An Introduction to
Function Approximation
for Machine Learning

Volker Tresp
Winter 2024-2025

In an actual application, the data scientist needs to decide which model to use (linear

Perceptron, fixed basis functions, neural networks, kernels, ...7?)

How well is one doing in solving the actual problem with the data actually available; in
the lecture on model selection, we learn about some empirical methods for analysing

some of these issues

But what can theory tell us about these issues? Why are, e.g., deep neural networks

so successful?

In this lecture we will be a bit informal since formal treatments require advanced

mathematical frameworks and are beyond the scope of this lecture

Let F be the set of target functions

What characterizes the functions that mother nature generates for a particular prob-

lem, e.g., image classification, and how can | characterize them?

In a theoretical analysis one characterizes this class in some way, hopefully limiting

the class to the one actually occurring in practice (neither larger nor smaller)

Often one defines the target class by some degree of smoothness of the functions; an-

other target class of functions are composable functions (see lecture on deep learning)

e The modern view is that the target function class assumes a tiny space in the space
of all functions and e.g., deep learning models, work so well because they match this

class reasonably well

e Some claim that machine learning is impossible if the target function class is not

restricted (no-free-lunch theorem)

e What characterizes the model function class M

e To simplify matter (mostly for notational simplicity), we assume a model function
class can be described as

M = {fW(')}W

i.e. functions which only vary in their parameters (but this is not essential)

Consider the true function f(-) and an model fw(-). The average squared distance

IS
1
I~ SOl = - [(60 = fw(x0) %
BJB
Here Vg is the volume of the unit ball B in M dimensions

This is simply the average squared Euclidean distance, applied to two functions

The expected squared distance between the two function is
I~ f Ol = [(F6) = Fw(0)?P(x)dx

P(x) is the probability distribution of the input data

If x; ~ P(x)
1 N
| — fw(')”l%(x) ~ N Z(f(xz) — fw(Xz'))Q
1=1
In some cases the input data only occupy a small subspace (manifold) of the unit ball;

some learning approaches are able to explore this

e We define e to be the minimum Euclidean distance for the “most difficult” function

from the function class

min max ||f — fw|| B

€
B W ¢

€p(z) = Minmax|If —twllp()

fe F fweM

e Statistical machine learning analyses the distance between the expected distance be-
tween a model function, where the parameters were estimated based on some training

data, and a given f

e This is not the issue in approximation theory, and will be discussed in a later lecture

e Consider input space dimension M

e If in one dimensions, we need ngone_dim) RBFs (e.g., Méone’dim) = 10), and we

want to maintain the same complexity in higher dimensions, then we need

M¢ _ (Méone—dim)) M

RBFs in M dimensions

10

10 RBFs in one dimension

100 RBFs in

9
(PCICIOCICICICY v dmansions

o We get

(one-dim) __ 1
Mﬁb =0 1/m
°B

e Here, m is a characterization of the smoothness of the target class: m can be the
set of all functions with continuous partial derivatives of orders up to m (derivatives

of higher order can be discontinuous)

e Thisresult can, e.g., be found in: “Why and When Can Deep-but Not Shallow-networks
Avoid the Curse of Dimensionality: A Review’ Tomaso Poggio et al., International

Journal of Automation and Computing, 2017, Equation 5.

11

e \We can write this as

Méone—dim) — O (2CCUra Cyroughness)

where we have defined accuracy = 1/ep and roughness = 1/m

12

e Overall, the total number of basis function is then

qu — O (accuracyl\//xroughness)

e Note, that, for a fixed desired accuracy (e.g., accuracy = 10), the number of basis

functions increases exponentially with M X roughness
e Sometimes it is more instructive to look at the logarithm

log My, = O (M X roughness x log(accuracy))

13

e F: dimensionality M is large, and roughness is large
e M: Considering that (M X roughness) is in the exponent, M is unrealistically large

e This is the famous Bellman's “Curse of Dimensionality”

14

20-Dimensional Checker Board Function:
“Curse of Dimensionality”

A, x-space

M is high (M=20),
roughness is large

The required number
of basis function is
huge

2-D slice through a 20-
Dimensional input space

e F: dimensionality M is small but roughness is large
e In this case (M X roughness) might be acceptable

e M: This is what | would call the “Blessing of Dimensionality”: a complex nonlinear
classification problem (large roughness) can be solved by a transformation of the low-

dimensional input space (M) into a high-dimensional space (M) where the problem
might even become linearly separable

15

2-D Checker Board Function

d X-space

X2

Here M=2 (roughness
is large) and with less
than 100 RBF basis
functions we might get
a good fit

e F: dimensionality M is large and roughness is small (the target function is smooth)

e A special case would be when the target functions are linear functions; then where
My = M + 1; The target function exhibits a voting behavior: each input itself has
a (small) contribution to the output

e F: if the target functions can well be approximated by linear functions, the input
dimension can be quite high (M > 10000)

16

e F: dimensionality M is small and roughness is small (the target function is smooth)

e M: Only a small number M of smooth basis functions are required

17

X-space

2-D slice through a 20-
D input space

M is large (M=20) and
roughness is small

Here M=20 is medium
size and with less than
100 RBF basis
functions we might get
a good fit

Fortunately, even Case | is not as hopeless as it first appears, since, in reality, classes

are more restricted

la: F: The target functions have high-frequency components, but only locally, and a

sparse solution is feasible

Ib: The input data points are restricted to a low-dimensional manifold (reflected in

P(x))

lc: F: The target functions are composable (discussed in the lecture on deep learning)

18

e JF: both M and roughness are large, so the required M is large, but only H <<
M basis functions have nonzero weights; e.g., high complexity might only be
present in a restricted region in input space

e M: With a neural network model, the number of hidden units with nonzero weights
(i.e., H) might even be independent of M!

e As a model class, classical neural networks with H hidden units can adaptively find

the “perfect” sparse basis during training (with backpropagation)

19

X-space

“

H=16 hidden units in a
neural network might
be sufficient

Although the input
space might be high
dimensional,
complexity is limited

| need to allocate 10*"M fixed basis functions

IXXAIREXXHN

If | adapt center and width of one basis function, | can get a
perfect fit

Training time /\

So far we did not assume any particular input data distribution: P(x) might be a

uniform distribution within the unit ball

But sometimes P(x) is restricted to a subspace of small dimension M; << M;
in the nonlinear case, the subspace is called a manifold (data is often on a manifold,
when model accuracy is very high (like in OCR)

M: we might only need on the order of accuracyhx roughness (instead of accuracyM * roughness

basis functions to cover the relevant region in input space

Some model classes, like neural networks / deep neural networks, model data on a

low-dimensional manifold quite effectively

Other approaches perform a preprocessing step (clustering, PCA, ICA, ...) to find
the manifold (dimensionality reduction), and then apply any model class suitable for

low-dimensional data

20

* Although the input space
might be high
dimensional, the data
lives in a subspace

* The dimension of the
subspace is M,, here 1

Input data
distribution lives in a
subspace

In case that the columns of V are orthonormal, there is a simple geometric
interpretation

More general, the data
lives in a manifold

| Input data
distribution lives in a
manifold

e We encountered this in the lecture on basis functions

e Assume that nature generates data in some low-dimensional space; nature then trans-

forms this data to a high dimensional space by some nonlinear transformation

e This data then become the input data; then the input data might be on a manifold,

as discussed in the lecture on basis functions!

e See lecture on manifold learning

21

0.8

0.4

[

L
f, RH , f,f"" \\ Class labels (green, red, green)
__ In the 1-D input space, a linear classifier
would not be able to separate the two
) classes
,-’;
.-"; ..\H"\-\.
' From a linear 1-D input space (top) to a
0 a0 Ao o nonlinear 1-D manifold in 2-D basis

nonlinear
manifold

function space (bottom)

In basis function space, classes can
linearly be separated!

is a 1-D nonlinear manifold

) I

separating hyperplane

=04 0.1

#(x)

The image of the 1-D input data space

Data provided by nature is on a 2D manifold

Output

I

ML
e.g., a neural network

|

00o000oooo

Visible features accessible to machine
learning: data is on a 2D manifold

“ Low dimensional (noisy) features in
00 some hidden space of nature

Adversarial problem
* Training data provided by nature is on a 2D manifold
« Test data is on a 30 manifold

Output

I

ML
e.g., a neural network

|

Visible features accessible to machine

O000o0oooo learning: data is on a 2D manifold
Some test data are a0 Low dimensional (noisy) features in

on a 3D manifold some hidden space of nature

But there is a danger: if we consider test data outside of the manifold, then perfor-

mance might degrade quickly
So although, eP(X)might be small, eg could be large!

A common issue is: even on a test set (generated from the available data) the per-
formance is excellent, but if | apply my model to new data collected independently,

performance is much worse (even if f(x) did not change)
This might explain the bad performance of DNNs on adversarial examples

Sometimes this problem is also called covariate shift (covariates are the inputs)

22

Basis functions perform a nonlinear transformation from input space to basis function

space

To avoid the Curse of Dimensionality and if one uses fixed basis functions, (M x

roughness) should not be very large

Neural networks are effective when the basis is sparse (la (sparse basis)) or when data

is on a manifold (Ib (data on a low-dimensional manifold))

The next table evaluates linear models, distance-based methods (like nearest neighbor
methods), models with fixed basis functions, neural networks, deep neural networks,

and kernel approaches

23

Target \ Model | Lin | Neighb. | fixed BF | Neural Nets | Deep NNs | Kernels
| (curse) - - - - _ _
Il (blessing) . + + + 4+ 4+
Il (smooth) + - + + 4 +
IV (simple) + + + + + +
la (sparse basis) | - - - + 4 _
Ib (manifold) - | - (+dr) | - (+dr) 4+ 4+ 4
lc (compos.) - - - _ 4+ _

e (+dr) stands for possibly good results with suitable dimensionality reduction by a

preprocessing step;
e Case lc are compositional functions, introduced in the lecture on deep neural networks

e Kernels are introduced in a later lecture

Assume n discretization steps for each of the M input dimensions, e.g., x; €
0,1,2,....n—1

With K dls%etlzatlon steps for the foutput , eg., f € 0,1,2,..., K — 1, we can
realize K (") functions, with entropy (number of required bits) (each function has
the same probability for being generated)

Entropy r = logs K" = M log> K

For each possible input, we simply need |0g> K bits and there are nM possible inputs

Interesting: It is not the accuracy of the representation (i.e., K) that “kills" us, it is
the dimensionality M reflected in the number of possible inputs (i.e., n/¥/)
For a model class of fixed basis functions,

Entropy pq = l0g> KWMy) — M, logo K
if we represent each weight with |0g> K bits

24

For systems with fixed basis functions and binary classification, dimyo = Mp =
M 4 is the VC-dimension (proportional to our entropy) of the model class

Note that the VC-dimension is a property of the model class M and not of the

function class F

If we have N = My = dimy ¢ data points, the design matrix dT'd is a square
matrix and might be invertible; in that case, no matter what the assignment of training

labels y, we perfectly fit the classification labels (e.g., with regression)

VC-theory states that one needs at least dimy -~ data points for a valid generalization;
this makes sense, since, without regularization, there are an infinite number of solutions

when M¢ < N

Formally, dimy ¢ is defined as the cardinality of the largest set of points that the

model class can shatter (i.e., perfectly model for any assignments of targets)

25

