
An Introduction to

Function Approximation

for Machine Learning
Volker Tresp

Winter 2024-2025

1



Problem Setting

• In an actual application, the data scientist needs to decide which model to use (linear

Perceptron, fixed basis functions, neural networks, kernels, . . . ?)

• How well is one doing in solving the actual problem with the data actually available; in

the lecture on model selection, we learn about some empirical methods for analysing

some of these issues

• But what can theory tell us about these issues? Why are, e.g., deep neural networks

so successful?

• In this lecture we will be a bit informal since formal treatments require advanced

mathematical frameworks and are beyond the scope of this lecture

2



Target Function Class

• Let F be the set of target functions

• What characterizes the functions that mother nature generates for a particular prob-

lem, e.g., image classification, and how can I characterize them?

• In a theoretical analysis one characterizes this class in some way, hopefully limiting

the class to the one actually occurring in practice (neither larger nor smaller)

• Often one defines the target class by some degree of smoothness of the functions; an-

other target class of functions are composable functions (see lecture on deep learning)

3



Target Function Class (cont’d)

• The modern view is that the target function class assumes a tiny space in the space

of all functions and e.g., deep learning models, work so well because they match this

class reasonably well

• Some claim that machine learning is impossible if the target function class is not

restricted (no-free-lunch theorem)

4



Model Function Class

• What characterizes the model function class M

• To simplify matter (mostly for notational simplicity), we assume a model function

class can be described as

M = {fw(·)}w

i.e. functions which only vary in their parameters (but this is not essential)

5



Average Squared Distance Between Functions

• Consider the true function f(·) and an model fw(·). The average squared distance

is

∥f − fw(·)∥2B =
1

VB

∫
B
(f(x)− fw(x))2dx

Here VB is the volume of the unit ball B in M dimensions

• This is simply the average squared Euclidean distance, applied to two functions

6



Expected Squared Distance Between Functions

• The expected squared distance between the two function is

∥f − fw(·)∥2P (x) =

∫
(f(x)− fw(x))2P (x)dx

• P (x) is the probability distribution of the input data

• If xi ∼ P (x)

∥f − fw(·)∥2P (x) ≈
1

N

N∑
i=1

(f(xi)− fw(xi))
2

• In some cases the input data only occupy a small subspace (manifold) of the unit ball;

some learning approaches are able to explore this

7



Distance between Functions

• We define ϵB to be the minimum Euclidean distance for the“most difficult” function

from the function class

ϵB = min
w

max
f

∥f − fw∥B

ϵP (x) = min
w

max
f

∥f − fw∥P (x)

f ∈ F , fw ∈ M

8



Statistical Machine Learning

• Statistical machine learning analyses the distance between the expected distance be-

tween a model function, where the parameters were estimated based on some training

data, and a given f

• This is not the issue in approximation theory, and will be discussed in a later lecture

9



Analysis of Dimensionality

• Consider input space dimension M

• If in one dimensions, we need M
(one-dim)
ϕ RBFs (e.g., M

(one-dim)
ϕ = 10), and we

want to maintain the same complexity in higher dimensions, then we need

Mϕ =
(
M

(one-dim)
ϕ

)M
RBFs in M dimensions

10





Analysis of Dimensionality (cont’d)

• We get

M
(one-dim)
ϕ = O

 1

ϵ
1/m
B


• Here, m is a characterization of the smoothness of the target class: m can be the

set of all functions with continuous partial derivatives of orders up to m (derivatives

of higher order can be discontinuous)

• This result can, e.g., be found in: “Why and When Can Deep-but Not Shallow-networks

Avoid the Curse of Dimensionality: A Review” Tomaso Poggio et al., International

Journal of Automation and Computing, 2017, Equation 5.

11



Analysis of Dimensionality (cont’d)

• We can write this as

M
(one-dim)
ϕ = O

(
accuracyroughness

)
where we have defined accuracy = 1/ϵB and roughness = 1/m

12



Analysis of Dimensionality: Main Result

• Overall, the total number of basis function is then

Mϕ = O
(
accuracyM×roughness

)
• Note, that, for a fixed desired accuracy (e.g., accuracy = 10 ), the number of basis

functions increases exponentially with M × roughness

• Sometimes it is more instructive to look at the logarithm

logMϕ = O (M × roughness× log(accuracy))

13



Case I: Curse of Dimensionality

• F : dimensionality M is large, and roughness is large

• M: Considering that (M× roughness) is in the exponent, Mϕ is unrealistically large

• This is the famous Bellman’s“Curse of Dimensionality”

14





Case II: Blessing of Dimensionality

• F : dimensionality M is small but roughness is large

• In this case (M × roughness) might be acceptable

• M: This is what I would call the “Blessing of Dimensionality”: a complex nonlinear

classification problem (large roughness) can be solved by a transformation of the low-

dimensional input space (M) into a high-dimensional space (Mϕ) where the problem

might even become linearly separable

15





Case III: Smooth Target Function in High Dimensions

• F : dimensionality M is large and roughness is small (the target function is smooth)

• A special case would be when the target functions are linear functions; then where

Mϕ = M +1; The target function exhibits a voting behavior: each input itself has

a (small) contribution to the output

• F : if the target functions can well be approximated by linear functions, the input

dimension can be quite high (M > 10000)

16



Case IV (Simple): Smooth Target Function in Low Dimensions

• F : dimensionality M is small and roughness is small (the target function is smooth)

• M: Only a small number Mϕ of smooth basis functions are required

17





Revisiting Case I

• Fortunately, even Case I is not as hopeless as it first appears, since, in reality, classes

are more restricted

• Ia: F : The target functions have high-frequency components, but only locally, and a

sparse solution is feasible

• Ib: The input data points are restricted to a low-dimensional manifold (reflected in

P (x))

• Ic: F : The target functions are composable (discussed in the lecture on deep learning)

18



Case Ia: Sparse Basis: No Curse of Dimensionality with a
Neural Network

• F : both M and roughness are large, so the required Mϕ is large, but only H <<

Mϕ basis functions have nonzero weights; e.g., high complexity might only be

present in a restricted region in input space

• M: With a neural network model, the number of hidden units with nonzero weights

(i.e., H) might even be independent of M !

• As a model class, classical neural networks with H hidden units can adaptively find

the“perfect” sparse basis during training (with backpropagation)

19







Case Ib: Manifold

• So far we did not assume any particular input data distribution: P (x) might be a

uniform distribution within the unit ball

• But sometimes P (x) is restricted to a subspace of small dimension Mh << M ;

in the nonlinear case, the subspace is called a manifold (data is often on a manifold,

when model accuracy is very high (like in OCR)

• M: we might only need on the order of accuracyMh×roughness (instead of accuracyM×roughness)

basis functions to cover the relevant region in input space

• Some model classes, like neural networks / deep neural networks, model data on a

low-dimensional manifold quite effectively

• Other approaches perform a preprocessing step (clustering, PCA, ICA, . . . ) to find

the manifold (dimensionality reduction), and then apply any model class suitable for

low-dimensional data

20







Why Nature Generates Data on Manifolds

• We encountered this in the lecture on basis functions

• Assume that nature generates data in some low-dimensional space; nature then trans-

forms this data to a high dimensional space by some nonlinear transformation

• This data then become the input data; then the input data might be on a manifold,

as discussed in the lecture on basis functions!

• See lecture on manifold learning

21









Manifold: Adversarial Examples

• But there is a danger: if we consider test data outside of the manifold, then perfor-

mance might degrade quickly

• So although, ϵP (x)might be small, ϵB could be large!

• A common issue is: even on a test set (generated from the available data) the per-

formance is excellent, but if I apply my model to new data collected independently,

performance is much worse (even if f(x) did not change)

• This might explain the bad performance of DNNs on adversarial examples

• Sometimes this problem is also called covariate shift (covariates are the inputs)

22



Conclusions

• Basis functions perform a nonlinear transformation from input space to basis function

space

• To avoid the Curse of Dimensionality and if one uses fixed basis functions, (M ×
roughness) should not be very large

• Neural networks are effective when the basis is sparse (Ia (sparse basis)) or when data

is on a manifold (Ib (data on a low-dimensional manifold))

• The next table evaluates linear models, distance-based methods (like nearest neighbor

methods), models with fixed basis functions, neural networks, deep neural networks,

and kernel approaches

23



Target \ Model Lin Neighb. fixed BF Neural Nets Deep NNs Kernels
I (curse) - - - - - -
II (blessing) - + + + + +
III (smooth) + - + + + +
IV (simple) + + + + + +
Ia (sparse basis) - - - + + -
Ib (manifold) - - (+dr) - (+dr) + + +
Ic (compos.) - - - - + -

• (+dr) stands for possibly good results with suitable dimensionality reduction by a

preprocessing step;

• Case Ic are compositional functions, introduced in the lecture on deep neural networks

• Kernels are introduced in a later lecture



Appendix: Entropies

• Assume n discretization steps for each of the M input dimensions, e.g., xj ∈
0,1,2, ..., n− 1

• With K discretization steps for the foutput , e.g., f ∈ 0,1,2, ...,K − 1, we can

realize K(nM) functions, with entropy (number of required bits) (each function has

the same probability for being generated)

EntropyF = log2K
(nM) = nM log2K

• For each possible input, we simply need log2K bits and there are nM possible inputs

• Interesting: It is not the accuracy of the representation (i.e., K) that “kills”us, it is

the dimensionality M reflected in the number of possible inputs (i.e., nM )

• For a model class of fixed basis functions,

EntropyM = log2K
(Mϕ) = Mϕ log2K

if we represent each weight with log2K bits

24



Appendix: VC-dimension

• For systems with fixed basis functions and binary classification, dimV C = MP =

Mϕ is the VC-dimension (proportional to our entropy) of the model class

• Note that the VC-dimension is a property of the model class M and not of the

function class F

• If we have N = Mϕ = dimV C data points, the design matrix ΦTΦ is a square

matrix and might be invertible; in that case, no matter what the assignment of training

labels y, we perfectly fit the classification labels (e.g., with regression)

• VC-theory states that one needs at least dimV C data points for a valid generalization;

this makes sense, since, without regularization, there are an infinite number of solutions

when Mϕ < N

• Formally, dimV C is defined as the cardinality of the largest set of points that the

model class can shatter (i.e., perfectly model for any assignments of targets)

25


