Each

block can be an independent hardware entity. The

inferred set is calculated and stored in a memory

location.

3. The KM Algorithms

In previous works [1-3, 6], the KM algorithms

includes several modifications in order to decrement

the impact of the large number of iterations required

to generate a single centroid. This method is

computationally exhaustive, different research works

proposed some initial conditions and modifications

based on the seminal algorithm. These modifications

have the purpose of decreasing the search space for

both the left and the right centroids.

Assume that the output discourse universe Y is a set

of all the possible crisp outputs that can be obtained

from a defuzzification method, i.e. y ∈ Y. Now, let B

be a consequent set defined along Y. The key of

finding each approximated centroid is to find a switch

point where the ES (embedded set) will change from

one outer membership function to another; specifically,

the LMF (lower membership function) or)(~ yB and

Fig. 1 IT2FLS with four defuzzification methods: the non-iterative, iterative and enhanced KM algorithms, and the NT

(Nie-Tan) method.

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

3

Fig. 2 The general centroid search in the KM algorithms.

There is not centroid search for this algorithm; all the

centroids are computed. This method is known as the

NI-KM (non-iterative Karnik-Mendel) algorithm.

the UMF (upper membership function) or)(~ yB , which

comprises the FOU. Fig. 2 provides a graphical

description of the KM algorithm, in general.

3.1 Non-Iterative Version

The NI-KM algorithm [1] creates all the embedded

sets θL and θR as possible from 1 to N. For finding the

left and right centroids, the expert must calculate the

following formulas:



 


otherwise)(

)(
~

~

iB

iiB
L

y

Lyy












 


N
i i

N
i ii

y

yy
c

L

L

L

1

1

)(

)(









 (1)

where, lLc 

)min(llc 



 


otherwise)(

)(
~

~

iB

iiB

R

y

Ryy












 


N
i i

N
i ii

y

yy
c

R

R

R

1

1

)(

)(









 (2)

where, rRc 

).max(rrc 

This non-iterative version creates a vector of left

centroids Θl and a vector of right centroids Θr; from

the left centroid vector, the far left centroid (the

minimum) is selected while from the right centroid

(maximum) vector, the far right centroid is selected.

Fig. 3 shows the non-iterative version.

Eqs. (1) and (2) can be rewritten as two summations in

the numerator and the denominator as follow:

 

 

 

 






L
i

N
Li iBiB

L
i

N
Li iBiiBi

y•y

yyyy
c L

1 1
~~

1 1
~~

)()(

)()(






(3)

where, lLc 

)min(llc 

 

 

 

 






R
i

N
Ri iBiB

R
i

N
Ri iBiiBi

y•y

yyyy
c R

1 1
~~

1 1
~~

)()(

)()(






(4)

where, rRc 

).max(rrc 

3.2 Iterative Version

This iterative version [2, 7, 8] searches for the left

and right centroids starting from a convenient initial

embedded set θi. After the initial centroid, the

following centroid search of θi for the left and right

centroids helps the algorithm to converge to the final

centroid faster than the non-iterative version. Fig. 4

shows the iterative KM algorithm.

For the KM algorithm, the procedure to find the left

and right centroid ci and cr is the following:

(1) Sort all the discourse universe values yi in

ascending order, where i = 1, 2 , … , N , such y1 ≤ y2

≤ … ≤ yN. Associate each yi with its corresponding

)(~
iB y and)(~

iB y .

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

4

Fig. 3 The NI-KM algorithm performs all the centroid

calculation.

Fig. 4 The I-KM (iterative KM)algorithm. This algorithm

is optimized for starting the centroid search from almost

the half of discourse universe.

(2) Initialize

2

)()(~~
iBiB

i

yy 



 (5)

and compute








N
i i

N
i iiy

y
1

1





 (6)

(3) Find the switch point k, such 1 ≤ k ≤ N - 1 and

yk ≤ yk+1,

(4) Establish

For the left centroid:



 


otherwise)(

)(

~

~

iB

iB

r
y

kiy






For the right centroid:






 


otherwise)(

)(

~

~

iB

iB

i

y

kiy






and compute










N

i i

N

i iiy
y

1

1





(5) If y’ = y. If true, then stop and assign cl= y or cr

= y, correspondingly, else continue.

(6) Assign y = y, y go to step 3.

In both versions, the generalized centroid is

calculated simply by averaging both cl and cr

centroids:

2

rl cc
y


 (7)

3.3 Enhanced KM Algorithm

To improve the KM algorithm calculations, the

E-KM (enhanced KM) algorithm [3] does not start

only at the initial embedded set; it also starts from a

convenient switch point (Fig. 5).

The algorithm to find the left centroid ci is the

following:

(1) Sort all the discourse universe values xi in

ascending order, where i = 1, 2 , … , N, such y1 ≤ y2

≤ … ≤ yN. Associate each yi with its corresponding

)(~
iB y and)(~

iB y .

(2) Establish k = round (N/2.4) and compute

)()(~

1

~

1

iB

N

ki

iiB

k

i

i yyyya 




)()(~

1

~

1

iB

N

ki

iB

k

i

yyb 




b

a
y 

(3) Find the switch point k’∈[1, N-1], such

1''  kk yyy (8)

(4) Check if k’ = k. If true, stop and assign cl = y;

else continue.

(5) Compute

)]()([' ~
)',max(

)',min(

~
iBi

kk

kki

B yyyaa  


)]()([' ~
)',max(

1)',min(

~
iBi

kk

kki

B yybb  


and compute again

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

5

Fig. 5 The E-KM algorithm. This algorithm is doubly

optimized for starting the centroid search eight percent

around N/2 of discourse universe. That is why some

literature uses the values 1.7 and 2.4 to start the centroid

search.

'

'
'

b

a
y 

(6) Assign y = y
’
, a = a

’
, b = b

’
, k = k

’
 and go to step 3.

Each preliminary definition of kl = N /2.4 and kr =

N/1.7 suggests that the initial centroids can be found

±8% around the middle of the set support, i.e., kl =

(N/2) - 0.08N and kr = (N/2) + 0.08N. These values

were obtained experimentally [3]. This initial search

reduces the search of the final centroid.

3.4 Nie-Tan Method

Although the NT method is not a KM algorithm

derivation, this is used in the iterative-version KM

algorithms to find the initial switching point. This

method is discussed in this work because of its

simplicity. The simplicity of the algorithm is based on

the average between the LMF and UMF as it is shown

in Fig. 6.

The NT method [9, 10, 11] is the simplest and

fastest defuzzification method for IT2FLS.

It searches the middle MF θi between UMF and

LMF. Its centroid is the approximated generalized

centroid:

2

)()(~~
iBiB

i

yy 



 (9)







 


N
i i

N
i ii

y

yy
y

1

1

)(

)(








 (10)

Fig.6 The NT method.

This method is one of the fastest methods because it

requires only a division by 2 (1-position right shift

register) and only a single centroid calculation.

Following section explains a hardware overview in

FPGA in which the KM algorithms and the NT

method were implemented.

4. DC Servo-Motor

This paper presents a hardware study between

several defuzzification methods for IT2FLS. For doing

this, the DC Servo-Motor application is proposed. The

following section provides some theories about the DC

servo-motor plant which is controlled by the IT2FLS.

The DC servo-motor model is well defined by

conventional differential equations according to the

Fig. 7. This model contains the complete description

of the servomotor. Normally, in the control of DC

servo-motor appears noise from the sensors, so a

controller that could get rid of the noise effect is able

to improve the whole performance of the system. The

following figure shows the basic topology of the DC

motor model.

The equations that describe the DC motor

performance are presented below:

iKT e  (11)

mfa wKe  (12)

mm wbw
t

JT 
d

d
 (13)

aeViRi
t

L 
d

d
 (14)

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

6

Fig. 7 DC servo-motor model.

where,

T: motor torque;

Ke: torque constant;

Kf: voltage constant;

i: armature current;

ea: generated voltage;

wm: angular velocity;

J: inertia;

b: damping ratio;

L: armature inductance;

R: armature resistance;

V: input voltage.

4.1 Laplace Transform Model

Rearranging Eqs. (11)-(14) :

)(
d

d
)()(tw

t
JtwbtiK mm  (15)

)(
d

d
)()()(ti

t
LtiRtwKtV m  (16)

Our principal goal is to control the DC servo-motor

speed by changing the input voltage V, so the Eqs. (15)

and (16) can be transformed in terms of voltage V and

angular speed wm.

)()(
d

d
)(tw

K

b
tw

tK

J
ti mm  (17)

Replacing Eq. (17) in Eq. (16) we get,

)()(

)(
d

d
)(

d

d

2

2

2

tVtw
K

bRK

tw
tK

JRbL
tw

tK

JL

m

mm








 









 








 

(18)

Before applying Laplace transform is necessary to

represent the last equation in terms of deviation

variables,

)()(

)(
d

d
)(

d

d

2

2

2

ttW
K

bRK

tW
tK

JRbL
tW

tK

JL

m

mm








 









 








 

 (19)

where,

)0()()(mmm wtwtW 

)0()()(VtVt 

And wm(0) and V(0) are the initial conditions.

Applying the Laplace transform we get,

)()(

)()(

2

2

ssW
K

bRK

ssW
K

JRbL
sWs

K

JL

m

mm








 









 








 

 (20)

Rearranging Eq.(20) we obtain the transfer function

that represents the servomotor plant in terms of

Laplace transform as follows:








 








 








 




K

bRK
s

K

JRbL
s

K

JLs

tWm

2
2

1

)(

)((21)

4.2 State-Space Ttransfer Function

From Eq. (18), it can be defined the state-space

model introducing the next variables,

)(1 twx m (22)

)(
d

d
2 tw

t
x m (23)

The model is defined as,

21)(
d

d
xtw

t
x m  (24)

1

2

2

2

2

2

)(

)(
d

d

x
JL

bRK
x

JL

JRbL
tV

JL

K

tw
t

x m








































(25)

1)(xtwy m  (26)

)(tVu  (27)

Finally, the state-space equations are,

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

7

 u

JL

K
x

x

JL

JRbL

JL

bRK

x

x

















































































010

2

1
2

2

1




(28)

  









2

101
x

x
y (29)

And the DC motor model constants are,












































JL

JRbL

JL

bRKA
2

10
 (30)




























JL

KB

0
 (31)

 01C (32)

D = 0 (33)

4.3 Servo-Motor Control System

The servo-motor control system for the

defuzzification method performance comparison is

shown in Fig. 8, where the IT2FLS performs the

position control using the position error θ and the

change of the position θ; also, the servomotor plant

can be represented by Eq. (21) or Eqs. (30) and (33).

Fig. 9presents some details about the IT2FLS and its

rules; nine rules are performed relating the

antecedents to infer the consequences.

5. The Hardware Complexity

A real-time application can be managed by a

computational device but the device selection will

depend on the latency of that digital system that will

manage it. A real-time application requires fast

digital systems (with low latency) because its

real-time characteristic will be defined by its WCET

(worst case execution time).

The centroid calculation had been considered as a

problem in T1FLS, for real-time applications

because of its large latency. Although several

applications were solved without problems with the

centroid calculation in T1FLS, the use of this in the

KM algorithms are very common and intensive and

therefore the IT2FLS are hugely more complex than

the T1FLS. The search of each centroid for each

embedded set is globally several times more complex

compared with the T1FLS.

This is one of the reasons why the IT2FLS are not

used as the T1FLS today, and its robustness capability

is not approached. The IT2FLS are often implemented

in hardware such as RT-MCU (real-time microcontroller

units), or DSP (digital signal processors) [12] and

FPGA [13], because the rest of the hardware (computers

with sequential program execution) becomes impractical

and not feasible for real-time applications. These

digital systems are often more expensive, especially

the FPGA, and commonly this economic reason limits

the application implementation in most cases.

Some of the high-end FPGA hardware elements

that can be found in real-time applications are:

 high-speed dedicated multiplications;

 high-speed dedicated memory;

 DSP blocks;

 real-parallelism;

 partial reconfiguration.

Full-customizable multiplications are available in

the FPGAs as a solution for improving the timing

performance. Xilinx is the main FPGA brand that is

used widely in several applications along the world.

Some Xilinx FPGA families provide faster

multiplication blocks and additional high performance

resources (like DSP blocks and RT processors in the

same land) in their higher end devices. Some

high-speed RAM (random access memory) blocks are

available for storing data, for instance.

These resources help the expert to design high speed

and low cost T1FLS and IT2FLS in hardware among

the software approaches, because a sequential program is

executed in a fixed computing architecture [5]. If the

specific application deserves the use of IT2FLS, then

the expert must take into account how to select the

appropriated defuzzification method that will be used

for its real-time application.

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

8

Fig. 8 The servo-motor control system.

Fig. 9 The fuzzy sets and the rule set for the servo-motor

application.

6. Methodology

The hardware defuzzification method comparisons

are performed implementing all the KM algorithms,

the NT method in FPGA hardware; National

Instruments Reconfigurable I/O (compact RIO or

cRIO) device is used and LabVIEW FPGA module to

program every defuzzification stage enunciated in this

paper and all the IT2FLS architecture. The cRIO

device used is the NI-9014 with analog I/O

capabilities, the C-series NI-9263 and the NI-9201

modules.

For this reason, the expert may also know some

hardware details about the KM algorithms that will

use.

For hardware comparison, the DC servo-motor

application is proposed as a study case where the rotor

position θ is tracked when a signal generator is

introduced and a noise generator is used to disturb the

IT2FLS performance, according to Fig. 8. Although

the servo case is relatively slow, all these defuzzification

methods can be analyzed and compared. Several

studies have been implemented in FPGA hardware for

T1FLS [14] and IT2FLS [15]. However, no

comparisons have been presented, in hardware terms,

where the most important defuzzification methods are

applied for solving the same problem.

The DC servo-motor application, as can be seen in

Figs. 8 and 10, is an electronic control training module

dedicated for the cRIO device where the user can test

control performance easily. The servomotor moves the

rotor position from 0° to 180° according to the REF

analog signal; the REF signal is used in the cRIO as

an input to determine the reference that the controller

will follow. The FDBCK (feedback) signal is another

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

9

analog signal used in the cRIO as an input also; the

difference is that this signal is used to know where the

current rotor position is.

The control system described in Fig. 8 is

implemented using the LabVIEW FPGA module,

where several diagram blocks are used for the data

acquisition (input nodes), the noise generator summed

to the reference signal (signal generator), the data

driving to the servo (output node), and finally the

IT2FLS. The error is computed as the difference

between the desired values, such the REF (reference)

signal, i.e., the reference and the current position value

FDBCK, as can be seen in Figs. 8 and 10.

The cRIO analog output is used to drive the desired

voltage to the servo-motor and this way determine the

new position of the rotor. This signal is applied in the

MOT (motor) signal as can be seen in the training

module of the Fig. 10.

Details about the servo-motor control training

module are not known, although their general

equations are defined (From Eqs.(20) to (29)). This is

not important for the fuzzy controller, because the

IT2FLS must determine its control law without

knowing the exact system dynamics.

For comparison purposes, the noisy reference signal

REF is used so that the IT2FLS can follow it, the

fuzzification and inference processes are previously

tuned and are the same for the four cases. Four signal

shapes were tested with the four methods: the NI-KM

algorithm, the I-KM algorithm, the E-KM algorithm

and the NT method, as can be seen in Fig. 11.

7. Results and Discussions

7.1 Reference Tracking

The final response of the control system using all

the defuzzification methods mentioned is shown in

Fig. 11. Four signal shapes were used to the IT2FLS

tracking.

The NI-KM algorithm is the worst case and its

latency makes the decision to take late decisions. The

best results were obtained with the E-KM algorithm

and the NT method. This behavior is similar in each

case.

7.2 The Hardware Performance

The following paragraphs are dedicated to describe

the hardware complexity between every

defuzzification method described in previous sections.

NI-cRIO devices are used in conjunction with NI

LabVIEW FPGA module.

The following section provides a timing and area

performance analysis where each KM algorithm is

analyzed and compared. Also, the NT method is

included.

7.2.1 Complexity and Arithmetic-related

Assume that each algorithm requires two memories

with N locations and each centroid (either left or right)

are computed in parallel. Each element is a byte (8-bit

width). Every memory can be distributed in the FPGA

by LUT (look-up tables).

The following chart provides a comparison between

all the KM algorithms and the NT method.

According to Eqs.(1-9), the total iteration count can

be obtained as an approximation if a counter is

included in the most inner loop of the algorithm and

by observation of the block diagram. In this case, N =

256, where N is the number of points the discourse

universe is divided into. So, the non-iterative KM may

Fig. 10 The control of a servo-motor training module and

the cRIO with C-series modules.

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

10

Fig. 11 All the KM algorithms and NT method tracking performance comparison in presence of noise. Four signal shapes

were used to be tracked by the IT2FLS using each algorithm. The total time for each experimental test is 25.5 seconds.

last 2N
2
+ 4N = 2(256)

2
+ 4(256) = 132.096 iterations

for a single defuzzification without taking into

account the iterations required for the T2 fuzzification

and T2 inference processes, as can be seen in Table 1.

For instance, the E-KM requires from 1 up to

0.1764N
2

+ 2.1N = 0.1764(256)
2

+ 2.1(256) = 12.098

iterations to find the final left or right centroid. Due to

each left or right centroid calculation is processes in

parallel; it can be seen as a single loop. The iterative

version, which can be compared with the non-iterative

version and may last the same time to execute with the

difference of the early termination condition,

converges slower than the E-KM.

The NT method also finishes before, because its

implementation requires only a single centroid

calculation and only a single embedded set in the set

FOU. Although the NT method seems to be the fastest,

the E-KM may find the final centroid in the first

iteration, which very significant compared with the

NT algorithm.

Table 1 summarizes the complexity of each

defuzzification method, which was obtained

experimentally.

7.2.2 Resource Usage

The cRIO device provides several limited resources

like multiplications, memories, amongst others which

provide very high performance and the expert may use

to build more complex structures like divisions or

square roots. LabVIEW FPGA module is a GUI

(graphical user interface) which provides several basic

tools that can be used to implement high-throughput

operations in a RIO device, controls that let the user

modify the input data to the digital system and

indicators that let the user show the output data from

the digital system, related to a virtual instrument that

works as the programming unit.

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

11

In functional block terms (LabVIEW FPGA

module), the KM algorithms and the NT method were

designed, implemented are compared according to the

structures used for being implemented.

After the module compilation, LabVIEW FPGA

provides the FPGA resulting resource utilization. As

can be seen in the last chart (Table 2), the resource

usage can be useful for comparison purposes. This

way, can be seen that the E-KM is the most expensive,

but this is the fastest defuzzification method, but the

NT method is the cheapest method because requires

only one division and one multiplication for

calculating the final centroid. Because this method

does not search for several embedded sets, the final

centroid is a single value and that is why requires of a

single centroid calculation unit. The E-KM and the

I-KM require 3 centroid calculation units while the

non-iterative version requires 2.

7.2.3 Timing and Area Resource Usage

Also, the final timing and resources of each

method is presented using the LabVIEW Tick Count

block. And the resource utilization is obtained from

the Build Specifications in LabVIEW FPGA module.

The best timing performance is reached by the

E-KM algorithm and the second best one is the NT,

although the E-KM also presents the worst resource

utilization. Now observe that the non-iterative KM

algorithm presents the worst case, achieving about 20

FLIPS (fuzzy logic inferences per second), which is

not practical for the IT2FLS applied in real-time

questions. Also, the NT method presents the best

resource utilization. The software VI timing

performance depends on the operating system tick

time, which is generally 55 milliseconds per tick, so

for the NI-KM the total ticks are 1.537, then 1.537 ×

55ms = 84.535ms, as can be seen in Table 3.

LabVIEW FPGA module is used as reference for

testing hardware and performing comparisons. This

module creates a whole computing architecture that

generates great amount of slices for any design. Its

advantage stands on the fact of the ease of hardware

validation due to its graphical interface, characteristic

of the virtual instruments in LabVIEW.

The final resource utilization may vary if the system

is implemented directly in a Xilinx FPGA and without

using the LabVIEW FPGA module.

Table 1 Number of iterations per defuzzification method.

Element/method NI-KM I-KM E-KM NT

ES calculation N N N/A N

ES centroid calculation N + 3 N + 3 N + 1 N + 3

Total iteration count 2N2 + 4N [N/2，2N2 + 4N] [1,0.1764N2 + 2.1N] 2N + 3

Table 2 Number of hardware elements used for each defuzzification method.

Structure/method NI-KM I-KM E-KM NT

Multiplications 1 1 6 1

Divisions 1 2 5 1

Sums/subtracts 3 4 17 5

Centroid calculation units 2 3 3 1

MUX (Comparator/multiplexers) 5 9 9 1

Table 3 Timing performance and resource utilization per defuzzification method.

Resource/methods NI-KM I-KM E-KM NT

Latency (hardware) in milliseconds 49.48 0.8875 0.1756 0.27

Latency (software) in milliseconds 84.535 1.87 1.43 1.32

Slices 1,461 2,415 2,593 915

Registers 1,454 2,087 2,828 959

LUT 2,185 3,759 3,965 1,305

Hardware Type 2 Fuzzy Logic Position Controller Based on Karnik-Mendel Algorithms

12

8. Conclusions

The E-KM algorithm and the NT Method are the

best choices for implementing real-time control

applications in hardware. The NI-KM is not practical

due to its poor response. Then, depending on the

expert requirements, the expert must choose between

speed and resources, so the E-KM algorithm provides

the best speed although not the best resource usage.

The NT method is fast and simple in the

number of resource for real-time control applications.

In the specific case of DC motors is an excellent

option to use a the E-KM in the defuzzification stage,

so it could be very useful to implement it in different

industrial applications like CNC (computer

numerical control) machines that run in real time.

Acknowledgments

This work is sponsored by Instituto Tecnologico

de Estudios Superiores de Monterrey and National

Instruments.

References

[1] J.M. Mendel, Type-2 fuzzy sets and systems: An

Overview, IEEE Computational Intelligence Magazine 2

(1) (2007) 20-29.

[2] N.N. Karnik, J.M. Mendel, Q. Liang,Type-2 fuzzy logic

systems, IEEE Transactions on Fuzzy Systems 7 (1999)

643-658.

[3] H. Wu, J. M. Mendel, Enhanced Karnik-Mendel

algorithms, IEEE Transactions on Fuzzy Systems 17

(2009) 923-934.

[4] M.Biglarbegian, W. Melek, J.Mendel, Robustness of

interval type-2 fuzzy logic systems, in: IEEE NAFIPS

Canada, 2010.

[5] N. Manaresi, R. Rovatti, E. Franchi, R. Guerrieri, G.

Baccarani, Automatic synthesis of analog fuzzy

controllers: A hardware and software approach, IEEE

Transactions on Industrial Electronics 43 (1) (1996)

217-225.

[6] J. Mendel, X. Liu, Some extensions of the

Karnik-Mendel algorithms for computing an interval

type-2 fuzzy set centroid, in: IEEE Symposium on

Advances in Type-2 Fuzzy Logic Systems, Paris, France,

April 11-15, 2011.

[7] J. Mendel, F. Liu, Super-Exponential convergence of the

Karnik-Mendel algorithms used for type-reduction in

interval type-2 fuzzy logic systems, in: IEEE

International Conference on Fuzzy Systems, Vancouver,

BC, Canada, July 16-21, 2006.

[8] J. Mendel, R.I.B. John, Type-2 fuzzy sets made simple,

IEEE Transactions on Fuzzy Systems 10 (2) (2002)

117-127.

[9] J.M. Mendel, X. Liu, Simplified interval type-2 fuzzy

logic systems, IEEE Transactions on Fuzzy Systems 21

(6) (2013) 1056-1069.

[10] D. Wu, J. M. Mendel,On the Continuity of type-1 and

interval type-2 fuzzy logic systems, IEEE Transactions

on Fuzzy Systems 19 (1) (2011) 179-192.

[11] M. Nie, W.W. Tan, Towards an efficient type-reduction

method for interval type-2 fuzzy logic systems, in: IEEE

World Congress on Computational Intelligence, Hong

Kong, China, June 1-6, 2008.

[12] R. Lauwereins, M. Engels, J.A. Peperstraete, Parallel

processing enables the real-time emulation of DSP ASICs,

IEEE International Workshop on Rapid System

Prototyping, North Carolina, USA, June 4-7, 1990.

[13] Y. Chen, V. Dinavahi, Multi-FPGA digital

hardware design for detailed large-scale real-time

electromagnetic transient simulation of power systems,

IET Generation, Transmission & Distribution 7 (5) (2013)

451-463.

[14] M. Cirstea, J. Khor, M. McCormick, FPGA fuzzy logic

controller for variable speed generators, in: IEEE

International Conference on Control Applications,

Mexico, Sep. 5-7, 2001.

[15] M. Melgarejo, C.A. Pena-Reyes, Implementing interval

type-2 fuzzy processors, IEEE Computational

Intelligence Magazine 2 (1) (2007) 63-71.

